1
|
Liu L, Wen C, Cai X, Gong W. A Novel Bi-Directional Channel for Nutrient Uptake across Mycobacterial Outer Envelope. Microorganisms 2024; 12:1827. [PMID: 39338501 PMCID: PMC11434571 DOI: 10.3390/microorganisms12091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Nutrients are absorbed by special transport proteins on the cell membrane; however, there is less information regarding transporters across the mycobacterial outer envelope, which comprises dense and intricate structures. In this study, we focus on the model organism Mycolicibacterium smegmatis, which has a cell envelope similar to that of Mycobacterium tuberculosis, as well as on the TiME protein secretion tube across the mycobacterial outer envelope. We present transcriptome results and analyze the protein compositions of a mycobacterial surface envelope, determining that more transporters and porins are induced to complement the deletion of the time gene in Mycolicibacterium smegmatis. The TiME protein is essential for nutrient utilization, as demonstrated in the uptake experiments and growth on various monosaccharides or with amino acids as the sole carbon source. Its deletion caused bacteria to be more sensitive to anti-TB drugs and to show a growth defect at an acid pH level, indicating that TiME promotes the survival of M. smegmatis in antibiotic-containing and acidic environments. These results suggest that TiME tubes facilitate bi-directional processes for both protein secretion and nutrient uptake across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Lei Liu
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chongzheng Wen
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Cai
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Weimin Gong
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Mycobacterium tuberculosis Rv0292 Protein Peptides Could be Included in a Synthetic Anti-tuberculosis Vaccine. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Cai X, Liu L, Qiu C, Wen C, He Y, Cui Y, Li S, Zhang X, Zhang L, Tian C, Bi L, Zhou ZH, Gong W. Identification and architecture of a putative secretion tube across mycobacterial outer envelope. SCIENCE ADVANCES 2021; 7:7/34/eabg5656. [PMID: 34417177 PMCID: PMC8378821 DOI: 10.1126/sciadv.abg5656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Tuberculosis-causing mycobacteria have thick cell-wall and capsule layers that are formed from complex structures. Protein secretion across these barriers depends on a specialized protein secretion system, but none has been reported. We show that Mycobacterium tuberculosis Rv3705c and its homologous MSMEG_6251 in Mycobacterium smegmatis are tube-forming proteins in the mycobacterial envelope (TiME). Crystallographic and cryo-EM structures of these two proteins show that both proteins form rotationally symmetric rings. Two layers of TiME rings pack together in a tail-to-tail manner into a ring-shaped complex, which, in turn, stacks together to form tubes. M. smegmatis TiME was detected mainly in the cell wall and capsule. Knocking out the TiME gene markedly decreased the amount of secreted protein in the M. smegmatis culture medium, and expression of this gene in knocked-out strain partially restored the level of secreted protein. Our structure and functional data thus suggest that TiME forms a protein transport tube across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Xiaoying Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunhong Qiu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chongzheng Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Siyu Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuan Zhang
- Institute of Health Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Longhua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Carabali-Isajar ML, Ocampo M, Varela Y, Díaz-Arévalo D, Patarroyo MA, Patarroyo ME. Antibodies targeting Mycobacterium tuberculosis peptides inhibit mycobacterial entry to infection target cells. Int J Biol Macromol 2020; 161:712-720. [PMID: 32522539 DOI: 10.1016/j.ijbiomac.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
The humoral immunity regarding tuberculosis can contribute towards controlling the mycobacteria and the disease. Antigens mediating such type of immunity should thus be evaluated for formulating anti-tuberculosis vaccines. The antigen recognition of seven peptides derived from proteins on Mtb H37Rv envelope and a further seven peptides modified from them was evaluated in sera taken from people suffering Mtb infection and others free from it. Peptide sequences' ability to inhibit Mtb entry to human macrophages was determined in vitro and, after isolating peptide-specific IgG antibodies, it was ascertained which ones were exercising such inhibitory function. Aotus were inoculated with the modified peptides for evaluating the activity of the antibodies so produced. Human QTF+ and QTF- sera recognised some of the peptides and inhibited Mtb entry. The same effect was seen with peptide-specific IgG regarding all the native sequences and modified ones. Sera taken from inoculated Aotus was also able to reduce the pathogen's entry. The data showed that some peptides evaluated in this study could induce antibodies able to inhibit the pathogen's entry to human macrophages, i.e. they could represent candidates for part of an anti-tuberculosis vaccine. The methodology used here complements the evaluation of promising antigens for designing effective vaccines.
Collapse
Affiliation(s)
- Mary L Carabali-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad Distrital Francisco José de Caldas, Carrera 3 # 26A - 40, 11021 Bogotá, Colombia.
| | - Yahson Varela
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, 111321 Bogotá, Colombia; Universidad Nacional de Colombia, Carrera 45 No. 26-85, 11001 Bogotá, Colombia
| |
Collapse
|
5
|
Sánchez-Barinas CD, Ocampo M, Tabares L, Bermúdez M, Patarroyo MA, Patarroyo ME. Specific Binding Peptides from Rv3632: A Strategy for Blocking Mycobacterium tuberculosis Entry to Target Cells? BIOMED RESEARCH INTERNATIONAL 2019; 2019:8680935. [PMID: 31111070 PMCID: PMC6487176 DOI: 10.1155/2019/8680935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Accepted: 03/03/2019] [Indexed: 11/17/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb, i.e., the aetiological agent); the WHO has established this disease as high priority due to its ensuing mortality. Mtb uses a range of mechanisms for preventing its elimination by an infected host; new, viable alternatives for blocking the host-pathogen interaction are thus sought constantly. This article updates our laboratory's systematic search for antigens using bioinformatics tools to clarify the Mtb H37Rv Rv3632 protein's topology and location. This article reports a C-terminal region consisting of peptides 39255 and 39256 (81Thr-Arg114) having high specific binding regarding two infection-related cell lines (A549 and U937); they inhibited mycobacterial entry to U937 cells in a concentration-dependent manner. Rv3632 forms part of the mycobacterial cell envelope, formed by six linear synthetic peptides. Circular dichroism enabled determining the protein's secondary structure. It was also found that peptide 39254 (61Gly-Thr83) was a HABP for alveolar epithelial cells and inhibited mycobacteria entry to these cells regardless of concentration. Sera from active or latent tuberculosis patients did not recognise HABPs 39254 and 39256. These sequences represent a promising approach aiming at their ongoing modification and for including them when designing a multi-epitope, anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Christian David Sánchez-Barinas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Luisa Tabares
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad del Rosario, Carrera 24 No. 63C-69, 111321 Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20, 111321 Bogotá, Colombia
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, 11001 Bogotá, Colombia
| |
Collapse
|
6
|
Carabali-Isajar ML, Ocampo M, Rodriguez DC, Vanegas M, Curtidor H, Patarroyo MA, Patarroyo ME. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorg Med Chem 2018; 26:2401-2409. [DOI: 10.1016/j.bmc.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023]
|
7
|
Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules 2018; 23:molecules23030526. [PMID: 29495456 PMCID: PMC6017924 DOI: 10.3390/molecules23030526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, a disease causing major mortality worldwide. As part of a systematic methodology for studying M. tuberculosis surface proteins which might be involved in host-pathogen interactions, our group found that LpqG surface protein (Rv3623) found in M. tuberculosis complex strains was located on the mycobacterial envelope and that peptide 16661 (21SGCDSHNSGSLGADPRQVTVY40) had high specific binding to U937 monocyte-derived macrophages and inhibited mycobacterial entry to such cells in a concentration-dependent way. A region having high specific binding to A549 alveolar epithelial cells was found which had low mycobacterial entry inhibition. As suggested in previous studies, relevant sequences in the host-pathogen interaction do not induce an immune response and peptides characterised as HABPs are poorly recognised by sera from individuals regardless of whether they have been in contact with M. tuberculosis. Our approach to designing a synthetic, multi-epitope anti-tuberculosis vaccine has been based on identifying sequences involved in different proteins’ mycobacteria-target cell interaction and modifying their sequence to improve their immunogenic characteristics, meaning that peptide 16661 sequence should be considered in such design.
Collapse
|