1
|
Barbosa EGP, Lima SNL, de Araújo Gurgel J, Fernandes ES, Neto SMP, de Jesus Tavarez RR, da Silva KL, Loguercio AD, Pinzan-Vercelino CRM. Inflammatory parameters and color alterations of dental bleaching in patients wearing fixed orthodontic appliance: a randomized clinical trial. BMC Oral Health 2023; 23:602. [PMID: 37641077 PMCID: PMC10463358 DOI: 10.1186/s12903-023-03301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Many orthodontic patients request dental bleaching during orthodontic treatment to achieve a faster aesthetic resolution, however, no attention has been paid to the inflammatory processes that can occur when both therapies are indicated together. So, this clinical trial evaluated the inflammatory parameters and color alterations associated with dental bleaching in patients wearing a fixed orthodontic appliance. METHODS Thirty individuals aged between 18 and 40 years were equally and randomly allocated into three groups: FOA (fixed orthodontic appliance), BLE (dental bleaching), and FOA + BLE (fixed orthodontic appliance + dental bleaching). The orthodontic appliances and the bleaching procedures were performed in the maxillary premolars and molars. For dental bleaching a 35% hydrogen peroxide was used. The gingival crevicular fluid (GCF) and nitric oxide (NO-) levels were evaluated at different time-points. Color evaluation was performed using an Easyshade spectrophotometer at baseline (FOA, FOA + BLE, BLE), one month after (FOA + BLE) and 21 days after appliance removing (FOA + BLE and FOA groups), in each tooth bleached. The ANOVA and Tukey's tests, with a significance level of 5%, were used for statistical analysis. RESULTS The GCF volume in the FOA + BLE and FOA groups significantly increased at the time points evaluated (p < 0.001); however, this did not occur in the BLE group (p > 0.05). On the other hand, NO- levels significantly decreased during dental bleaching with or without fixed orthodontic appliances (FOA + BLE and BLE groups; p < 0.05), while no significant changes were observed in the FOA group (p > 0.05). Significant changes in color were observed in the FOA + BLE and BLE groups compared to in the FOA group (p < 0.01). However, the presence of fixed orthodontic appliance (FOA + BLE) negatively affected the bleaching efficacy compared to BLE group (p < 0.01). CONCLUSIONS Dental bleaching did not increase the inflammatory parameters in patients wearing fixed orthodontic appliance. However, in the presence of orthodontic appliances, the bleaching efficacy was lower than that of bleaching teeth without orthodontic appliances. TRIAL REGISTRATION RBR-3sqsh8 (first trial registration: 09/07/2018).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karine Letícia da Silva
- Department of Restorative Dentistry, Ponta Grossa State University, Rua Carlos Cavalcanti, 4748, Bloco M, Sala 64A - Uvaranas, Ponta Grossa, 84030- 900, Paraná, Brazil
| | - Alessandro D Loguercio
- Department of Restorative Dentistry, Ponta Grossa State University, Rua Carlos Cavalcanti, 4748, Bloco M, Sala 64A - Uvaranas, Ponta Grossa, 84030- 900, Paraná, Brazil.
| | | |
Collapse
|
2
|
Connection between Osteoarthritis and Nitric Oxide: From Pathophysiology to Therapeutic Target. Molecules 2023; 28:molecules28041683. [PMID: 36838671 PMCID: PMC9959782 DOI: 10.3390/molecules28041683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA), a disabling joint inflammatory disease, is characterized by the progressive destruction of cartilage, subchondral bone remodeling, and chronic synovitis. Due to the prolongation of the human lifespan, OA has become a serious public health problem that deserves wide attention. The development of OA is related to numerous factors. Among the factors, nitric oxide (NO) plays a key role in mediating this process. NO is a small gaseous molecule that is widely distributed in the human body, and its synthesis is dependent on NO synthase (NOS). NO plays an important role in various physiological processes such as the regulation of blood volume and nerve conduction. Notably, NO acts as a double-edged sword in inflammatory diseases. Recent studies have shown that NO and its redox derivatives might be closely related to both normal and pathophysiological joint conditions. They can play vital roles as normal bone cell-conditioning agents for osteoclasts, osteoblasts, and chondrocytes. Moreover, they can also induce cartilage catabolism and cell apoptosis. Based on different conditions, the NO/NOS system can act as an anti-inflammatory or pro-inflammatory agent for OA. This review summarizes the studies related to the effects of NO on all normal and OA joints as well as the possible new treatment strategies targeting the NO/NOS system.
Collapse
|
3
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
4
|
Xian Bo S, Yan Jie W, De Chao C, Sai M, Zhe W, Ya Kun Z, Hui Hui G, Chen W, Xiao M, Zhong Yao H, Hao Ran Y, Ji Sen Z, Wen Dan C. An Inducible Nitric Oxide Synthase Dimerization Inhibitor Prevents the Progression of Osteoarthritis. Front Pharmacol 2022; 13:861183. [PMID: 35910349 PMCID: PMC9334866 DOI: 10.3389/fphar.2022.861183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a degenerative joint disease. Excessive nitric oxide (NO) mediates the chondrocyte inflammatory response, apoptosis, and extracellular matrix (ECM) degradation during the occurrence and development of OA. NO in chondrocytes is mainly produced by inducible nitric oxide synthase (iNOS). The aim of this study was to design and synthesize an iNOS dimerization inhibitor and evaluate its effects on chondrocyte inflammation and articular cartilage injury in OA via in vitro and in vivo experiments. Design: The title compound 22o was designed, synthesized, and screened based on a previous study. The effects of different concentrations (5, 10, and 20 μM) of compound 22o on chondrocyte inflammatory response and ECM anabolism or catabolism were evaluated by Western blot and real-time quantitative reverse transcription-polymerase chain reaction using the rat chondrocyte model of IL-1β-induced OA. Furthermore, different doses (40 and 80 mg/kg) of compound 22o were administered by gavage to a rat OA model induced by anterior cruciate ligament transection (ACLT), and their protective effects on the articular cartilage were evaluated by histopathology and immunohistochemistry. Results: Compound 22o showed effective iNOS inhibitory activity by inhibiting the dimerization of iNOS. It inhibited the IL-1β-induced expression of cyclooxygenase-2 (COX-2) and matrix metalloproteinase 3 (MMP3) in the chondrocytes, decreased NO production, and significantly increased the expression levels of the ECM anabolic markers, aggrecan (ACAN), and collagen type II (COL2A1). Gavage with compound 22o was found to be effective in the rat OA model induced by ACLT, wherein it regulated the anabolism and catabolism and exerted a protective effect on the articular cartilage. Conclusions: Compound 22o inhibited the inflammatory response and catabolism of the chondrocytes and reduced articular cartilage injury in the rat OA model, indicating its potential as a disease-modifying OA drug.
Collapse
|
5
|
Zhou H, Li C, Zhai T, Chen M, Wang F, Gao Y, Jiao J, Zhou Z, Yang S, Yang H. H2O2-responsive release of Fe3+ and NO: Anti-tumor therapy of Roussin’s black salt. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Roy HS, Singh R, Ghosh D. Recent advances in nanotherapeutic strategies that target nitric oxide pathway for preventing cartilage degeneration. Nitric Oxide 2021; 109-110:1-11. [PMID: 33571602 DOI: 10.1016/j.niox.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release. Despite a number of direct and indirect iNOS inhibitor molecules demonstrating chondro-protective effect, none have reached the clinic. Its limited bioavailability and adverse side effects served as a deterrent for pursuing clinical trials in OA patients. With the advent of nanotechnology, interest in targeting NO for preventing cartilage degeneration has revived. In this article, we discuss the limitations of the existing molecules and provide an insight on recent nanotechnology-based strategies that have been explored for the diagnosis and inhibition of NO in OA. These approaches hold promise in reviving the hitherto under explored potential of targeting NO to address OA.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
8
|
O'Brien D, Kia C, Beebe R, Macken C, Bell R, Cote M, McCarthy M, Williams V, Mazzocca AD. Evaluating the Effects of Platelet-Rich Plasma and Amniotic Viscous Fluid on Inflammatory Markers in a Human Coculture Model for Osteoarthritis. Arthroscopy 2019; 35:2421-2433. [PMID: 31395181 DOI: 10.1016/j.arthro.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the anti-inflammatory effects of platelet-rich plasma (PRP) and amniotic viscous fluid using a human coculture system of cartilage and synovial tissue from osteoarthritic patients. METHODS A coculture system was created using cartilage and synovium from 3 patients undergoing total knee arthroplasty. To induce inflammation, interleukin-1β was added to each coculture. Biologic agents tested included 2 PRP concentrations (PRPL and PRPH) and 2 different samples of amniotic viscous fluid (Amnion and Flograft). Amnion was also tested with PRP to check for any additive effects. Quantitative polymerase chain reaction was used to measure gene expression of factors involved in osteoarthritis, including disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), tissue inhibitor of metalloproteinases 1 (TIMP-1), vascular endothelial growth factor (VEGF), aggrecan, type 1 collagen, and nitric oxide, at 0, 24, 48, and 72 hours. A synthetic nonsteroidal medication, Ketorolac, was used for baseline comparison to the biologic agents. RESULTS When comparing from time 0, both Amnion and Flograft resulted in significant decreases of ADAMTS-5 and TIMP-1 gene expression in cartilage and synovium for up to 72 hours. Both amniotic preparations increased collagen-1 gene expression in cartilage and decreased VEGF expression in synovium. Amnion was not found to have any effect on nitric oxide concentration at any time point (P > .05), as opposed to both PRP concentrations (P < .05). All biologic agents showed differences in gene expression similar to Ketorolac in ADAMTS-5, TIMP-1, and VEGF expression. CONCLUSION This study found that amniotic fluid had anti-inflammatory effects mostly similar to those of both PRPH and PRPL; however, no significant additive effects in reducing inflammatory gene expression were found when combining biologic agents. CLINICAL RELEVANCE PRP and amniotic fluid may provide alternative treatment options to delay the progression of the disease without the systemic and intra-articular side effects of corticosteroids.
Collapse
Affiliation(s)
- Daniel O'Brien
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Cameron Kia
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A..
| | - Roy Beebe
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Craig Macken
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Ryan Bell
- University of Rochester, Rochester, New York, U.S.A
| | - Mark Cote
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - MaryBeth McCarthy
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Vincent Williams
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | | |
Collapse
|
9
|
Zhong G, Yang X, Jiang X, Kumar A, Long H, Xie J, Zheng L, Zhao J. Dopamine-melanin nanoparticles scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. NANOSCALE 2019; 11:11605-11616. [PMID: 31173033 PMCID: PMC6776464 DOI: 10.1039/c9nr03060c] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Anti-oxidative agents hold great potential in osteoarthritis (OA) therapy. However, most radical scavengers have poor biocompatibility and potential cytotoxicity, which limit their applications. Herein we explore dopamine melanin (DM) nanoparticles as a novel scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS). DM nanoparticles show low cytotoxicity and a strong ability to sequester a broad range of ROS and RNS, including superoxides, hydroxyl radicals, and peroxynitrite. This translates to excellent anti-inflammatory and chondro-protective effects by inhibiting intracellular ROS and RNS and promoting antioxidant enzyme activities. With an average diameter of 112.5 nm, DM nanoparticles can be intra-articularly (i.a.) injected into an affected joint and retained at the injection site. When tested in vivo in rodent OA models, DM nanoparticles showed diminished inflammatory cytokine release and reduced proteoglycan loss, which in turn slowed down cartilage degradation. Mechanistic studies suggest that DM nanoparticles also enhance autophagy that benefits OA control. In summary, our study suggests DM nanoparticles as a safe and promising therapeutic for OA.
Collapse
Affiliation(s)
- Gang Zhong
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Xianfang Jiang
- The College of Stomatology, Guangxi Medical University, Nanning, 530021, China
| | - Anil Kumar
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Huiping Long
- Department of Neurology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Li Zheng
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
10
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
11
|
Zhu Z, Li J, Ruan G, Wang G, Huang C, Ding C. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opin Investig Drugs 2018; 27:881-900. [PMID: 30345826 DOI: 10.1080/13543784.2018.1539075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is the leading cause of pain, loss of function, and disability among elderly, with the knee the most affected joint. It is a heterogeneous condition characterized by complex and multifactorial etiologies which contribute to the broad variation in symptoms presentation and treatment responses that OA patients present. This poses a challenge for the development of effective treatment on OA. AREAS COVERED This review will discuss recent development of agents for the treatment of OA, updating our previous narrative review published in 2015. They include drugs for controlling local and systemic inflammation, regulating articular cartilage, targeting subchondral bone, and relieving pain. EXPERT OPINION Although new OA drugs such as monoclonal antibodies have shown marked effects and favorable tolerance, current treatment options for OA remain limited. The authors believe there is no miracle drug that can be used for all OA patients'; treatment and disease stage is crucial for the effectiveness of drugs. Therefore, early diagnosis, phenotyping OA patients and precise therapy would expedite the development of investigational drugs targeting at symptoms and disease progression of OA.
Collapse
Affiliation(s)
- Zhaohua Zhu
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jia Li
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guangfeng Ruan
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Guoliang Wang
- c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| | - Cibo Huang
- d Department of Rheumatology & Immunology , Beijing Hospital , Beijing , China
| | - Changhai Ding
- a Clinical Research Centre, Zhujiang Hospital, Southern Medical University , Guangzhou , China.,b Department of Rheumatology and Immunology , Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,c Menzies Institute for Medical Research, University of Tasmania , Hobart , Australia
| |
Collapse
|
12
|
Leonidou A, Lepetsos P, Mintzas M, Kenanidis E, Macheras G, Tzetis M, Potoupnis M, Tsiridis E. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin Ther Targets 2018; 22:299-318. [PMID: 29504411 DOI: 10.1080/14728222.2018.1448062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of nitric oxide (NO), a major proinflammatory and destructive mediator in osteoarthritis (OA). Areas covered: This is a comprehensive review of the recent literature on the involvement of iNOS in osteoarthritis and its potential to be used as a target for OA treatment. Evidence from in vitro, in vivo and human studies was systematically collected using medical search engines. Preclinical studies have focused on the effect of direct and indirect iNOS inhibitors in both animal and human tissues. Apart from direct inhibitors, common pharmacological agents, herbal and dietary medicines as well as hyperbaric oxygen, low level laser and low intensity pulsed ultrasound have been shown to exhibit a chondroprotective effect by inhibiting the expression of iNOS. Expert opinion: Data support the further investigation of iNOS inhibitors for the treatment of OA in human studies and clinical trials. Indirect iNOS inhibitors such as interleukin 1 inhibitors also need to be studied in greater detail. Finally, human studies need to be conducted on the herbal and dietary medicines and on the non-invasive, non-pharmacological treatments.
Collapse
Affiliation(s)
- Andreas Leonidou
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Panagiotis Lepetsos
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Michalis Mintzas
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - Eustathios Kenanidis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - George Macheras
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Maria Tzetis
- b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Michael Potoupnis
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Eleftherios Tsiridis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,d Department of Surgery and Cancer, Division of Surgery , Imperial College London , London , UK
| |
Collapse
|
13
|
Philp AM, Davis ET, Jones SW. Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatology (Oxford) 2017; 56:869-881. [PMID: 27498352 DOI: 10.1093/rheumatology/kew278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/30/2022] Open
Abstract
OA is the most common joint disorder in the world, but there are no approved therapeutics to prevent disease progression. Historically, OA has been considered a wear-and-tear joint disease, and efforts to identify and develop disease-modifying therapeutics have predominantly focused on direct inhibition of cartilage degeneration. However, there is now increasing evidence that inflammation is a key mediator of OA joint pathology, and also that the link between obesity and OA is not solely due to excessive load-bearing, suggesting therefore that targeting inflammation in OA could be a rewarding therapeutic strategy. In this review we therefore re-evaluate historical clinical trial data on anti-inflammatory therapeutics in OA patients, highlight some of the more promising emerging therapeutic targets and discuss the implications for future clinical trial design.
Collapse
Affiliation(s)
- Ashleigh M Philp
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| | - Edward T Davis
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| |
Collapse
|
14
|
Recent Pathophysiological Aspects of Peyronie's Disease: Role of Free Radicals, Rationale, and Therapeutic Implications for Antioxidant Treatment-Literature Review. Adv Urol 2017; 2017:4653512. [PMID: 28744308 PMCID: PMC5514334 DOI: 10.1155/2017/4653512] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Peyronie's disease (PD) is a chronic inflammation of tunica albuginea of the corpora cavernosa that causes an inelastic plaque resulting in penis deformation. Although its etiology is not completely known, there is general consensus that PD is genetically transmitted and secondary to penile trauma. In recent years, numerous studies demonstrated the role played by oxidative stress in PD pathogenesis, and other studies have described successful use of antioxidants in PD treatment. Oxidative stress is an integral part of this disease, influencing its progression. In the early stages of PD, the inflammatory infiltrate cells produce high quantities of free radicals and proinflammatory and profibrotic cytokines, with consequent activation of transcription factor NF-κB. While conservative therapies commonly used in the early stages of PD include oral substances (Potaba, tamoxifen, colchicine, and vitamin E), intralesional treatment (verapamil, interferon, steroids, and more recently collagenase clostridium histolyticum-Xiaflex), and local physical treatment (iontophoresis, extracorporeal shock wave therapy, and penile extender), the significant results obtained by emerging treatments with the antioxidants cited in this article suggest these therapeutic agents interfere at several levels with the disease's pathogenetic mechanisms. Antioxidants therapy outcomes are interesting for good clinical practice and also confirm the fundamental role played by oxidative stress in PD.
Collapse
|
15
|
Blaylock RL. Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8:65. [PMID: 28540131 PMCID: PMC5421223 DOI: 10.4103/sni.sni_441_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is one of the several neurodegenerative disorders that affects aging individuals, with approximately 1% of those over the age of 60 years developing the disorder in their lifetime. The disease has the characteristics of a progressive disorder in most people, with a common pattern of pathological change occurring in the nervous system that extends beyond the classical striatal degeneration of dopaminergic neurons. Earlier studies concluded that the disease was a disorder of alpha-synuclein, with the formation of aggregates of abnormal alpha-synuclein being characteristic. More recent studies have concluded that inflammation plays a central role in the disorder and that the characteristic findings can be accounted for by either mutation or oxidative damage to alpha-synuclein, with resulting immune reactions from surrounding microglia, astrocytes, and macrophages. What has been all but ignored in most of these studies is the role played by excitotoxicity and that the two processes are intimately linked, with inflammation triggered cell signaling enhancing the excitotoxic cascade. Further, there is growing evidence that it is the excitotoxic reactions that actually cause the neurodegeneration. I have coined the name immunoexcitotoxicity to describe this link between inflammation and excitotoxicity. It appears that the two processes are rarely, if ever, separated in neurodegenerative diseases.
Collapse
|
16
|
Abusarah J, Bentz M, Benabdoune H, Rondon PE, Shi Q, Fernandes JC, Fahmi H, Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res 2017; 66:637-651. [PMID: 28447122 DOI: 10.1007/s00011-017-1044-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Over the years, many theories have been proposed and examined to better explain the etiology and development of osteoarthritis (OA). The characteristics of joint destruction are one of the most important aspects in disease progression. Therefore, investigating different factors and signaling pathways involved in the alteration of extracellular matrix (ECM) turnover, and the subsequent catabolic damage to cartilage holds chief importance in understanding OA development. Among these factors, reactive oxygen species (ROS) have been at the forefront of the physiological and pathophysiological OA investigation. FINDINGS In the last decades, research studies provided an enormous volume of data supporting the involvement of ROS in OA. Most interestingly, published data regarding the effect of exogenous antioxidant therapy in OA lack conclusive results from clinical trials to back up in vitro data. Accordingly, it is rational to suggest that there are other reactive species in OA that are not taken into account. Thus, our present review is focused on our current understanding of the involvement of lipid peroxidation-derived 4-hydroxynonenal (HNE) in OA. CONCLUSION Our findings, like those in the literature, illustrate the central role played by HNE in the regulation of a number of factors involved in joint homeostasis. HNE could thus be considered as an attractive therapeutic target in OA.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mireille Bentz
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Houda Benabdoune
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Patricia Elsa Rondon
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio C Fernandes
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Mohamed Benderdour
- Orthopaedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal and Department of Surgery, University of Montreal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
17
|
Ratneswaran A, Sun MMG, Dupuis H, Sawyez C, Borradaile N, Beier F. Nuclear receptors regulate lipid metabolism and oxidative stress markers in chondrocytes. J Mol Med (Berl) 2017; 95:431-444. [PMID: 28070626 PMCID: PMC5357281 DOI: 10.1007/s00109-016-1501-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/14/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023]
Abstract
Abstract Joint homeostasis failure can result in osteoarthritis (OA). Currently, there are no treatments to alter disease progression in OA, but targeting early changes in cellular behavior has great potential. Recent data show that nuclear receptors contribute to the pathogenesis of OA and could be viable therapeutic targets, but their molecular mechanisms in cartilage are incompletely understood. This study examines global changes in gene expression after treatment with agonists for four nuclear receptor implicated in OA (LXR, PPARδ, PPARγ, and RXR). Murine articular chondrocytes were treated with agonists for LXR, PPARδ, PPARγ, or RXR and underwent microarray, qPCR, and cellular lipid analyses to evaluate changes in gene expression and lipid profile. Immunohistochemistry was conducted to compare two differentially expressed targets (Txnip, Gsta4) in control and cartilage-specific PPARδ knockout mice subjected to surgical destabilization of the medial meniscus (DMM). Nuclear receptor agonists induced different gene expression profiles with many responses affecting lipid metabolism. LXR activation downregulated gene expression of proteases involved in OA, whereas RXR agonism decreased expression of ECM components and increased expression of Mmp13. Functional assays indicate increases in cell triglyceride accumulation after PPARγ, LXR, and RXR agonism but a decrease after PPARδ agonism. PPARδ and RXR downregulate the antioxidant Gsta4, and PPARδ upregulates Txnip. Wild-type, but not PPARδ-deficient mice, display increased staining for Txnip after DMM. Collectively, these data demonstrate that nuclear receptor activation in chondrocytes primarily affects lipid metabolism. In the case of PPARδ, this change might lead to increased oxidative stress, possibly contributing to OA-associated changes. Key message Nuclear receptors regulate metabolic genes in chondrocytes. Nuclear receptors affect triglyceride levels. PPARδ mediates regulation of oxidative stress markers. Nuclear receptors are promising therapeutic targets for osteoarthritis.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1501-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anusha Ratneswaran
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Holly Dupuis
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada
| | - Cynthia Sawyez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Nica Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada. .,Western Bone & Joint Institute, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
18
|
Zielinska E, Tukaj C, Radomski MW, Inkielewicz-Stepniak I. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. PLoS One 2016; 11:e0164137. [PMID: 27716791 PMCID: PMC5055295 DOI: 10.1371/journal.pone.0164137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). METHODS AND RESULT Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium. CONCLUSION These results unambiguously demonstrate that increased expression of iNOS and generation of NO as well as NO-derived reactive species is involved in AgNPs-induced osteoblast cell death. Our findings may help in development of new strategies to protect bone from AgNPs-induced cytotoxicity and increase the safety of orthopaedic tissue repair.
Collapse
Affiliation(s)
- Ewelina Zielinska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Kardio-Med Silesia, Zabrze, Poland
| | | |
Collapse
|
19
|
Benabdoune H, Rondon EP, Shi Q, Fernandes J, Ranger P, Fahmi H, Benderdour M. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. Inflamm Res 2016; 65:635-45. [PMID: 27056390 DOI: 10.1007/s00011-016-0946-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE AND DESIGN Resolvin D1 (RvD1), an omega-3 fatty acid derivative, has shown remarkable properties in resolving inflammation, promoting tissue repair and preserving tissue integrity. In this study, we investigated RvD1 effects on major processes involved in osteoarthritis (OA) pathophysiology. MATERIALS AND METHODS Human OA chondrocytes were treated with either 1 ng/ml interleukin-1β (IL-1β) or 20 μM 4-hydroxynonenal (HNE), then treated or not with increased concentrations of RvD1 (0-10 μM). RvD1 levels were measured by enzyme immunoassay in synovial fluids from experimental dog model of OA and sham operated dogs obtained from our previous study. Cell viability was evaluated by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bromide assay. Parameters related to inflammation, catabolism and apoptosis were determined by enzyme-linked immunosorbent assay, Western blotting, and quantitative polymerase chain reaction. Glutathione (GSH) was assessed by commercial kit. The activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) pathways was evaluated by Western blot. RESULTS We showed that RvD1 levels were higher in synovial fluids from OA joint compared to controls. In OA human chondrocytes, we demonstrated that RvD1 was not toxic up to 10 μM and stifled IL-1β-induced cyclooxygenase 2, prostaglandin E2, inducible nitric oxide synthase, nitric oxide, and matrix metalloproteinase-13. Our study of signalling pathways revealed that RvD1 suppressed IL-1β-induced activation of NF-κB/p65, p38/MAPK and JNK(1/2). Moreover, RvD1 prevented HNE-induced cell apoptosis and oxidative stress, as indicated by inactivation of caspases, inhibition of lactate dehydrogenase release, and increased levels of Bcl2 and AKT, as well as GSH. CONCLUSION This is the first in vitro study demonstrating the beneficial effect of RvD1 in OA. That RvD1 abolishing a number of factors known to be involved in OA pathogenesis renders it a clinically valuable agent in prevention of the disease.
Collapse
Affiliation(s)
- Houda Benabdoune
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada.,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Elsa-Patricia Rondon
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Qin Shi
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Julio Fernandes
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Pierre Ranger
- Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Mohamed Benderdour
- Department of Pharmacology, Université de Montréal, Montreal, QC, Canada. .,Orthopedic Research Laboratory, Hôpital du Sacré-Cœur de Montréal, Room K-3045, 5400 Gouin Blvd. West, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
20
|
Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes. Clin Sci (Lond) 2016; 130:667-81. [PMID: 26811540 PMCID: PMC4797417 DOI: 10.1042/cs20150622] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Angiogenesis is an important event in the process of arthritis. Stimulating chondrocytes with IL-1β increased the expression of FGF-2, via the IL-1RI/ROS/AMPK/p38/NF-κB signalling pathway. FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis both in vitro and in vivo. Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis.
Collapse
|
21
|
Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 2016; 48:907-914. [DOI: 10.1007/s00726-015-2168-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/15/2023]
|
22
|
Wang G, Wakamiya M, Wang J, Ansari GAS, Firoze Khan M. iNOS null MRL+/+ mice show attenuation of trichloroethene-mediated autoimmunity: contribution of reactive nitrogen species and lipid-derived reactive aldehydes. Free Radic Biol Med 2015; 89:770-6. [PMID: 26472195 PMCID: PMC4684749 DOI: 10.1016/j.freeradbiomed.2015.10.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
Earlier studies from our laboratory in MRL+/+ mice suggest that free radicals, especially overproduction of reactive nitrogen species (RNS) and lipid-derived reactive aldehydes (LDRAs), are associated with trichloroethene (TCE)-mediated autoimmune response. The current study was undertaken to further assess the contribution of RNS and LDRAs in TCE-mediated autoimmunity by using iNOS-null MRL+/+ mice. iNOS-null MRL+/+ mice were obtained by backcrossing iNOS-null mice (B6.129P2-Nos2(tm1Lau)/J) to MRL +/+ mice. Female MRL+/+ and iNOS-null MRL+/+ mice were given TCE (10 mmol/kg, i.p., every 4(th) day) for 6 weeks; their respective controls received corn oil only. TCE exposure led to significantly increased iNOS mRNA in livers, iNOS protein in livers and sera, increased nitrotyrosine (NT) formation in both livers and sera, induction of MDA-/HNE-protein adducts in livers and their respective antibodies in sera along with significant increases in serum antinuclear antibodies (ANA) and anti-dsDNA in MRL+/+ mice. Even though in iNOS-null MRL+/+ mice, the iNOS and NT levels were negligible in both TCE-treated and untreated groups, TCE treatment still led to significant increases in MDA-/HNE-protein adducts and their respective antibodies along with increases in serum ANA and anti-dsDNA compared to controls. Most remarkably, the increases in serum ANA and anti-dsDNA induced by TCE in the iNOS-null MRL+/+ mice were significantly less pronounced compared to that in MRL+/+ mice. Our results provide further evidence that both RNS and LDRAs contribute to TCE-induced autoimmunity in MRL+/+ mice, and iNOS deficiency attenuates this autoimmune response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - G A S Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555.
| |
Collapse
|
23
|
Braconi D, Millucci L, Bernardini G, Santucci A. Oxidative stress and mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med 2015; 88:70-80. [PMID: 25733348 DOI: 10.1016/j.freeradbiomed.2015.02.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
Alkaptonuria (AKU) is a rare metabolic disease due to a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD), involved in Phe and Tyr catabolism. Due to such a deficiency, AKU patients undergo accumulation of the metabolite homogentisic acid (HGA), which is prone to oxidation/polymerization reactions causing the production of a melanin-like pigment. Once the pigment is deposited onto connective tissues (mainly in joints, spine, and cardiac valves), a classical bluish-brown discoloration is imparted, leading to a phenomenon known as "ochronosis", the hallmark of AKU. A clarification of the molecular mechanisms for the production and deposition of the ochronotic pigment in AKU started only recently with a range of in vitro and ex vivo human models used for the study of HGA-induced effects. Thanks to redox-proteomic analyses, it was found that HGA could induce significant oxidation of a number of serum and chondrocyte proteins. Further investigations allowed highlighting how HGA-induced proteome alteration, lipid peroxidation, thiol depletion, and amyloid production could contribute to oxidative stress generation and protein oxidation in AKU. This review briefly summarizes the most recent findings on HGA-induced oxidative stress in AKU, helping in the clarification of the molecular mechanisms of ochronosis and potentially providing the basis for its pharmacological treatment. Future work should be undertaken in order to validate in vivo the results so far obtained in in vitro AKU models.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|
24
|
Kiefer KM, O'Brien TD, Pluhar EG, Conzemius M. Canine adipose-derived stromal cell viability following exposure to synovial fluid from osteoarthritic joints. Vet Rec Open 2015; 2:e000063. [PMID: 26392889 PMCID: PMC4567176 DOI: 10.1136/vetreco-2014-000063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. AIMS AND OBJECTIVES Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. MATERIALS AND METHODS Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. RESULTS There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. CONCLUSIONS Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.
Collapse
Affiliation(s)
- Kristina M Kiefer
- Department of Veterinary Clinical Sciences , College of Veterinary Medicine, University of Minnesota , St Paul, Minnesota , USA
| | - Timothy D O'Brien
- Department of Veterinary Population Medicine , College of Veterinary Medicine, University of Minnesota , St Paul, Minnesota , USA ; Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility , Minneapolis, Minnesota , USA
| | - Elizabeth G Pluhar
- Department of Veterinary Clinical Sciences , College of Veterinary Medicine, University of Minnesota , St Paul, Minnesota , USA
| | - Michael Conzemius
- Department of Veterinary Clinical Sciences , College of Veterinary Medicine, University of Minnesota , St Paul, Minnesota , USA
| |
Collapse
|
25
|
Garabadu D, Shah A, Singh S, Krishnamurthy S. Protective effect of eugenol against restraint stress-induced gastrointestinal dysfunction: Potential use in irritable bowel syndrome. PHARMACEUTICAL BIOLOGY 2015; 53:968-974. [PMID: 25473818 DOI: 10.3109/13880209.2014.950674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Eugenol, an essential constituent found in plants such as Eugenia caryophyllata Thunb. (Myrtaceae) is reported to possess neuroprotective and anti-stress activities. These activities can potentially be useful in the treatment of stress-induced irritable bowel syndrome (IBS). OBJECTIVE The protective effect of eugenol was assessed against restraint stress (RS)-induced IBS-like gastrointestinal dysfunction in rats. Further, its centrally mediated effect was evaluated in this model. MATERIALS AND METHODS Eugenol (12.5, 25, and 50 mg/kg), ondansetron (4.0 mg/kg, p.o.), and vehicle were administered to rats for 7 consecutive days before exposure to 1 h RS. One control group was not exposed to RS-induction. The effect of eugenol (50 mg/kg) with and without RS exposure was evaluated for mechanism of action and per se effect, respectively. The hypothalamic-pituitary-adrenal cortex (HPA)-axis function was evaluated by estimating the plasma corticosterone level. The levels of brain monoamines, namely serotonin, norepinephrine, dopamine, and their metabolites were estimated in stress-responsive regions such as hippocampus, hypothalamus, pre-frontal cortex (PFC), and amygdala. Oxidative damage and antioxidant defenses were also assessed in brain regions. RESULTS Eugenol (50 mg/kg) reduced 80% of RS-induced increase in fecal pellets similar to that of ondansetron. Eugenol attenuated 80% of stress-induced increase in plasma corticosterone and modulated the serotonergic system in the PFC and amygdala. Eugenol attenuated stress-induced changes in norepinephrine and potentiated the antioxidant defense system in all brain regions. CONCLUSION Eugenol protected against RS-induced development of IBS-like gastrointestinal dysfunction through modulation of HPA-axis and brain monoaminergic pathways apart from its antioxidant effect.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Neurotherapeutics Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University) , Varanasi, Uttar Pradesh , India
| | | | | | | |
Collapse
|
26
|
Osterman C, McCarthy MBR, Cote MP, Beitzel K, Bradley J, Polkowski G, Mazzocca AD. Platelet-Rich Plasma Increases Anti-inflammatory Markers in a Human Coculture Model for Osteoarthritis. Am J Sports Med 2015; 43:1474-84. [PMID: 25716226 DOI: 10.1177/0363546515570463] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) has anti-inflammatory effects with potential applications in the treatment of osteoarthritis (OA). PURPOSE To use an in vitro coculture model of OA in human cartilage and synovium to investigate the anti-inflammatory effects of 2 different PRP preparations. STUDY DESIGN Controlled laboratory study. METHODS A coculture system was created using osteoarthritic cartilage and synovium from 9 patients undergoing total knee arthroplasty. Interleukin-1β (IL-1β) was added to each coculture to induce inflammation. Two PRP preparations were obtained-one yielding low white blood cell and platelet concentrations (PRPLP) and one yielding high platelet and white blood cell concentrations (PRPHP). Either PRPLP, PRPHP, or medium was added to the coculture wells. Control wells contained OA cartilage and synovium but neither IL-1β nor PRP. Normal, non-OA cartilage was obtained to establish baseline gene expression levels. Quantitative polymerase chain reaction was used to measure changes in markers of inflammation in the tissues (a disintegrin and metalloproteinase with thrombospondin motifs-5 [ADAMTS-5], tissue inhibitor of metalloproteinases-1 [TIMP-1], vascular endothelial growth factor [VEGF], aggrecan, and type I collagen) at 0, 24, 48, and 72 hours. RESULTS Treatment with PRPLP or PRPHP significantly decreased expression of TIMP-1 and ADAMTS-5 in cartilage, increased aggrecan expression in cartilage, and decreased ADAMTS-5, VEGF, and TIMP-1 expression in synovium compared with control cocultures (P < .05). There was significantly less nitric oxide production in the PRPLP and PRPHP groups compared with controls (P < .05). There were significant differences in gene expression in the normal cartilage compared with all 4 groups of OA cartilage at all 4 time points. Treatment with either PRPLP or PRPHP returned some gene expression to the same levels in normal cartilage but not for all markers of inflammation. CONCLUSION This coculture model assessed 2 different PRP preparations and their anti-inflammatory effects over time on human OA cartilage and synovium. Both had a significant anti-inflammatory effect on gene expression; however, there was no difference in the anti-inflammatory effect between the 2 preparations. CLINICAL RELEVANCE Osteoarthritis is a leading cause of chronic disability, and less invasive treatment methods are needed. Study results suggest that PRP injections may be an effective alternative anti-inflammatory agent in the treatment of OA.
Collapse
Affiliation(s)
- Chelsea Osterman
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Mary Beth R McCarthy
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Mark P Cote
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Knut Beitzel
- Department of Orthopaedic Sports Medicine, Technical University Munich, Munich, Germany
| | - James Bradley
- Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gregory Polkowski
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
27
|
Ha C, Tian S, Sun K, Wang D, Lv J, Wang Y. Hydrogen sulfide attenuates IL-1β-induced inflammatory signaling and dysfunction of osteoarthritic chondrocytes. Int J Mol Med 2015; 35:1657-66. [PMID: 25872797 DOI: 10.3892/ijmm.2015.2183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/01/2015] [Indexed: 11/06/2022] Open
Abstract
Inflammatory cytokines are crucial factors in the onset of osteoarthritis (OA). The pro-inflammatory cytokine, interleukin-1β (IL-1β), is capable of stimulating a few cartilage degradation mediators and is of importance to the pathogenesis of OA. It has been demonstrated that hydrogen sulfide (H2S) exerts an inhibitory effect on inflammation. Thus, in the present study, we aimed to investigate the therapeutic effects of H2S in OA. For this purpose, an in vitro model of cartilage inflammation was created. Human OA chondrocytes were cultured and pre-treated with H2S (0.06-1.5 mM) with or without IL-1β (10 ng/ml) and then Griess reagent was used to quantify the production of nitric oxide (NO). Using enzyme-linked immunosorbent assay, we quantified the production of prostaglandin E2 (PGE2) and matrix metalloproteinase-13 (MMP-13). In addition, we determined the gene expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and MMP-13 using reverse transcription-quantitative polymerase chain reaction and the expression of signaling molecules related to mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) by western blot analysis. Our results revealed that H2S markedly reversed the effects of IL-1β on the gene expression of COX-2, MMP-13 and iNOS and on the production of MMP-13, PGE2 and NO. In addition, H2S inhibited the activation of the extracellular signal-regulated kinase (ERK)/IκBα/NF-κB pathway which was induced by IL-1β. On the whole, the results of the present study suggest that H2S exerts chondroprotective effects. Thus, H2S may have potential for use in the treatment of patients suffering from OA.
Collapse
Affiliation(s)
- Chengzhi Ha
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Shaoqi Tian
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Kang Sun
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dawei Wang
- Department of Joint Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jiangtao Lv
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yuanhe Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
28
|
Millucci L, Giorgetti G, Viti C, Ghezzi L, Gambassi S, Braconi D, Marzocchi B, Paffetti A, Lupetti P, Bernardini G, Orlandini M, Santucci A. Chondroptosis in alkaptonuric cartilage. J Cell Physiol 2015; 230:1148-57. [PMID: 25336110 PMCID: PMC5024069 DOI: 10.1002/jcp.24850] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/14/2014] [Indexed: 01/16/2023]
Abstract
Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.
Collapse
Affiliation(s)
- Lia Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang H, Zhang X, He JY, Zheng XF, Li D, Li Z, Zhu JF, Shen C, Cai GQ, Chen XD. Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip. Arthritis Res Ther 2015; 17:4. [PMID: 25578529 PMCID: PMC4320827 DOI: 10.1186/s13075-014-0513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder that has pain and loss of joint function as major pathological features. In the present study, we explored the mechanisms of possible involvement and regulation of substance P (SP) and calcitonin gene-related peptide (CGRP) in the pathological and inflammatory processes of arthritis in DDH. METHODS Blood, synovial tissue and fluid samples were collected from patients diagnosed with different severities of DDH and from patients with femoral neck fracture. Levels of SP, CGRP and inflammatory cytokines in synovium and synovial fluid (SF) in the different groups were evaluated by immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assay (ELISA). Correlations between neuropeptides and inflammatory cytokines in SF were evaluated by partial correlation analysis. The proinflammatory effects of SP and CGRP on synoviocytes obtained from patients with moderate DDH were investigated in vitro by real-time PCR and ELISA. The mechanisms of those effects were evaluated by Western blot analysis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) DNA binding assay. RESULTS Significantly increased levels of neuropeptides and inflammatory cytokines were observed in synovium and SF from patients in the severe DDH group compared with the moderate DDH and control groups. In moderate DDH samples, SP in SF correlated with tumor necrosis factor (TNF)-α, and CGRP in SF correlated with TNF-α and interleukin (IL)-10. In the severe DDH group, SP in SF correlated with interleukin (IL)-1β, TNF-α and IL-10. CGRP in SF correlated with TNF-α. Additionally, SP might have had obvious proinflammatory effects on synoviocytes through the activation of NF-κB. CONCLUSIONS The upregulation of SP and CGRP in synovium and SF might participate in the inflammatory process of arthritis in DDH. The activation of the NF-κB pathway seems indispensable in the proinflammatory effect of SP on synoviocytes. This original discovery may indicate a potential clinical drug target and the development of innovative therapies for DDH.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiang Zhang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Ji-Ye He
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xin-Feng Zheng
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - De Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Zheng Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Jun-Feng Zhu
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Chao Shen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Gui-Quan Cai
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiao-Dong Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
30
|
Rayahin JE, Buhrman JS, Gemeinhart RA. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity. Eur J Pharm Sci 2014; 65:112-21. [PMID: 25240321 DOI: 10.1016/j.ejps.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Although potent, proteins often require chemical modification for therapeutic use. Immunogenicity, difficult synthesis, and scale-up of these modifications are all engineering obstacles that stand in the way of expanding the use of these therapeutics. Melittin, a peptide derived from bee venom, has been shown to modulate inflammation. Although potentially therapeutic, the native peptide causes cell lysis and toxicity significantly hindering therapeutic application. Based upon the knowledge of the pore formation mechanism, we examined the toxicity and therapeutic effect of a melittin fusion protein with glutathione-S-transferase. The fusion of melittin and glutathione S-transferase results in diminished toxicity of the peptide and retained anti-inflammatory properties at doses that exceed toxic concentration of native melittin. Our results suggest that fusion proteins, particularly those of glutathione-S-transferase, may be facile modifications to control protein activity.
Collapse
Affiliation(s)
- Jamie E Rayahin
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Jason S Buhrman
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Richard A Gemeinhart
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA; Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612-4319, USA.
| |
Collapse
|
31
|
Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes. Inflamm Res 2014; 63:691-701. [PMID: 24858301 DOI: 10.1007/s00011-014-0742-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN Our study was designed to elucidate the precise molecular mechanisms by which sorbitol-modified hyaluronic acid (HA/sorbitol) exerts beneficial effects in osteoarthritis (OA). METHODS Human OA chondrocytes were treated with increasing doses of HA/sorbitol ± anti-CD44 antibody or with sorbitol alone and thereafter with or without interleukin-1beta (IL-1β) or hydrogen peroxide (H2O2). Signal transduction pathways and parameters related to oxidative stress, apoptosis, inflammation, and catabolism were investigated. RESULTS HA/sorbitol prevented IL-1β-induced oxidative stress, as measured by reactive oxygen species, p47-NADPH oxidase phosphorylation, 4-hydroxynonenal (HNE) production and HNE-metabolizing glutathione-S-transferase A4-4 expression. Moreover, HA/sorbitol stifled IL-1β-induced metalloproteinase-13, nitric oxide (NO) and prostaglandin E2 release as well as inducible NO synthase expression. Study of the apoptosis process revealed that this gel significantly attenuated cell death, caspase-3 activation and DNA fragmentation elicited by exposure to a cytotoxic H2O2 dose. Examination of signaling pathway components disclosed that HA/sorbitol prevented IL-1β-induced p38 mitogen-activated protein kinase and nuclear factor-kappa B activation, but not that of extracellular signal-regulated kinases 1 and 2. Interestingly, the antioxidant as well as the anti-inflammatory and anti-catabolic effects of HA/sorbitol were attributed to sorbitol and HA, respectively. CONCLUSIONS Altogether, our findings support a beneficial effect of HA/sorbitol in OA through the restoration of redox status and reduction of apoptosis, inflammation and catabolism involved in cartilage damage.
Collapse
|
32
|
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 2014; 22:609-21. [PMID: 24632293 DOI: 10.1016/j.joca.2014.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is an age-related condition and the leading cause of pain, disability and shortening of adult working life in the UK. The incidence of OA increases with age, with 25% of the over 50s population having OA of the knee. Despite promising preclinical data covering various molecule classes, there is regrettably at present no approved disease-modifying OA drugs (DMOADs). With the advent of next generation sequencing technologies, other therapeutic areas, in particular oncology, have experienced a paradigm shift towards defining disease by its molecular composition. This paradigm shift has enabled high resolution patient stratification and supported the emergence of personalised or precision medicines. In this review we evaluate the potential for the development of OA therapeutics to undergo a similar paradigm shift given that OA is increasingly being recognised as a heterogeneous disease affecting multiple joint tissues. We highlight the evidence for the role of these tissues in OA pathology as different "hallmarks" of OA biology and review the opportunities to identify and develop targeted disease-modifying pharmacological therapeutics. Finally, we consider whether it is feasible to expect the emergence of personalised disease-modifying medicines for patients with OA and how this might be achieved.
Collapse
Affiliation(s)
- D P Tonge
- Faculty of Computing, Engineering and Sciences, Staffordshire University, Stoke-on-Trent ST4 2DF, UK.
| | - M J Pearson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham B15 2WB, UK
| | - S W Jones
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham B15 2WB, UK.
| |
Collapse
|
33
|
Eo SH, Cho H, Kim SJ. Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes. Biomol Ther (Seoul) 2013; 21:364-70. [PMID: 24244824 PMCID: PMC3825200 DOI: 10.4062/biomolther.2013.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022] Open
Abstract
Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha (IκB-α) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-κB) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-κB pathway in articular chondrocytes.
Collapse
Affiliation(s)
- Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 314-701, Republic of Korea
| | | | | |
Collapse
|
34
|
The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 2013; 32:2603-16. [PMID: 24013120 DOI: 10.1038/emboj.2013.200] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022] Open
Abstract
Deleterious sustained inflammation mediated by activated microglia is common to most of neurologic disorders. Here, we identified sirtuin 2 (SIRT2), an abundant deacetylase in the brain, as a major inhibitor of microglia-mediated inflammation and neurotoxicity. SIRT2-deficient mice (SIRT2(-/-)) showed morphological changes in microglia and an increase in pro-inflammatory cytokines upon intracortical injection of lipopolysaccharide (LPS). This response was associated with increased nitrotyrosination and neuronal cell death. Interestingly, manipulation of SIRT2 levels in microglia determined the response to Toll-like receptor (TLR) activation. SIRT2 overexpression inhibited microglia activation in a process dependent on serine 331 (S331) phosphorylation. Conversely, reduction of SIRT2 in microglia dramatically increased the expression of inflammatory markers, the production of free radicals, and neurotoxicity. Consistent with increased NF-κB-dependent transcription of inflammatory genes, NF-κB was found hyperacetylated in the absence of SIRT2, and became hypoacetylated in the presence of S331A mutant SIRT2. This finding indicates that SIRT2 functions as a 'gatekeeper', preventing excessive microglial activation through NF-κB deacetylation. Our data uncover a novel role for SIRT2 opening new perspectives for therapeutic intervention in neuroinflammatory disorders.
Collapse
|
35
|
Liu X, Gong Y, Xiong K, Ye Y, Xiong Y, Zhuang Z, Luo Y, Jiang Q, He F. Melatonin mediates protective effects on inflammatory response induced by interleukin-1 beta in human mesenchymal stem cells. J Pineal Res 2013; 55:14-25. [PMID: 23488678 DOI: 10.1111/jpi.12045] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023]
Abstract
Joint diseases like osteoarthritis usually are accompanied with inflammatory processes, in which pro-inflammatory cytokines mediate the generation of intracellular reactive oxygen species (ROS) and compromise survival of subchondral osteoblasts. Melatonin is capable of manipulating bone formation and osteogenic differentiation of mesenchymal stem cells (MSCs). The aim of this work was to investigate the anti-inflammatory effect of melatonin on MSC proliferation and osteogenic differentiation in the absence or presence of interleukin-1 beta (IL-1β), which was used to induce inflammation. Our data showed that melatonin improved cell viability and reduced ROS generation in MSCs in a dose-dependent manner. When exposed to 10 ng/mL IL-1β, various concentrations of melatonin resulted in significant reduction of ROS by 34.9% averagely. Luzindole as a melatonin receptor antagonist reversed the anti-oxidant effect of melatonin in MSCs with co-exposure to IL-1β. Real-time RT-PCR data suggested that melatonin treatment up-regulated the expression of CuZnSOD and MnSOD, while down-regulated the expression of Bax. To investigate the effect of melatonin on osteogenesis, MSCs were cultured in osteogenic differentiation medium supplemented with IL-1β, melatonin, or luzindole. After exposed to IL-1β for 21 days, 1 μm melatonin treatment significantly increased the levels of type I collagen, ALP, and osteocalcin, and 100 μm melatonin treatment yielded the highest level of osteopontin. Our study demonstrated that melatonin maintained MSC survival and promoted osteogenic differentiation in inflammatory environment induced by IL-1β, suggesting melatonin treatment could be a promising method for bone regenerative engineering in future studies.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Handoussa H, Hanafi R, Eddiasty I, El-Gendy M, El Khatib A, Linscheid M, Mahran L, Ayoub N. Anti-inflammatory and cytotoxic activities of dietary phenolics isolated from Corchorus olitorius and Vitis vinifera. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm Res 2013; 62:781-9. [DOI: 10.1007/s00011-013-0635-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023] Open
|