1
|
Scarfì S, Almonti V, Mirata S, Passalacqua M, Vernazza S, Patel JP, Brook M, Hamilton A, Kah M, Gualtieri AF. In vitro cyto- and geno-toxicity of asbestiform erionite from New Zealand. ENVIRONMENTAL RESEARCH 2025; 265:120415. [PMID: 39579848 DOI: 10.1016/j.envres.2024.120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This work is an in vitro toxicity study of two asbestiform erionites from Kaipara and Gawler Downs in New Zealand. This study is the first, to the knowledge of the authors, to investigate the mechanisms that trigger adverse effects leading to carcinogenicity from New Zealand erionites. The effects induced by the erionite fibres from New Zealand were compared with those produced by positive (crocidolite) and negative (wollastonite) standards, and other erionite fibres described in the literature. The cytotoxicity/genotoxicity/inflammatory potential was determined by: (i) analysis of the cytotoxic potential by MTT tests on human cell lines mimicking primary cells making direct contact with fibres in the lungs, combined with apoptosis tests and cell membrane damage by fluorescence microscopy analyses; (ii) analysis of the genotoxic potential by quantification of DNA damage measuring double strand break foci by γ-H2AX nuclear staining in confocal microscopy analyses; (iii) analyses of the acute (24-72h) and early-chronic (7d) inflammatory effect by gene expression analyses of several cytokines, as well as of fibrotic and Epithelial to Mesenchymal transition (EMT) markers. The intensity of cell responses to these erionites are comparable to that of standard carcinogenic crocidolite, indicating that the two erionite fibres exhibit a significant acute toxic potential, with a particular alarming effect from the Gawler Downs sample from South Island. Our results confirm that the investigated erionites from New Zealand may represent an environmental hazard. However, further investigation is required to determine potential environmental exposure pathways by which erionite may become airborne and assess any environmental risks that may arise.
Collapse
Affiliation(s)
- Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Vanessa Almonti
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132, Genova, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy
| | - Mario Passalacqua
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy; Department Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122, Pisa, Italy; Department Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Janki Prakash Patel
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| | - Martin Brook
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Ayrton Hamilton
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Melanie Kah
- School of Environment, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| |
Collapse
|
2
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
3
|
Syed MA, Bhat B, Wali A, Saleem A, Ahmad Dar L, Gugjoo MB, Bhat S, Saleem Bhat S. Epithelial to mesenchymal transition in mammary gland tissue fibrosis and insights into drug therapeutics. PeerJ 2023; 11:e15207. [PMID: 37187521 PMCID: PMC10178283 DOI: 10.7717/peerj.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) is a multi-step morphogenetic process in which epithelial cells lose their epithelial properties and gain mesenchymal characteristics. The process of EMT has been shown to mediate mammary gland fibrosis. Understanding how mesenchymal cells emerge from an epithelial default state will aid in unravelling the mechanisms that control fibrosis and, ultimately, in identifying therapeutic targets to alleviate fibrosis. Methods The effects of EGF and high glucose (HG) on EMT in mammary epithelial cells, MCF10A and GMECs, as well as their pathogenic role, were studied. In-silico analysis was used to find interacting partners and protein-chemical/drug molecule interactions. Results On treatment with EGF and/or HG, qPCR analysis showed a significant increase in the gene expression of EMT markers and downstream signalling genes. The expression of these genes was reduced on treatment with EGF+HG combination in both cell lines. The protein expression of COL1A1 increased as compared to the control in cells treated with EGF or HG alone, but when the cells were treated with EGF and HG together, the protein expression of COL1A1 decreased. ROS levels and cell death increased in cells treated with EGF and HG alone, whereas cells treated with EGF and HG together showed a decrease in ROS production and apoptosis. In-silico analysis of protein-protein interactions suggest the possible role of MAPK1, actin alpha 2 (ACTA2), COL1A1, and NFκB1 in regulating TGFβ1, ubiquitin C (UBC), specificity protein 1 (SP1) and E1A binding protein P300 (EP300). Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment suggests advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signalling pathway, relaxin signalling pathway and extra cellular matrix (ECM) receptor interactions underlying fibrosis mechanism. Conclusion This study demonstrates that EGF and HG induce EMT in mammary epithelial cells and may also have a role in fibrosis.
Collapse
Affiliation(s)
- Mudasir Ahmad Syed
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Abiza Wali
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Surgery, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India, Srinagar, Jammu and Kashmir, India
| | - Shakil Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| |
Collapse
|
4
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
5
|
Ramundo V, Zanirato G, Aldieri E. The Epithelial-to-Mesenchymal Transition (EMT) in the Development and Metastasis of Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms222212216. [PMID: 34830097 PMCID: PMC8621591 DOI: 10.3390/ijms222212216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor mainly associated with asbestos exposure and is characterized by a very difficult pharmacological approach. One of the molecular mechanisms associated with cancer onset and invasiveness is the epithelial-to-mesenchymal transition (EMT), an event induced by different types of inducers, such as transforming growth factor β (TGFβ), the main inducer of EMT, and oxidative stress. MPM development and metastasis have been correlated to EMT; On one hand, EMT mediates the effects exerted by asbestos fibers in the mesothelium, particularly via increased oxidative stress and TGFβ levels evoked by asbestos exposure, thus promoting a malignant phenotype, and on the other hand, MPM acquires invasiveness via the EMT event, as shown by an upregulation of mesenchymal markers or, although indirectly, some miRNAs or non-coding RNAs, all demonstrated to be involved in cancer onset and metastasis. This review aims to better describe how EMT is involved in driving the development and invasiveness of MPM, in an attempt to open new scenarios that are useful in the identification of predictive markers and to improve the pharmacological approach against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Giada Zanirato
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.R.); (G.Z.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
6
|
Epithelial to Mesenchymal Transition in Human Mesothelial Cells Exposed to Asbestos Fibers: Role of TGF-β as Mediator of Malignant Mesothelioma Development or Metastasis via EMT Event. Int J Mol Sci 2019; 20:ijms20010150. [PMID: 30609805 PMCID: PMC6337211 DOI: 10.3390/ijms20010150] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Asbestos exposure increases the risk of asbestosis and malignant mesothelioma (MM). Both fibrosis and cancer have been correlated with the Epithelial to Mesenchymal Transition (EMT)-an event involved in fibrotic development and cancer progression. During EMT, epithelial cells acquire a mesenchymal phenotype by modulating some proteins. Different factors can induce EMT, but Transforming Growth Factor β (TGF-β) plays a crucial role in promoting EMT. In this work, we verified if EMT could be associated with MM development. We explored EMT in human mesothelial cells (MeT-5A) exposed to chrysotile asbestos: we demonstrated that asbestos induces EMT in MeT-5A cells by downregulating epithelial markers E-cadherin, β-catenin, and occludin, and contemporarily, by upregulating mesenchymal markers fibronectin, α-SMA, and vimentin, thus promoting EMT. In these cells, this mechanism is mediated by increased TGF-β secretion, which in turn downregulates E-cadherin and increases fibronectin. These events are reverted in the presence of TGF-β antibody, via a Small Mother Against Decapentaplegic (SMAD)-dependent pathway and its downstream effectors, such as Zinc finger protein SNAI1 (SNAIL-1), Twist-related protein (Twist), and Zinc Finger E-Box Binding Homeobox 1 (ZEB-1), which downregulate the E-cadherin gene. Since SNAIL-1, Twist, and ZEB-1 have been shown to be overexpressed in MM, these genes could be considered possible predictive or diagnostic markers of MM development.
Collapse
|
7
|
Setyawati MI, Sevencan C, Bay BH, Xie J, Zhang Y, Demokritou P, Leong DT. Nano-TiO 2 Drives Epithelial-Mesenchymal Transition in Intestinal Epithelial Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800922. [PMID: 29968352 DOI: 10.1002/smll.201800922] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/11/2018] [Indexed: 05/23/2023]
Abstract
The majority of cancer mortality is associated with cancer metastasis. Epithelial-to-mesenchymal transition (EMT) is a process by which cells attain migratory and invasive properties, eventually leading to cancer metastasis. Here, it is shown that titanium dioxide nanoparticles (nano-TiO2 ), a common food additive, can induce the EMT process in colorectal cancer cells. Nano-TiO2 exposure is observed to activate transforming growth factor-β (TGF-β)/mitogen-activated protein kinase (MAPK) and wingless (Wnt) pathways, and drive the EMT process. Similarly, silica nanoparticles (nano-SiO2 ) and hydroxyapatite nanoparticles (nano-HA), as food-based additives, can be ingested and accumulated in the stomach, and are found to be able to induce the EMT progression. The implication of this work can be profound for colorectal cancer patients where these food additives may unknowingly and unnecessarily hasten the progression of their cancers.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemicals and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Cansu Sevencan
- Department of Chemicals and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Boon Huat Bay
- Department of Anatomy, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Jianping Xie
- Department of Chemicals and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yongbin Zhang
- NCTR/ORA Nanotechnology Core Facility, National Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - David Tai Leong
- Department of Chemicals and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Zhang YL, Chen PX, Guan WJ, Guo HM, Qiu ZE, Xu JW, Luo YL, Lan CF, Xu JB, Hao Y, Tan YX, Ye KN, Lun ZR, Zhao L, Zhu YX, Huang J, Ko WH, Zhong WD, Zhou WL, Zhong NS. Increased intracellular Cl - concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunol 2018; 11:1149-1157. [PMID: 29545647 DOI: 10.1038/s41385-018-0013-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hong-Mei Guo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Li Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Ya-Xia Tan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ke-Nan Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Öner D, Ghosh M, Moisse M, Duca RC, Coorens R, Vanoirbeek JAJ, Lambrechts D, Godderis L, Hoet PHM. Global and gene-specific DNA methylation effects of different asbestos fibres on human bronchial epithelial cells. ENVIRONMENT INTERNATIONAL 2018; 115:301-311. [PMID: 29626692 DOI: 10.1016/j.envint.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Inhalation exposure to asbestos is associated with lung and pleural diseases in humans and remains a major public health issue worldwide. Human bronchial epithelial cells (16HBE) were exposed to UICC amosite, crocidolite and chrysotile. Cytotoxicity, genotoxicity, global DNA methylation on cytosine residues (using LC-MS/MS) were investigated at different doses (2.5-100 μg/ml). Gene-specific DNA methylation alterations at the whole genome were investigated using a microarray that interrogates >450 thousand CpG sites. Subsequently, gene functional analyses (KEGG pathway, Gene Ontology and functional classification) were performed on genes with differentially methylated gene promoters. At non-cytotoxic doses, global DNA methylation was altered after 24 h exposure to amosite and crocidolite (>2.5 μg/ml). Exposure to amosite and crocidolite (amphibole type asbestos) induced both hypomethylation and hypermethylation at single CpG site and gene promoter levels whereas exposure to chrysotile (serpentine type asbestos) induced hypomethylation at the gene promoter level. Gene functional classification analyses revealed that all types of asbestos fibres induce alterations on GO-clusters i.e. on regulation of Rho-protein signal transduction, nucleus, (e.g. homeobox genes), ATP-binding function and extracellular region (e.g. WNT-group of genes). These differentially methylated genes might contribute to asbestos-related diseases in bronchial cells.
Collapse
Affiliation(s)
- Deniz Öner
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory of Toxicology, 3000 Leuven, Belgium
| | - Manosij Ghosh
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory of Toxicology, 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, Leuven, Belgium; VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Radu Corneliu Duca
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory for Occupational and Environmental Hygiene, 3000 Leuven, Belgium
| | - Robin Coorens
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory of Toxicology, 3000 Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory of Toxicology, 3000 Leuven, Belgium; KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory for Occupational and Environmental Hygiene, 3000 Leuven, Belgium
| | - Diether Lambrechts
- KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, Leuven, Belgium; VIB, VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium
| | - Lode Godderis
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory for Occupational and Environmental Hygiene, 3000 Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, B-3001 Leuven, Belgium
| | - Peter H M Hoet
- KU Leuven, Department of Public Health and Primary Care, Unit of Environment and Health, Laboratory of Toxicology, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Munson P, Lam YW, Dragon J, MacPherson M, Shukla A. Exosomes from asbestos-exposed cells modulate gene expression in mesothelial cells. FASEB J 2018; 32:4328-4342. [PMID: 29553831 DOI: 10.1096/fj.201701291rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asbestos exposure is a determinate cause of many diseases, such as mesothelioma, fibrosis, and lung cancer, and poses a major human health hazard. At this time, there are no identified biomarkers to demarcate asbestos exposure before the presentation of disease and symptoms, and there is only limited understanding of the underlying biology that governs asbestos-induced disease. In our study, we used exosomes, 30-140 nm extracellular vesicles, to gain insight into these knowledge gaps. As inhaled asbestos is first encountered by lung epithelial cells and macrophages, we hypothesize that asbestos-exposed cells secrete exosomes with signature proteomic cargo that can alter the gene expression of mesothelial cells, contributing to disease outcomes like mesothelioma. In the present study using lung epithelial cells (BEAS2B) and macrophages (THP-1), we first show that asbestos exposure causes changes in abundance of some proteins in the exosomes secreted from these cells. Furthermore, exposure of human mesothelial cells (HPM3) to these exosomes resulted in gene expression changes related to epithelial-to-mesenchymal transition and other cancer-related genes. This is the first report to indicate that asbestos-exposed cells secrete exosomes with differentially abundant proteins and that those exosomes have a gene-altering effect on mesothelial cells.-Munson, P., Lam, Y.-W., Dragon, J. MacPherson, M., Shukla, A. Exosomes from asbestos-exposed cells modulate gene expression in mesothelial cells.
Collapse
Affiliation(s)
- Phillip Munson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont, USA.,Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, Vermont, USA
| | - Julie Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
11
|
Wang X, Gao JL, Zhao MM, Zhu HX, Tian YX, Li R, Jiang XH, Yu L, Tian JR, Cui JZ. Therapeutic effects of conditioned medium from bone marrow-derived mesenchymal stem cells on epithelial-mesenchymal transition in A549 cells. Int J Mol Med 2017; 41:659-668. [PMID: 29207055 PMCID: PMC5752235 DOI: 10.3892/ijmm.2017.3284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease. The transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis. Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to be a modulator of the molecular aspects of the fibrosis pathway. However, it is still unknown as to whether the conditioned medium from BMSCs (BMSCs-CM) inhibits the epithelial-mesenchymal transition (EMT) process. This study confirmed the hypothesis that BMSCs-CM exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549) by suppressing the phosphorylation of Smad3. We used the A549 cells in vitro to detect morphological evidence of EMT by phase-contrast microscopy. These cells were randomly divided into 4 groups as follows: the control group, the TGF-β1 group, the SIS3 (specific inhibitor of Smad3) group and the BMSCs-CM group. The immunofluorescence method was used to determined the location of E-cadherin (E-calcium mucins; E-cad), α-smooth muscle actin (α-SMA) and p-Smad3. The expression levels of E-cad, CK8, α-SMA, vimentin, p-Smad3, Snail1, collagen I (COLI) and collagen III (COLIII) were detected by western blot analysis. Following exposure to TGF-β1, the A549 cells displayed a spindle-shaped fibroblast-like morphology. In accordance with these morphological changes, the expression levels of E-cad and CK8 were downregulated, while the expression levels of α-SMA and vimentin were upregulated. Along with this process, the expression levels of p-Smad3, Snail1, COLI and COLIII were increased. However, the cells in the BMSCs-CM group and SIS3 group exhibited a decrease in the levels of α-SMA and vimentin (which had been upregulated by TGF-β1), and an increase in the levels of E-cad and CK8 expression (which had been downregulated by TGF-β1). On the whole, these results indicated that BMSCs-CM suppressed the EMT which might be associated with TGF-β1/Smad3. This study provides the theoretical basis for the research of the mechanisms responsible for pulmonary disease.
Collapse
Affiliation(s)
- Xin Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jun-Ling Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Man-Man Zhao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hui-Xing Zhu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yan-Xia Tian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Ran Li
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiao-Hua Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lei Yu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jing-Rui Tian
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jian-Zhong Cui
- Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
12
|
Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma. Oncotarget 2017; 8:98280-98297. [PMID: 29228689 PMCID: PMC5716729 DOI: 10.18632/oncotarget.21550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma originates from mesothelial cells and is a cancer type that aggressively invades into the surrounding tissue, has poor prognosis and no effective treatment. Gremlin-1 is a cysteine knot protein that functions by inhibiting BMP-pathway activity during development. BMP-independent functions have also been described for gremlin-1. We have previously shown high gremlin-1 expression in mesothelioma tumor tissue. Here, we investigated the functions of gremlin-1 in mesothelioma cell migration and invasive growth. Gremlin-1 promoted mesothelioma cell sprouting and invasion into three dimensional collagen and Matrigel matrices. The expression level of gremlin-1 was linked to changes in the expression of SNAI2, integrins, matrix metalloproteinases (MMP) and TGF-β family signaling - all previously associated with a mesenchymal invasive phenotype. Small molecule inhibitors of MMPs completely blocked mesothelioma cell invasive growth. In addition, inhibitors of TGF-β receptors significantly reduced invasive growth. This was associated with reduced expression of MMP2 but not SNAI2, indicating that gremlin-1 has both TGF-β pathway dependent and independent mechanisms of action. Results of in vivo mesothelioma xenograft experiments indicated that gremlin-1 overexpressing tumors were more vascular and had a tendency to send metastases. This suggests that by inducing a mesenchymal invasive cell phenotype together with enhanced tumor vascularization, gremlin-1 drives mesothelioma invasion and metastasis. These data identify gremlin-1 as a potential therapeutic target in mesothelioma.
Collapse
|
13
|
Koga Y, Satoh T, Kaira K, Koka M, Hisada T, Hirato J, Altan B, Yatomi M, Ono A, Kamide Y, Shimizu Y, Aoki-Saito H, Tsurumaki H, Shimizu K, Mogi A, Ishizuka T, Yamada M, Dobashi K. Elemental and immunohistochemical analysis of the lungs and hilar lymph node in a patient with asbestos exposure, a pilot study. Environ Health Prev Med 2016; 21:492-500. [PMID: 27699693 DOI: 10.1007/s12199-016-0576-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/08/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Studies have shown that inhaled mine dust, such as asbestos, can be translocated to various organs including the lymph nodes. Recently, we have established a protocol that enables us to identify inhaled elements using paraffin embedded lung specimens by in-air microparticle-induced X-ray emission (micro-PIXE). However, little research has examined the concentration of these inhaled fibers in various organs or the mechanisms of their translocation. In this study, we compared the concentration of inhaled fibers in the lung parenchyma to the concentration in the hilar lymph node as well as to determine the elemental spatial distribution of the inhaled fibers in a patient with occupational asbestos exposure. METHODS Lung tissues and hilar lymph node in a patient with asbestos exposure were used in this study. Elemental analysis was performed by in-air micro-PIXE. Immunohistochemical analysis was performed using anti CD163, smooth muscle actin, vimentin and β-catenin antibody. RESULTS The analysis revealed that the amount of inhaled silicon was approximately 6 times higher in the lymph node than in the lungs. The spatial analysis showed that silicon, iron and aluminium were co-localized in the hilar lymph node. The immunohistochemical analysis showed localized agreement of the inhaled fibers with macrophages, smooth muscle actin, and vimentin in the hilar lymph node. CONCLUSIONS This study showed that in-air micro-PIXE could be useful for analyzing the elemental distribution and quantification of inhaled fibers in the human body. Furthermore, immunohistochemistry in combination with in-air micro-PIXE analyses may help to determine the mechanism of mine dust distribution in vivo.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan.
| | - Takahiro Satoh
- Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma, 370-1292, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Masashi Koka
- Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma, 370-1292, Japan
| | - Takeshi Hisada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, 3-39-22 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Masakiyo Yatomi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Akihiro Ono
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Yosuke Kamide
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan.,Department of Allergy, Sagamihara National Hospital, 18-1 Sakuradai minami-ku, Sagamihara, Kanagawa, 252-0392, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu-machi, Tochigi, 321-0293, Japan
| | - Haruka Aoki-Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroaki Tsurumaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Kimihiro Shimizu
- Department of Thoracic Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi, Maebashi, Gunma, 371-8511, Japan
| | - Kunio Dobashi
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi, Maebashi, Gunma, 371-8514, Japan.
| |
Collapse
|
14
|
Gulino GR, Polimeni M, Prato M, Gazzano E, Kopecka J, Colombatto S, Ghigo D, Aldieri E. Effects of Chrysotile Exposure in Human Bronchial Epithelial Cells: Insights into the Pathogenic Mechanisms of Asbestos-Related Diseases. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:776-784. [PMID: 26685284 PMCID: PMC4892914 DOI: 10.1289/ehp.1409627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/30/2015] [Indexed: 05/31/2023]
Abstract
BACKGROUND Chrysotile asbestos accounts for > 90% of the asbestos used worldwide, and exposure is associated with asbestosis (asbestos-related fibrosis) and other malignancies; however, the molecular mechanisms involved are not fully understood. A common pathogenic mechanism for these malignancies is represented by epithelial-mesenchymal transition (EMT), through which epithelial cells undergo a morphological transformation to assume a mesenchymal phenotype. In the present work, we propose that chrysotile asbestos induces EMT through a mechanism involving a signaling pathway mediated by tranforming growth factor beta (TGF-β). OBJECTIVES We investigated the role of chrysotile asbestos in inducing EMT in order to elucidate the molecular mechanisms involved in this event. METHODS Human bronchial epithelial cells (BEAS-2B) were incubated with 1 μg/cm2 chrysotile asbestos for ≤ 72 hr, and several markers of EMT were investigated. Experiments with specific inhibitors for TGF-β, glycogen synthase kinase-3β (GSK-3β), and Akt were performed to confirm their involvement in asbestos-induced EMT. Real-time polymerase chain reaction (PCR), Western blotting, and gelatin zymography were performed to detect mRNA and protein level changes for these markers. RESULTS Chrysotile asbestos activated a TGF-β-mediated signaling pathway, implicating the contributions of Akt, GSK-3β, and SNAIL-1. The activation of this pathway in BEAS-2B cells was associated with a decrease in epithelial markers (E-cadherin and β-catenin) and an increase in mesenchymal markers (α-smooth muscle actin, vimentin, metalloproteinases, and fibronectin). CONCLUSIONS Our findings suggest that chrysotile asbestos induces EMT, a common event in asbestos-related diseases, at least in part by eliciting the TGF-β-mediated Akt/GSK-3β/SNAIL-1 pathway. CITATION Gulino GR, Polimeni M, Prato M, Gazzano E, Kopecka J, Colombatto S, Ghigo D, Aldieri E. 2016. Effects of chrysotile exposure in human bronchial epithelial cells: insights into the pathogenic mechanisms of asbestos-related diseases. Environ Health Perspect 124:776-784; http://dx.doi.org/10.1289/ehp.1409627.
Collapse
Affiliation(s)
- Giulia Rossana Gulino
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti,” University of Torino, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Manuela Polimeni
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti,” University of Torino, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Mauro Prato
- Department of Neurosciences, University of Torino, Torino, Italy
| | - Elena Gazzano
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti,” University of Torino, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Dario Ghigo
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti,” University of Torino, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Elisabetta Aldieri
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti,” University of Torino, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Vietti G, Lison D, van den Brule S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol 2016; 13:11. [PMID: 26926090 PMCID: PMC4772332 DOI: 10.1186/s12989-016-0123-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT. As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1β) and pro-fibrotic (PDGF and TGF-β) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.
Collapse
Affiliation(s)
- Giulia Vietti
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| |
Collapse
|
16
|
LI PENG, LIU TIE, KAMP DAVIDW, LIN ZIYING, WANG YAHONG, LI DONGHONG, YANG LAWEI, HE HUIJUAN, LIU GANG. The c-Jun N-terminal kinase signaling pathway mediates chrysotile asbestos-induced alveolar epithelial cell apoptosis. Mol Med Rep 2015; 11:3626-3634. [PMID: 25530474 PMCID: PMC4735687 DOI: 10.3892/mmr.2014.3119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Exposure to chrysotile asbestos exposure is associated with an increased risk of mortality in combination with pulmonary diseases including lung cancer, mesothelioma and asbestosis. Multiple mechanisms by which chrysotile asbestos fibers induce pulmonary disease have been identified, however the role of apoptosis in human lung alveolar epithelial cells (AEC) has not yet been fully explored. Accumulating evidence implicates AEC apoptosis as a crucial event in the development of both idiopathic pulmonary fibrosis and asbestosis. The aim of the present study was to determine whether chrysotile asbestos induces mitochondria‑regulated (intrinsic) AEC apoptosis and, if so, whether this induction occurs via the activation of mitogen‑activated protein kinases (MAPK). Human A549 bronchoalveolar carcinoma‑derived cells with alveolar epithelial type II‑like features were used. The present study showed that chrysotile asbestos induced a dose‑ and time‑dependent decrease in A549 cell viability, which was accompanied by the activation of the MAPK c‑Jun N‑terminal kinases (JNK), but not the MAPKs extracellular signal‑regulated kinase 1/2 and p38. Chrysotile asbestos was also shown to induce intrinsic AEC apoptosis, as evidenced by the upregulation of the pro‑apoptotic genes Bax and Bak, alongside the activation of caspase‑9, poly (ADP‑ribose) polymerase (PARP), and the release of cytochrome c. Furthermore, the specific JNK inhibitor SP600125 blocked chrysotile asbestos‑induced JNK activation and subsequent apoptosis, as assessed by both caspase‑9 cleavage and PARP activation. The results of the present study demonstrated that chrysotile asbestos induces intrinsic AEC apoptosis by a JNK‑dependent mechanism, and suggests a potential novel target for the modulation of chrysotile asbestos‑associated lung diseases.
Collapse
Affiliation(s)
- PENG LI
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - TIE LIU
- Department of Hematology, The First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - DAVID W. KAMP
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center and Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - ZIYING LIN
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - YAHONG WANG
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - DONGHONG LI
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - LAWEI YANG
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - HUIJUAN HE
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - GANG LIU
- Clinical Research Center, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
17
|
Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth. Exp Cell Res 2015; 332:102-15. [DOI: 10.1016/j.yexcr.2014.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022]
|
18
|
Perkins TN, Peeters PM, Shukla A, Arijs I, Dragon J, Wouters EFM, Reynaert NL, Mossman BT. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Hum Mol Genet 2014; 24:1374-89. [PMID: 25351596 DOI: 10.1093/hmg/ddu551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Occupational and environmental exposures to airborne asbestos and silica are associated with the development of lung fibrosis in the forms of asbestosis and silicosis, respectively. However, both diseases display distinct pathologic presentations, likely associated with differences in gene expression induced by different mineral structures, composition and bio-persistent properties. We hypothesized that effects of mineral exposure in the airway epithelium may dictate deviating molecular events that may explain the different pathologies of asbestosis versus silicosis. Using robust gene expression-profiling in conjunction with in-depth pathway analysis, we assessed early (24 h) alterations in gene expression associated with crocidolite asbestos or cristobalite silica exposures in primary human bronchial epithelial cells (NHBEs). Observations were confirmed in an immortalized line (BEAS-2B) by QRT-PCR and protein assays. Utilization of overall gene expression, unsupervised hierarchical cluster analysis and integrated pathway analysis revealed gene alterations that were common to both minerals or unique to either mineral. Our findings reveal that both minerals had potent effects on genes governing cell adhesion/migration, inflammation, and cellular stress, key features of fibrosis. Asbestos exposure was most specifically associated with aberrant cell proliferation and carcinogenesis, whereas silica exposure was highly associated with additional inflammatory responses, as well as pattern recognition, and fibrogenesis. These findings illustrate the use of gene-profiling as a means to determine early molecular events that may dictate pathological processes induced by exogenous cellular insults. In addition, it is a useful approach for predicting the pathogenicity of potentially harmful materials.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA, Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands,
| | - Paul M Peeters
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA, Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands,
| | - Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Ingrid Arijs
- Department of Gastroenterology, Translational Research Center for Gastrointestinal Disorders (TARGID), and Gene Expression Unit, Department of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | - Julie Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
19
|
Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Cui X, Wang Y, Wang H, Jia G. Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 2014; 226:150-62. [DOI: 10.1016/j.toxlet.2014.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
|
20
|
Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug. Oncogenesis 2013; 2:e66. [PMID: 23978876 PMCID: PMC3759128 DOI: 10.1038/oncsis.2013.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma is a form of cancer that is highly resistant to conventional cancer therapy for which no major therapeutic advances have been introduced. Here, we identify gremlin-1, a known bone morphogenetic protein inhibitor crucial for embryonic development, as a potential therapeutic target for mesothelioma. We found high expression levels of gremlin-1 in the mesothelioma tumor tissue, as well as in primary mesothelioma cells cultured from pleural effusion samples. Downregulation of gremlin-1 expression by siRNA-mediated silencing in a mesothelioma cell line inhibited cell proliferation. This was associated with downregulation of the transcription factor slug as well as mesenchymal proteins linked to cancer epithelial-to-mesenchymal transition. Further, resistance to paclitaxel-induced cell death was associated with high gremlin-1 and slug expression. Treatment of gremlin-1-silenced mesothelioma cells with paclitaxel or pemetrexed resulted in efficient loss of cell survival. Finally, our data suggest that concomitant upregulation of fibrillin-2 in mesothelioma provides a mechanism for extracellular localization of gremlin-1 to the tumor microenvironment. This was supported by the demonstration of interactions between gremlin-1, and fibrillin-1 and -2 peptides as well as by colocalization of gremlin-1 to fibrillin microfibrils in cells and tumor tissue samples. Our data suggest that gremlin-1 is also a potential target for overcoming drug resistance in mesothelioma.
Collapse
|
21
|
LU JING, BAI RUIHUA, QIN ZHENZHU, ZHANG YANYAN, ZHANG XIAOYAN, JIANG YANAN, YANG HONGYAN, HUANG YOUTIAN, LI GANG, ZHAO MINGYAO, DONG ZIMING. Differentiation of immature DCs into endothelial-like cells in human esophageal carcinoma tissue homogenates. Oncol Rep 2013; 30:739-44. [DOI: 10.3892/or.2013.2491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/02/2013] [Indexed: 11/06/2022] Open
|
22
|
Lang BJ, Nguyen L, Nguyen HC, Vieusseux JL, Chai RCC, Christophi C, Fifis T, Kouspou MM, Price JT. Heat stress induces epithelial plasticity and cell migration independent of heat shock factor 1. Cell Stress Chaperones 2012; 17:765-78. [PMID: 22791010 PMCID: PMC3468677 DOI: 10.1007/s12192-012-0349-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 02/03/2023] Open
Abstract
Current cancer therapies including cytotoxic chemotherapy, radiation and hyperthermic therapy induce acute proteotoxic stress in tumour cells. A major challenge to cancer therapeutic efficacy is the recurrence of therapy-resistant tumours and how to overcome their emergence. The current study examines the concept that tumour cell exposure to acute proteotoxic stress results in the acquisition of a more advanced and aggressive cancer cell phenotype. Specifically, we determined whether heat stress resulted in an epithelial-to-mesenchymal transition (EMT) and/or the enhancement of cell migration, components of an advanced and therapeutically resistant cancer phenotype. We identified that heat stress enhanced cell migration in both the lung A549, and breast MDA-MB-468 human adenocarcinoma cell lines, with A549 cells also undergoing a partial EMT. Moreover, in an in vivo model of thermally ablated liver metastases of the mouse colorectal MoCR cell line, immunohistological analysis of classical EMT markers demonstrated a shift to a more mesenchymal phenotype in the surviving tumour fraction, further demonstrating that thermal stress can induce epithelial plasticity. To identify a mechanism by which thermal stress modulates epithelial plasticity, we examined whether the major transcriptional regulator of the heat shock response, heat shock factor 1 (HSF1), was a required component. Knockdown of HSF1 in the A549 model did not prevent the associated morphological changes or enhanced migratory profile of heat stressed cells. Therefore, this study provides evidence that heat stress significantly impacts upon cancer cell epithelial plasticity and the migratory phenotype independent of HSF1. These findings further our understanding of novel biological downstream effects of heat stress and their potential independence from the classical heat shock pathway.
Collapse
Affiliation(s)
- B. J. Lang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| | - L. Nguyen
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084 Australia
| | - H. C. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| | - J. L. Vieusseux
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| | - R. C. C. Chai
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| | - C. Christophi
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084 Australia
| | - T. Fifis
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084 Australia
| | - M. M. Kouspou
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| | - John T. Price
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|