1
|
Schefold JC, Messmer AS, Wenger S, Müller L, von Haehling S, Doehner W, McPhee JS, Fux M, Rösler KM, Scheidegger O, Olariu R, Z’Graggen W, Rezzi S, Grathwohl D, Konz T, Takala J, Cuenoud B, Jakob SM. Nutrient pattern analysis in critically ill patients using Omics technology (NAChO) - Study protocol for a prospective observational study. Medicine (Baltimore) 2019; 98:e13937. [PMID: 30608424 PMCID: PMC6344160 DOI: 10.1097/md.0000000000013937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Intensive care unit-acquired weakness (ICU-AW) is often observed in critically ill patients with prolonged intensive care unit (ICU) stay. We hypothesized that evolving metabolic abnormalities during prolonged ICU stay are reflected by changing nutrient patterns in blood, urine and skeletal muscle, and that these patterns differ in patients with/without ICU-AW and between patients with/without sepsis. METHODS In a prospective single-center observational trial, we aim to recruit 100 critically ill patients (ICU length of stay ≥ 5 days) with severe sepsis/septic shock ("sepsis group", n = 50) or severe head trauma/intracerebral hemorrhage ("CNS group", n = 50). Patients will be sub-grouped for presence or absence of ICU-AW as determined by the Medical Research Council sum score. Blood and urine samples will be collected and subjected to comprehensive nutrient analysis at different time points by targeted quantitative mass spectrometric methods. In addition, changes in muscular tissue (biopsy, when available), muscular architecture (ultrasound), electrophysiology, body composition analyses (bioimpedance, cerebral magnetic resonance imaging), along with clinical status will be assessed. Patients will be followed-up for 180 and 360 days including assessment of quality of life. DISCUSSION Key objective of this trial is to assess changes in nutrient pattern in blood and urine over time in critically ill patients with/without ICU-AW by using quantitative nutrient analysis techniques. Peer-reviewed published NAChO data will allow for a better understanding of metabolic changes in critically ill patients on standard liquid enteral nutrition and will likely open up new avenues for future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Joerg C. Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Anna S. Messmer
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Stefanie Wenger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Lionel Müller
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Stephan von Haehling
- Metabolic Research Unit, Department Cardiology and Pneumology, University of Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Neuro Research Center, Charite University Medicine Berlin, Berlin, Germany
| | - Jamie S. McPhee
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - Michaela Fux
- Clinical Cytomics Facility, University Institute of Clinical Chemistry and Centre of Laboratory Medicine
| | | | | | | | - Werner Z’Graggen
- Depts. of Neurosurgery and Neurology, Inselspital, Bern University Hospital, University of Bern
| | - Serge Rezzi
- Nestlé Research, vers-chez-les-Blanc, Lausanne
- Swiss Vitamin Institute, Epalinges, Switzerland
| | | | - Tobias Konz
- Nestlé Research, vers-chez-les-Blanc, Lausanne
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
2
|
Yang T, Li Z, Jiang L, Wang Y, Xi X. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand 2018; 138:104-114. [PMID: 29845614 DOI: 10.1111/ane.12964] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs frequently in the context of critical illness without alternative plausible cause and specific treatment options, and it is important to identify and summarize the independent risk factors for ICUAW. PubMed, Embase, Central, China Biological Medicine, China National Knowledge Infrastructure, VIP and Wanfang databases were searched from database inception until 10 July 2017. Prospective cohort studies on adult ICU patients who were diagnosed with ICUAW using either clinical or electrophysiological criteria were selected. Meta-analysis was performed using Stata version 12.0. The results were analysed using odds ratios (OR) and 95% confidence intervals (CI). Data were pooled using a random-effects model, and heterogeneity was assessed using the I2 statistic. Qualitative analysis and systematic review were used for risk factors that were deemed inappropriate to combine. Fourteen prospective cohort studies were included in this review. The meta-analysis showed that Acute Physiology and Chronic Health Evaluation II score (OR, 1.05; 95%CI, 1.01-1.10), neuromuscular blocking agents (OR, 2.03; 95%CI, 1.22-3.40) and aminoglycosides (OR, 2.27; 95%CI, 1.07-4.81) were found to be significantly associated with ICUAW. Other risk factors, including female, multiple organ failure, systemic inflammatory response syndrome, sepsis, electrolyte disturbances, hyperglycaemia, hyperosmolarity, high lactate level, duration of mechanical ventilation, parenteral nutrition and use of norepinephrine, were statistically significant on multivariable analysis in each single studies. This review provides a number of independent risk factors for ICUAW, which should be guided for early prediction and prevention of the disorder.
Collapse
Affiliation(s)
- Tao Yang
- Department of Critical Care Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Li
- Department of Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Li Jiang
- Department of Critical Care Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Yinhua Wang
- Department of Critical Care Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xiuming Xi
- Department of Critical Care Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Oliveros A, Wininger K, Sens J, Larsson MK, Liu XC, Choi S, Faka A, Schwieler L, Engberg G, Erhardt S, Choi DS. LPS-induced cortical kynurenic acid and neurogranin-NFAT signaling is associated with deficits in stimulus processing during Pavlovian conditioning. J Neuroimmunol 2017; 313:1-9. [PMID: 29153599 DOI: 10.1016/j.jneuroim.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/04/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
The N-Methyl-d-Aspartate receptor (NMDAR) antagonist kynurenic acid (KYNA) and the post-synaptic calmodulin binding protein neurogranin (Nrgn) have been implicated in neurological and neuropsychiatric conditions including Alzheimer's disease and schizophrenia. This study indicates that systemic dual-lipopolysaccharide (LPS) injections increases KYNA in the medial prefrontal cortex (mPFC), which is accompanied with increased phosphorylation of nuclear factor kappa chain of activated B cells (NFκB) and activation of the nuclear factor of activated T- cells (NFAT). Our results also indicate that dual-LPS increases Nrgn phosphorylation and concomitantly reduces phosphorylation of calmodulin kinase-II (CaMKII). We confirmed that systemic blockade of kynurenine-3 monooxygenase in conjunction with kynurenine administration results in significant increases in Nrgn phosphorylation and a significant reduction of CaMKII phosphorylation in the mPFC. Consequently, dual-LPS administration induced significant impairments in stimulus processing during Pavlovian conditioning. Taken together, our study indicates that elevations in KYNA in the mPFC can directly regulate NMDA-Nrgn-CaMKII signaling, suggesting that neuroinflammatory conditions affecting this pathway may be associated with cognitive dysfunction.
Collapse
Affiliation(s)
- A Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - K Wininger
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - J Sens
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - M K Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - X C Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - S Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - A Faka
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - L Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - G Engberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - S Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - D S Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Crit Care Med 2017; 45:e399-e408. [PMID: 27648519 DOI: 10.1097/ccm.0000000000002101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Sepsis is associated with cardiac contractile dysfunction attributed to alterations in Ca handling. We examined the subcellular mechanisms involved in sarcoplasmic reticulum Ca loss that mediate altered Ca handling and contractile dysfunction associated with sepsis. DESIGN Randomized controlled trial. SETTING Research laboratorySUBJECTS:: Male wild type and transgenic miceINTERVENTIONS:: We induced sepsis in mice using the colon ascendens stent peritonitis model. MEASUREMENTS AND MAIN RESULTS Twenty-four hours after colon ascendens stent peritonitis surgery, we observed that wild type mice had significantly elevated proinflammatory cytokine levels, reduced ejection fraction, and fractional shortening (ejection fraction %, 54.76 ± 0.67; fractional shortening %, 27.53 ± 0.50) compared with sham controls (ejection fraction %, 73.57 ± 0.20; fractional shortening %, 46.75 ± 0.38). At the cardiac myocyte level, colon ascendens stent peritonitis cells showed reduced cell shortening, Ca transient amplitude and sarcoplasmic reticulum Ca content compared with sham cardiomyocytes. Colon ascendens stent peritonitis hearts showed a significant increase in oxidation-dependent calcium and calmodulin-dependent protein kinase II activity, which could be prevented by pretreating animals with the antioxidant tempol. Pharmacologic inhibition of calcium and calmodulin-dependent protein kinase II with 2.5 µM of KN93 prevented the decrease in cell shortening, Ca transient amplitude, and sarcoplasmic reticulum Ca content in colon ascendens stent peritonitis myocytes. Contractile function was also preserved in colon ascendens stent peritonitis myocytes isolated from transgenic mice expressing a calcium and calmodulin-dependent protein kinase II inhibitory peptide (AC3-I) and in colon ascendens stent peritonitis myocytes isolated from mutant mice that have the ryanodine receptor 2 calcium and calmodulin-dependent protein kinase II-dependent phosphorylation site (serine 2814) mutated to alanine (S2814A). Furthermore, colon ascendens stent peritonitis S2814A mice showed preserved ejection fraction and fractional shortening (ejection fraction %, 73.06 ± 6.31; fractional shortening %, 42.33 ± 5.70) compared with sham S2814A mice (ejection fraction %, 71.60 ± 4.02; fractional shortening %, 39.63 ± 3.23). CONCLUSIONS Results indicate that oxidation and subsequent activation of calcium and calmodulin-dependent protein kinase II has a causal role in the contractile dysfunction associated with sepsis. Calcium and calmodulin-dependent protein kinase II, through phosphorylation of the ryanodine receptor would lead to Ca leak from the sarcoplasmic reticulum, reducing sarcoplasmic reticulum Ca content, Ca transient amplitude and contractility. Development of organ-specific calcium and calmodulin-dependent protein kinase II inhibitors may result in a beneficial therapeutic strategy to ameliorate contractile dysfunction associated with sepsis.
Collapse
|
5
|
Abstract
Abstract
Muscle weakness is common in the surgical intensive care unit (ICU). Low muscle mass at ICU admission is a significant predictor of adverse outcomes. The consequences of ICU-acquired muscle weakness depend on the underlying mechanism. Temporary drug-induced weakness when properly managed may not affect outcome. Severe perioperative acquired weakness that is associated with adverse outcomes (prolonged mechanical ventilation, increases in ICU length of stay, and mortality) occurs with persistent (time frame: days) activation of protein degradation pathways, decreases in the drive to the skeletal muscle, and impaired muscular homeostasis. ICU-acquired muscle weakness can be prevented by early treatment of the underlying disease, goal-directed therapy, restrictive use of immobilizing medications, optimal nutrition, activating ventilatory modes, early rehabilitation, and preventive drug therapy. In this article, the authors review the nosology, epidemiology, diagnosis, and prevention of ICU-acquired weakness in surgical ICU patients.
Collapse
|
6
|
Gilbert SR, Camara J, Camara R, Duffy L, Waites K, Kim H, Zinn K. Contaminated open fracture and crush injury: a murine model. Bone Res 2015; 3:14050. [PMID: 26273534 PMCID: PMC4472147 DOI: 10.1038/boneres.2014.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.
Collapse
Affiliation(s)
- Shawn R Gilbert
- Department of Surgery, University of Alabama at Birmingham , AL USA
| | | | | | - Lynn Duffy
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Ken Waites
- Departments of Pathology, University of Alabama at Birmingham , AL USA
| | - Hyunki Kim
- Department of Radiology, University of Alabama at Birmingham , AL USA
| | - Kurt Zinn
- Department of Radiology, University of Alabama at Birmingham , AL USA
| |
Collapse
|