1
|
Sun Q, Zhi Z, Wang C, Du C, Tang J, Li H, Tang W. Mechanism of Endogenous Peptide PDYBX1 and Precursor Protein YBX1 in Hirschsprung's Disease. Neurosci Bull 2024; 40:695-706. [PMID: 37779176 PMCID: PMC11178706 DOI: 10.1007/s12264-023-01132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
Endogenous peptides, bioactive agents with a small molecular weight and outstanding absorbability, regulate various cellular processes and diseases. However, their role in the occurrence of Hirschsprung's disease (HSCR) remains unclear. Here, we found that the expression of an endogenous peptide derived from YBX1 (termed PDYBX1 in this study) was upregulated in the aganglionic colonic tissue of HSCR patients, whereas its precursor protein YBX1 was downregulated. As shown by Transwell and cytoskeleton staining assays, silencing YBX1 inhibited the migration of enteric neural cells, and this effect was partially reversed after treatment with PDYBX1. Moreover, immunoprecipitation and immunofluorescence revealed that ERK2 bound to YBX1 and PDYBX1. Downregulation of YBX1 blocked the ERK1/2 pathway, but upregulation of PDYBX1 counteracted this effect by binding to ERK2, thereby promoting cell migration and proliferation. Taken together, the endogenous peptide PDYBX1 may partially alleviate the inhibition of the ERK1/2 pathway caused by the downregulation of its precursor protein YBX1 to antagonize the impairment of enteric neural cells. PDYBX1 may be exploited to design a novel potential therapeutic agent for HSCR.
Collapse
Affiliation(s)
- Qiaochu Sun
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chenglong Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chunxia Du
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jie Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Hergenreder T, Yang T, Ye B. The role of Down syndrome cell adhesion molecule in Down syndrome. MEDICAL REVIEW (2021) 2024; 4:31-41. [PMID: 38515781 PMCID: PMC10954295 DOI: 10.1515/mr-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the entire or a portion of human chromosome 21 (HSA21). This genomic alteration leads to elevated expression of numerous HSA21 genes, resulting in a variety of health issues in individuals with DS. Among the genes located in the DS "critical region" of HSA21, Down syndrome cell adhesion molecule (DSCAM) plays an important role in neuronal development. There is a growing body of evidence underscoring DSCAM's involvement in various DS-related disorders. This review aims to provide a concise overview of the established functions of DSCAM, with a particular focus on its implications in DS. We delve into the roles that DSCAM plays in DS-associated diseases. In the concluding section of this review, we explore prospective avenues for future research to further unravel DSCAM's role in DS and opportunities for therapeutic treatments.
Collapse
Affiliation(s)
- Ty Hergenreder
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Zhang X, Sun D, Xu Q, Liu H, Li Y, Wang D, Wang J, Zhang Q, Hou P, Mu W, Jia C, Li A. Risk factors for Hirschsprung disease-associated enterocolitis: a systematic review and meta-analysis. Int J Surg 2023; 109:2509-2524. [PMID: 37288551 PMCID: PMC10442125 DOI: 10.1097/js9.0000000000000473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND The incidence of Hirschsprung disease (HSCR) is nearly 1/5000 and patients with HSCR are usually treated through surgical intervention. Hirschsprung disease-associated enterocolitis (HAEC) is a complication of HSCR with the highest morbidity and mortality in patients. The evidence on the risk factors for HAEC remains inconclusive to date. METHODS Four English databases and four Chinese databases were searched for relevant studies published until May 2022. The search retrieved 53 relevant studies. The retrieved studies were scored on the Newcastle-Ottawa Scale by three researchers. Revman 5.4 software was employed for data synthesis and analysis. Stata 16 software was employed for sensitivity analysis and bias analysis. RESULTS A total of 53 articles were retrieved from the database search, which included 10 012 cases of HSCR and 2310 cases of HAEC. The systematic analysis revealed anastomotic stenosis or fistula [ I2 =66%, risk ratio (RR)=1.90, 95% CI 1.34-2.68, P <0.001], preoperative enterocolitis ( I2 =55%, RR=2.07, 95% CI 1.71-2.51, P <0.001), preoperative malnutrition ( I2 =0%, RR=1.96, 95% CI 1.52-2.53, P <0.001), preoperative respiratory infection or pneumonia ( I2 =0%, RR=2.37, 95% CI 1.91-2.93, P <0.001), postoperative ileus ( I2 =17%, RR=2.41, 95% CI 2.02-2.87, P <0.001), length of ganglionless segment greater than 30 cm ( I2 =0%, RR=3.64, 95% CI 2.43-5.48, P <0.001), preoperative hypoproteinemia ( I2 =0%, RR=1.91, 95% CI 1.44-2.54, P <0.001), and Down syndrome ( I2 =29%, RR=1.65, 95% CI 1.32-2.07, P <0.001) as the risk factors for postoperative HAEC. Short-segment HSCR ( I2 =46%, RR=0.62, 95% CI 0.54-0.71, P <0.001) and transanal operation ( I2 =78%, RR=0.56, 95% CI 0.33-0.96, P =0.03) were revealed as the protective factors against postoperative HAEC. Preoperative malnutrition ( I2 =35 % , RR=5.33, 95% CI 2.68-10.60, P <0.001), preoperative hypoproteinemia ( I2 =20%, RR=4.17, 95% CI 1.91-9.12, P <0.001), preoperative enterocolitis ( I2 =45%, RR=3.51, 95% CI 2.54-4.84, P <0.001), and preoperative respiratory infection or pneumonia ( I2 =0%, RR=7.20, 95% CI 4.00-12.94, P <0.001) were revealed as the risk factors for recurrent HAEC, while short-segment HSCR ( I2 =0%, RR=0.40, 95% CI 0.21-0.76, P =0.005) was revealed as a protective factor against recurrent HAEC. CONCLUSION The present review delineated the multiple risk factors for HAEC, which could assist in preventing the development of HAEC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chunling Jia
- Stomatology, Qilu Hospital of Shandong University, Jinan, China
| | - Aiwu Li
- Departments ofPediatric surgery
| |
Collapse
|
4
|
Clinical significance and biological effect of ZFAS1 in Hirschsprung's disease and preliminary exploration of its underlying mechanisms using integrated bioinformatics analysis. Ir J Med Sci 2022; 191:2669-2675. [PMID: 34993837 DOI: 10.1007/s11845-021-02906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pathogenesis of Hirschprung's disease (HSCR) remains largely unknown. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) has been found to have vital regulatory roles in a number of diseases. However, the association between ZFAS1 and HSCR has not been reported. AIMS The present study was aimed at investigating the expression pattern and biological function and underlying mechanisms of ZFAS1 in HSCR. METHODS The expression of ZFAS1 was detected in surgical excision samples of 30 children diagnosed with HSCR and 30 control cases. Functional experiments were conducted after over-expression or knockdown of ZFAS1 in human neuronal cell line SH-SY-5Y. Multiple bioinformatics databases and tools were used to explore the potential regulatory mechanisms of ZFAS1 in HSCR. RESULTS Compared with the control group, the HSCR group has a significantly higher level of ZFAS1(P = 0.0012). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.7133 (P = 0.0045), which indicated good biomarker potency of ZFAS1 in HSCR. Functionally, over-expression of ZFAS1 significantly inhibited cell proliferation, whereas knockdown of ZFAS1 promoted cell proliferation and colony formation of SH-SY-5Y cells. Using multiple databases, a competing endogenous RNA (ceRNA) network, containing ZFAS1,13 candidate miRNAs, and 110 potential gene targets, was established. Further enrichment analysis suggested that ZFAS1 may regulate a number of genes and signaling pathways that were crucial for neuron development. CONCLUSIONS Our findings revealed that ZFAS1 may participate in the pathogenesis of HSCR through regulating neuron functions. Bioinformatics analysis highlighted an important perspective for the following mechanical researches.
Collapse
|
5
|
Lan C, Liu Y, Wu X, Wang B, Xin S, He Q, Zhong W, Liu Z. Susceptibility of ECE1 polymorphisms to Hirschsprung's disease in southern Chinese children. Front Pediatr 2022; 10:1056938. [PMID: 36619519 PMCID: PMC9813666 DOI: 10.3389/fped.2022.1056938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is currently considered to be a congenital gastrointestinal malformation caused mainly by genetic factors. Endothelin Converting Enzyme-1 (ECE1) has been reported to be associated with HSCR. However, the relationship between ECE1 single nucleotide polymorphism (SNP) rs169884 and HSCR in the southern Chinese population remains unknown. METHODS 1,470 HSCR patients and 1,473 controls from a southern Chinese population were recruited. The intronic SNP rs169884 in ECE1 was genotyped in all samples. We tested the association between rs169884 and HSCR under various genetic models. We also evaluated the effect of rs169884 on HSCR subtypes, including short-segment HSCR (S-HSCR), long-segment HSCR (L-HSCR) and total colonic aganglionosis (TCA). External epigenetic data were integrated to investigate the potential biological function of rs169884. RESULTS Chromatin states data from derived neuron cells or fetal colon tissue revealed that rs169884 might control ECE1 expression through regulating its enhancer function. We did not find a significant association between rs169884 and HSCR. For HSCR subtypes, although no significant associations were detected between rs169884 and S-HSCR (OR = 1.00, 95% CI: 0.89∼1.12, Padj = 0.77) or TCA (OR = 1.00, 95% CI: 0.72∼1.38, Padj = 0.94), we found that rs169884 could increase the risk of L-HSCR (OR = 1.23, 95% CI 1.02∼1.45, Padj = 0.024). CONCLUSION These results suggested that rs169884 might play a regulatory role for ECE1 expression and increase susceptibility of L-HSCR in southern Chinese children.
Collapse
Affiliation(s)
- Chaoting Lan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Wu
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Bingtong Wang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | | | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zipeng Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
7
|
Wang J, Xiao J, Meng X, Chu X, Zhuansun DD, Xiong B, Feng J. NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 2021; 21:153. [PMID: 33784990 PMCID: PMC8008622 DOI: 10.1186/s12887-021-02611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). METHODS HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. RESULTS NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. CONCLUSIONS Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn't involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China
| | - Di Di Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
8
|
Jiang Q, Wang Y, Gao Y, Wang H, Zhang Z, Li Q, Xu S, Cai W, Li L. RET compound inheritance in Chinese patients with Hirschsprung disease: lack of penetrance from insufficient gene dysfunction. Hum Genet 2021; 140:813-825. [PMID: 33433679 DOI: 10.1007/s00439-020-02247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of enteric ganglia along variable lengths of the intestine. Genetic defects play a major role in HSCR pathogenesis with nearly 50% of patients having a structural or regulatory deficiency in the major susceptibility gene RET. However, complete molecular defects remain poorly characterized in most patients. Here, we performed detailed genetic, molecular, and populational investigations of rare null mutations and modifiers at the RET locus. We first verified the pathogenicity of three RET splice site mutants (c.1879 + 1G > A, c.2607 + 5G > A and c.2608-3C > G) at the RNA level. We also identified significantly higher risk allele (genotype) frequencies, and their over-transmission, from unaffected parents to affected offspring of three functionally independent enhancer variants (rs2506030, rs7069590 and rs2435357, with odd ratios (OR) of 2.09, 2.71 and 7.59, respectively, P < 0.001). These three common variants are in significant (P < 4.64 × 10-186) linkage disequilibrium in the Han Chinese population with ~ 60% of them carrying at least one copy and > 10% with two copies. We show that RET compound inheritance of rare and common variants prevails in 64% (seven out of 11) of Chinese HSCR families. This study supports the idea that common RET variants can modify the penetrance of rare null RET mutations in HSCR, and the combined high susceptibility allele dosage may constitute the unique raised "risk baseline" among the Chinese population.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yang Gao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
9
|
Bourcier L, Crapoulet N, Ouellette RJ, Mallet M, Ben Amor M. Phenotypic spectrum associated with pathogenic mutation in the NRG1 gene in Acadian family. Am J Med Genet A 2021; 185:1211-1215. [PMID: 33421311 DOI: 10.1002/ajmg.a.62069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/06/2022]
Abstract
NRG1 is a gene that encodes for a protein that binds to a receptor of the tyrosine kinase family which is essential for the survival of the central nervous system development during embryogenesis. Mutation of the NRG1 gene causes aganglionosis, which leads to Hirschsprung disease. Two brothers of Acadian descent presented with a history of Hirschsprung disease, in association with other anomalies including congenital heart disease, learning difficulties, developmental issues, and hypopigmented hair patch. Molecular analysis in both siblings revealed a heterozygous pathogenic mutation in the NGR1 gene (c.235C>T [p.Arg79*]), that was inherited from an unaffected father. This family expands our knowledge about the phenotypic spectrum associated with pathogenic mutation in the NRG1 gene with intrafamilial variability and the likely reduced penetrance for the phenotypic expression.
Collapse
Affiliation(s)
- Liane Bourcier
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
| | - Nicolas Crapoulet
- Laboratoire de génétique moléculaire, Réseau de santé Vitalité, Moncton, Canada
| | - Rodney J Ouellette
- Laboratoire de génétique moléculaire, Réseau de santé Vitalité, Moncton, Canada
| | - Mathieu Mallet
- Bureau d'appui à la recherche régional, Réseau de santé Vitalité, Moncton, Canada
| | - Mouna Ben Amor
- Service de médecine génétique, Réseau de santé Vitalité, Moncton, Canada
| |
Collapse
|
10
|
Sun C, Xu B, Wang L, Su Y. LncRNA DRAIC regulates cell proliferation and migration by affecting the miR-34a-5p/ITGA6 signal axis in Hirschsprung's disease. Ups J Med Sci 2021; 126:7895. [PMID: 34471485 PMCID: PMC8383934 DOI: 10.48101/ujms.v126.7895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a common defect in newborns, and studies have revealed that long non-coding RNA (lncRNA) is involved in the progression of HSCR. This research study aims to investigate the mechanism of downregulated RNA in cancer (DRAIC) on cell proliferation and migration in HSCR. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression of DRAIC in HSCR bowel stenosis tissues and normal colon tissues. Cell-counting kit-8 (CCK-8) and Transwell assays were employed to explore whether cellular functions change after overexpression or knockdown of the DRAIC in SH-SY5Y cells and human 293T cells. Protein expression levels were determined by Western blot analysis. RNA pull-down and dual-luciferase reporter assays were used to confirm the competitive relationship of DRAIC and integrin subunit alpha 6 (ITGA6) through their association with miR-34a-5p. RESULTS The lncRNA DRAIC was significantly increased in colon tissue from HSCR patients. The overexpression of DRAIC inhibited SH-SY5Y cell and human 293T cell proliferation and migration. Knockdown of DRAIC, however, promoted cell proliferation and migration. The RNA pull-down and dual-luciferase reporter assays have proven the competitive relationship between DRAIC and ITGA6 through their association with miR-34a-5p. Further rescue experiments have confirmed that DRAIC regulates cell proliferation and migration by affecting the miR-34a-5p/ITGA6 signal axis in HSCR. CONCLUSION DRAIC promoted cell proliferation and migration by regulating the miR-34a-5p/ITGA6 signal axis in HSCR.
Collapse
Affiliation(s)
- Chuancheng Sun
- Pediatric Surgery, The First Affiliated Hospital of China University of Science and Technology (Anhui Provincial Hospital), Hefei, Anhui, China
| | - Bing Xu
- Pediatric Surgery, The First Affiliated Hospital of China University of Science and Technology (Anhui Provincial Hospital), Hefei, Anhui, China
| | - Liang Wang
- Pediatric Surgery, The First Affiliated Hospital of China University of Science and Technology (Anhui Provincial Hospital), Hefei, Anhui, China
| | - Yilin Su
- Pediatric Surgery, The First Affiliated Hospital of China University of Science and Technology (Anhui Provincial Hospital), Hefei, Anhui, China
| |
Collapse
|
11
|
Mederer T, Schmitteckert S, Volz J, Martínez C, Röth R, Thumberger T, Eckstein V, Scheuerer J, Thöni C, Lasitschka F, Carstensen L, Günther P, Holland-Cunz S, Hofstra R, Brosens E, Rosenfeld JA, Schaaf CP, Schriemer D, Ceccherini I, Rusmini M, Tilghman J, Luzón-Toro B, Torroglosa A, Borrego S, Sze-man Tang C, Garcia-Barceló M, Tam P, Paramasivam N, Bewerunge-Hudler M, De La Torre C, Gretz N, Rappold GA, Romero P, Niesler B. A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genet 2020; 16:e1009106. [PMID: 33151932 PMCID: PMC7643938 DOI: 10.1371/journal.pgen.1009106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.
Collapse
Affiliation(s)
- Tanja Mederer
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Volz
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina Martínez
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ralph Röth
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Jutta Scheuerer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Carstensen
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Günther
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Duco Schriemer
- Department of Neuroscience, University Medical Center, Groningen, The Netherlands
| | - Isabella Ceccherini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Marta Rusmini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Joseph Tilghman
- Center for Human Genetics and Genomics, New York University School of Medicine, United States of America
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Clara Sze-man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Norbert Gretz
- Center of Medical Research, Medical Faculty Mannheim, Mannheim, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Niu X, Xu Y, Gao N, Li A. Weighted Gene Coexpression Network Analysis Reveals the Critical lncRNAs and mRNAs in Development of Hirschsprung's Disease. J Comput Biol 2020; 27:1115-1129. [PMID: 31647312 DOI: 10.1089/cmb.2019.0261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a common newborn defect. This study aimed to identify critical genes involved in the development of HSCR. Differently expressed genes (DEGs) of public data set GSE98502 were analyzed using paired t-test. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8. Besides, Coexpression network of long noncoding RNAs (lncRNAs)-mRNAs (message RNA) were constructed using weighted gene coexpression network analysis. The key modules were filtered out by calculating the module-trait correlations. Then, hub genes were screened and the expression of these genes was further validated in an independent data set GSE96854. We identified 864 DEGs enriched in 19 GO biological functions such as negative regulation of growth and regulation of heart contraction; 11 KEGG pathways such as mineral absorption and protein digestion and absorption. lncRNAs-mRNAs coexpressed network was constructed, including 8 modules and 177 genes. Hub lncRNAs, including LINC00619, LINC00924, LINC00261, and DRAIC, were identified. Hub mRNAs, including CYCS, CCND1, BDKRB, ITGA6, and TNNC1, were mainly enriched in cancer pathways, p53 signaling pathway, and calcium signaling pathway. The expressions of the hub mRNAs were successfully validated by another independent GSE96854 data set. Our findings indicated the hub lncRNAs, including LINC00619, LINC00924, LINC00261, and DRAIC, as well as hub mRNAs, including CYCS, CCND1, BDKRB, ITGA6, and TNNC1, might involve in the progression of HSCR, and these genes might provide new clinical biomarkers for risk evaluation of HSCR.
Collapse
Affiliation(s)
- Xiaoguang Niu
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of Pediatric Surgery, Taian City Central Hospital, Taian, China
| | - Yongtao Xu
- Department of Pediatric Surgery, Taian City Central Hospital, Taian, China
| | - Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Meng X, Wang J, Zhu T, Zhuansun D, Feng J. Long-term outcomes of single-incision laparoscopic technique in Soave procedure compared with heart-shaped anastomosis for Hirschsprung disease. Int J Colorectal Dis 2020; 35:1049-1054. [PMID: 32172319 DOI: 10.1007/s00384-020-03565-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE This retrospective study compared the long-term outcomes of single-incision laparoscopy-assisted Soave procedure (SILSP) with single-incision laparoscopy-assisted heart-shaped anastomosis (SILHSA) in patients with Hirschsprung disease (HSCR). METHODS Patients diagnosed with HSCR that underwent SILSP or SILHSA between January 2009 and January 2015 at our institute were enrolled in this retrospective study. Data on the clinical characteristics, perioperative complications, and postoperative quality of life were retrospectively collected and analyzed. RESULTS There were 109 patients in the SILSP group and 95 patients in the SILHSA group. No differences in clinical characteristics, including age, weight, hospitalization length, blood loss volume, and operation time, were noted between the two groups. The incidence rates of constipation and soiling were lower in the SILHSA group than those in the SILSP group. The SILHSA group showed lower scores in constipation and soiling compared with the SILSP group, indicating a better surgical outcome for patients receiving SILHSA procedure. CONCLUSION SILHSA is a feasible and reliable minimally invasive surgical procedure for patients with HSCR. Patients who underwent SILHSA had lower incidence rates of constipation and soiling than patients who underwent SILSP, suggesting that SILHSA could be a better choice for patients with HSCR.
Collapse
Affiliation(s)
- Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
14
|
Jiang Q, Wang Y, Li Q, Zhang Z, Xiao P, Wang H, Liu N, Wu J, Zhang F, Chakravarti A, Cai W, Li L. Sequence characterization of RET in 117 Chinese Hirschsprung disease families identifies a large burden of de novo and parental mosaic mutations. Orphanet J Rare Dis 2019; 14:237. [PMID: 31666091 PMCID: PMC6822467 DOI: 10.1186/s13023-019-1194-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by the absence of enteric ganglia in the distal part of the gut. RET is the major causative gene and contains > 80% of all known disease-causing mutations. RESULTS To determine the incidence of RET pathogenic variants, be they Mendelian inherited, mosaic in parents or true de novo variants (DNVs) in 117 Chinese families, we used high-coverage NGS and droplet digital polymerase chain reaction (ddPCR) to identify 15 (12.8%) unique RET coding variants (7 are novel); one was inherited from a heterozygous unaffected mother, 11 were DNVs (73.3%), and 3 full heterozygotes were inherited from parental mosaicism (2 paternal, 1 maternal): two clinically unaffected parents were identified by NGS and confirmed by ddPCR, with mutant allele frequency (13-27%) that was the highest in hair, lowest in urine and similar in blood and saliva. An extremely low-level paternal mosaicism (0.03%) was detected by ddPCR in blood. Six positive-controls were examined to compare the mosaicism detection limit and sensitivity of NGS, amplicon-based deep sequencing and ddPCR. CONCLUSION Our findings expand the clinical and molecular spectrum of RET variants in HSCR and reveal a high frequency of RET DNVs in the Chinese population.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, No. 1665 Kongjiang Rd., Yangpu District, Shanghai, 200092, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, 100020, China
| | - Hui Wang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Na Liu
- MyGenostics Inc, Beijing, 101318, China
| | - Jian Wu
- MyGenostics Inc, Beijing, 101318, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200011, China
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, 10016, USA
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, No. 1665 Kongjiang Rd., Yangpu District, Shanghai, 200092, China.
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics Affiliated Children's Hospital, No. 2 Yabao Rd., Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
15
|
Exome Sequencing Identifies RET Associated Hirschsprung Disease in a Fetus with Echogenic Bowel. JOURNAL OF FETAL MEDICINE 2019. [DOI: 10.1007/s40556-019-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
17
|
Tian J, Zeng C, Tian Z, Lin Y, Wang B, Pan Y, Shu Z, Jiang X. Downregulation of Protein Tyrosine Phosphatase Receptor Type R Accounts for the Progression of Hirschsprung Disease. Front Mol Neurosci 2019; 12:92. [PMID: 31024255 PMCID: PMC6468927 DOI: 10.3389/fnmol.2019.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hirschsprung disease (HSCR) is a common developmental disorder of the enteric nervous system (ENS). However, the disease mechanisms have not been fully elucidated. To better understand the etiology of HSCR, the role and mechanism of HSCR associated PTPRR (protein tyrosine phosphatase receptor-type R) in the multipotency of ENS progenitors and ENS development were explored. In the present study, the downregulated PTPRR expression in HSCR was reflected by microarray and validated by real-time PCR analyses. Moreover, PTPRR protein was mainly expressed in the cytoplasmic area of primary cultured ENS progenitors (Enteric neural crest cells, ENCCs) and significantly decreased after differentiation induction, which implies the anti-differentiation role in ENCCs. Further study employed an adenovirus transfection system. After genetic modulation, the ENCCs maintained undifferentiated patterns even in GDNF (Glial cell-line derived neurotrophic factor)-mediated directional differentiation, as well as significantly increased EdU positive immunofluorescence in the PTPRR overexpressing group while the development of the ENS was stunted in the PTPRR knockdown fetal gut. Moreover, the expression of ERK1/2 activated by GDNF was significantly decreased as reflected by western-blot or immunofluorescence analyses after genetic modulation in the PTPRR overexpressing group, which suggests the potential mechanism in regulating the MAPK/ERK1/2 pathway. Taken together, These data support the idea that PTPRR may ensure a certain number of neural precursor cells by inhibiting ENCC overt differentiation and maintaining ENCC proliferation, which is considered to be the multipotency of ENCCs, and eventually participate in the development of the ENS, and establish PTPRR protein as negative regulator of MAPK/ERK1/2 signaling cascades in neuronal differentiation and demonstrate their involvement in the pathophysiology of HSCR.
Collapse
Affiliation(s)
- Jiao Tian
- Department of Pediatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Zeng
- Department of Nature Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Xi'an, China.,Department of Pharmacy and Precision Pharmacy & Drug Development Center, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Lin
- Department of Pediatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baoxi Wang
- Department of Pediatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongkang Pan
- Department of Neonatal Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Shu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Vatta F, Raffaele A, Pasqua N, Brunero M, Pelizzo G, Avolio L. Intestinal Duplication and Hirschsprung's Disease: An Extremely Rare and Misleading Combination. European J Pediatr Surg Rep 2018; 6:e94-e96. [PMID: 30591852 PMCID: PMC6306274 DOI: 10.1055/s-0038-1675378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
Hirschsprung's disease and, more rarely, intestinal duplication can both cause intestinal obstruction in neonates. The simultaneous occurrence of these two diseases is reported in only two studies, and in both cases, intestinal duplication was an incidental finding, as it had not determined clinical intestinal occlusion. This paper reports a unique case of coexistence of the two conditions, with both causing intestinal obstruction, delayed appropriate, and definitive surgical treatment.
Collapse
Affiliation(s)
- Fabrizio Vatta
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Alessandro Raffaele
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Noemi Pasqua
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| | - Gloria Pelizzo
- Department of Pediatric Surgery, Ospedale dei Bambini G Di Cristina, Palermo, Italy
| | - Luigi Avolio
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardia, Italy
| |
Collapse
|
19
|
Liu JY, Zheng ZQ, Zhao K, Luo C, Han HQ. Treatment of Adult Hirschsprung's Disease by Botulinum Toxin A through Anorectal Injection. Chin Med J (Engl) 2018; 131:3007-3008. [PMID: 30539919 PMCID: PMC6302634 DOI: 10.4103/0366-6999.247209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jin-Yang Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhong-Qing Zheng
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Luo
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Qiu Han
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
20
|
Klose CS, Artis D. Neuronal regulation of innate lymphoid cells. Curr Opin Immunol 2018; 56:94-99. [PMID: 30530300 DOI: 10.1016/j.coi.2018.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
The cardinal signs of inflammation suggest a close connection between the nervous system and the immune system. However, the cellular and molecular basis of these interactions remains incompletely defined. Recent research has demonstrated that tissue-resident innate lymphoid cells (ILCs) obtain neuronal signals, particularly at mucosal barriers, where ILCs regulate tissue homeostasis. New developments in our understanding of neuronal regulation of ILCs provide insight into how immune responses in tissues are precisely targeted, spatially regulated, and how ILCs sense environmental changes and disturbance of tissue homeostasis. Therefore, neuronal regulation of immune responses is emerging as an important signaling hub for the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Christoph Sn Klose
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
21
|
Wang Y, He Q, Zhang R, Zhong W, Zhu D, Zhang Y, Xia H. Association between DSCAM polymorphisms and non-syndromic Hirschsprung disease in Chinese population. BMC MEDICAL GENETICS 2018; 19:116. [PMID: 30005639 PMCID: PMC6045829 DOI: 10.1186/s12881-018-0637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/04/2022]
Abstract
Background Hirschsprung disease (HSCR, aganglionic megacolon) is the most frequent genetic cause of congenital intestinal obstruction. DSCAM was identified as associated to HSCR with Down Syndrome (DS-HSCR) in European population,but failed to replicate in the non-syndromic HSCR patients. We aim to further investigate the relationship of DSCAM with non-sydromic HSCR in a South Chinese cohort, the largest case-control study so far. Method We analyzed 1394 HSCR patients and 973 healthy controls. Two polymorphisms (rs2837770 A > G, rs8134673 A > G) on DSCAM were genotyped using Sequenom Massarray platform. Results Both SNPs were confirmed as associated with non-syndromic HSCR in the South Chinese population (P = 1.69E-03, OR = 1.29 for SNP rs2837770 and P = 3.00E-03, OR = 1.27 for SNP rs8134637). Of note, we demonstrated the associated SNPs were more likely to affect a subgroup of patients with short-segment aganglionosis (S-HSCR) (P = 3.06E-03,OR = 1.21 for SNP rs2837770 and P = 3.33E-03,OR = 1.21 for SNP rs8134637). Conclusion There is an association between DSCAM polymorphisms and non-syndromic HSCR in South Chinese population. Electronic supplementary material The online version of this article (10.1186/s12881-018-0637-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Deli Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
22
|
Zhang JR, Zhang ZB. [Syndromic Hirschsprung′s disease and its mode of inheritance]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:428-432. [PMID: 29764583 PMCID: PMC7389055 DOI: 10.7499/j.issn.1008-8830.2018.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Hirschsprung′s disease (HSCR) is one of the major causes of chronic incomplete intestinal obstruction in children. HSCR is considered a type of neurocristopathy caused by no colonization of ganglion cells on some parts of the bowel wall due to abnormal termination of the migration of vagal neural cells during embryonic development. This disease can be classified into different types according to the length of the affected intestinal canal. Most HSCR patients present with single deformity, but some HSCR patients are affected by other deformities, which constitutes syndromic HSCR, such as congenital central hypoventilation syndrome, Fryns syndrome, and cartilage-hair hypoplasia syndrome. Most syndromes have abnormal genetic material. An adequate knowledge of syndromic HSCR is of vital importance for accurate diagnosis and prognostic evaluation. This article reviews the clinical manifestations, genetic basis, and genetic modes of different types of syndromic HSCR.
Collapse
Affiliation(s)
- Jing-Ru Zhang
- Department of Neonatal Surgery, Shengjing Hospital of China Medical University, Shenyang 110003, China.
| | | |
Collapse
|
23
|
Association of VAMP5 and MCC genetic polymorphisms with increased risk of Hirschsprung disease susceptibility in Southern Chinese children. Aging (Albany NY) 2018; 10:689-700. [PMID: 29695640 PMCID: PMC5940112 DOI: 10.18632/aging.101423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of neural crest cells in parts of the intestine. This study aims to investigate the association of vesicle-associated membrane protein 5 (VAMP5) and mutated in colorectal cancer (MCC) genetic polymorphisms and their correlated risks with HSCR. We examined the association in four polymorphisms (rs10206961, rs1254900 and rs14242 in VAMP5, rs11241200 in MCC) and HSCR susceptibility in a Southern Chinese population composed of 1473 cases and 1469 controls. Two variants in VAMP5 were replicated as associated with HSCR. Interestingly, we clarified SNPs rs10206961 and rs1254900 in VAMP5 are more essential for patients with long-segment aganglionosis (LHSCR). Relatively high expression correlation was observed between VAMP5 and MCC using data from public database showing there may exist potential genetic interactions. SNP interaction was cross-examined by logistic regression and multifactor dimensionality reduction analysis revealing that VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of HSCR. The results suggest that significant associations of the rs10206961 and rs14242 in VAMP5 with an increased risk of HSCR in Southern Chinese, especially in LHSCR patients. This study provided new evidence of epistatic association of VAMP5 and MCC with increased risk of HSCR.
Collapse
|
24
|
Wang G, Zhang L, Wang H, Cui M, Liu W, Liu Y, Wu X. Demethylation of GFRA4 Promotes Cell Proliferation and Invasion in Hirschsprung Disease. DNA Cell Biol 2018; 37:316-324. [PMID: 29634418 DOI: 10.1089/dna.2017.3928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hirschsprung disease (HSCR) is congenital intestinal aganglionosis attributed to a failure to migrate and survive of neural crest-derived cells. Glial cell-derived neurotrophic factor alpha 4 (GFRA4) is expressed in the derivatives of the neural crest in the enteric nervous system, but whether it is related with HSCR still remains unclear. This study was designed to investigate its role and epigenetic mechanisms in HSCR in vitro. The expression of GFRA4 mRNA in HSCR tissues was determined using quantitative real-time PCR analysis. In this study, we found that GFRA4 expression was significantly reduced in HSCR tissues and cells through GFRA4 methylation by quantitative real-time PCR analysis, methylation-specific PCR, and bisulfite sequencing PCR. DNA methyltransferase inhibitor, 5-AzaC, concomitantly upregulated the protein levels of GFRA4, as well as DNA methyltransferase1 (DNMT1) and DNMT2 in SH-5YSY cells. Moreover, we found upregulated GFRA4 significantly promoted cell proliferation, cell cycle progression and invasion, but inhibited apoptosis in SH-5YSY cells, whereas GFRA4 knockdown caused the opposite effects in SH-5YSY cells by CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays. In conclusion, our results support that aberrant CpG hypermethylation at least partly accounts for GFRA4 silencing in HSCR, which impairs its protective role in enteric nervous system.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Yang Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| |
Collapse
|