1
|
Sadeghi M, Tavakol Afshari J, Fadaee A, Dashti M, Kheradmand F, Dehnavi S, Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025; 11:e41983. [PMID: 39897907 PMCID: PMC11786886 DOI: 10.1016/j.heliyon.2025.e41983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy worldwide. The initiation, and progression of RA involves multiple cellular and molecular pathways, and biological interactions. Micro RNAs (miRNAs) are characterized as a class of small non-coding RNAs that influence gene expression at the post-transcriptional level. Exosomes are biological nano-vesicles that are secreted by different types of cells. They facilitate communication and signalling between cells by transferring a variety of biological substances, such as proteins, lipids, and nucleic acids like mRNA and miRNA. Exosomal miRNAs were shown to be involved in normal and pathological conditions. In RA, deregulated exosomal miRNA expression was observed to be involved in the intercellular communication between synovial cells, and inflammatory or regulatory immune cells. Furthermore, circulating exosomal miRNAs were introduced as available diagnostic and prognostic biomarkers for RA pathology. The current review categorized and summarized dysregulated pathologically involved and circulating exosomal miRNAs in the context of RA. It highlighted present situation and future perspective of using exosomal miRNAs as biomarkers and a specific gene therapy approach for RA treatment.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Fadaee
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Musavi M, Haftcheshmeh SM, Fazel H, Momtazi-Borojeni AA. Predicting microRNAs and their Target Genes Involved in Sepsis Pathogenesis by using Bioinformatics Methods. Curr Pharm Des 2025; 31:1067-1077. [PMID: 39754769 DOI: 10.2174/0113816128304401241031094647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression. Such miRNAs are registered in the miRNA databases, such as Gene Expression Omnibus (GEO), with a specific identifier and unique characteristics. There is also computational software, such as TargetScan, that are broadly employed for the analysis of miRNAs, including their identification, target prediction, and functional analysis. METHODS The current In-silico study aimed to predict miRNAs involved in sepsis progression. To this end, the GEO database was employed to find the sepsis-related genome profile. Afterward, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased sepsis progression. The miRNAs complementary to the selected genes were then predicted using TargetScan software. Based on the current In-silico analysis, seven miRNAs, including hsa-miR-325-3p, hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-145-5p, and has-miR-181 family, were predicted to participate in sepsis pathogenesis. Among the predicted miRNAs, hsa-miR-325-3p has not been previously predicted or validated to be involved in septic conditions. RESULTS Our prediction results showed that hsa-miR-325-3p may target genes implicating in both anti-(ETFB gene) and pro-inflammatory (TCEA1 and PTPN1 genes) responses, suggesting it is an immune hemostasis regulator during sepsis inflammation. Although the role of other predicted miRNAs has been already validated in the sepsis pathogenesis, the current study predicted new targets of these miRNAs, which have not been reported by previous in-silico or experimental studies on sepsis and other pathogenic conditions. Notably, other miRNAs, including hsa-miR-146a-3p, hsa-miR-126-5p, hsa-miR-22-3p, hsa-miR-223-3p, and hsa-miR-145-5p were predicted to target genes participating in inflammatory responses, including BLOC1S1, POLR2G, PTPN1, TCEA1, and CCT3. CONCLUSION In conclusion, the results of the present study can provide promising targets as therapeutic and diagnostic tools to treat and manage inflammation sepsis, such as neutropenic sepsis. However, these findings should be further evaluated in experimental studies to find their exact effects and underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Musavi
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Hadi Fazel
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amir Abbas Momtazi-Borojeni
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
4
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA. Role of MicroRNAs in Inflammatory Joint Diseases: A Review. Immunol Invest 2024; 53:185-209. [PMID: 38095847 DOI: 10.1080/08820139.2023.2293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 03/23/2024]
Abstract
Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ali Mussa
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Abdirahman Hussein Elmi
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
6
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ren Z, Liu X, Abdollahi E, Tavasolian F. Genetically Engineered Exosomes as a Potential Regulator of Th1 Cells Response in Rheumatoid Arthritis. Biopreserv Biobank 2023; 21:355-366. [PMID: 36779995 DOI: 10.1089/bio.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Background: Rheumatoid arthritis is a long-lasting inflammatory disease that usually involves joints, but it can also affect other organs, including the skin and lungs. In this case, it is important to maintain a balance between beneficial pro-inflammatory activity and harmful overactivation of the T helper cells (Th). We strive to investigate in this study the possibilities for the effect of mesenchymal stem cells (MSCs)-derived exosomes containing miR-146a/miR-155 on the lymphocyte population and function. Methods: Exosomes were isolated from overexpressed miR-146a/miR-155 MSCs for the purpose of this analysis. Splenocytes were isolated from collagen-induced arthritis (CIA) and control mice. It was important to consider the expressions of certain predominant autoimmune-response genes, including T-bet and interferon-γ (IFNγ), by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. It turned out to be a significant consideration with p < 0.05. Results: The results are expressed in percentages with respect to miR-146a/AntimiR-155 transduced MSC-derived exosomes treatment, which significantly decreased the mRNA expression level of IFNγ in healthy mice (p < 0.05). miR-146a transduced MSC-derived exosomes treatment significantly reduced the mRNA expression level of IFNγ in CIA mice (p < 0.05). It should be noted that the secretion of the pro-inflammatory factor IFNγ in CIA mice was inhibited in almost all groups (p < 0.05). Conclusion: Many research groups have mainly focused on strategies for reducing pro-inflammatory cytokines. This approach was recently suggested and investigated in our research team and suggested that manipulation of MSCs-derived exosomes could minimize pro-inflammatory cytokine production to strike a balance among Th subsets. These approaches tend to appear to achieve better results in the regulation of the immune system by the use of engineered exosomes derived from MSCs. By providing accurate information the reasonably practicable use of exosomes for cell-free therapy can be established.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Orthopedics and Orthopedics, The sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiuxin Liu
- Department of Orthopedics and Orthopedics, The sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Elham Abdollahi
- Supporting the family and the youth of the population Research Core, Department of Gynecology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
9
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
10
|
He Q, Ding H. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci Rep 2023; 13:4508. [PMID: 36934132 PMCID: PMC10024744 DOI: 10.1038/s41598-023-31438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/20/2023] Open
Abstract
Studies have implicated necroptosis mechanisms in orthopaedic-related diseases, since necroptosis is a unique regulatory cell death pattern. However, the role of Necroptosis-related genes in rheumatoid arthritis (RA) has not been well described. We downloaded RA-related data information and Necroptosis-related genes from the Gene Expression Omnibus (GEO), Kyoto Gene and Genome Encyclopedia (KEGG) database, and Genome Enrichment Analysis (GSEA), respectively. We identified 113 genes associated with RA-related necroptosis, which was closely associated with the cytokine-mediated signaling pathway, necroptosis and programmed necrosis. Subsequently, FAS, MAPK8 and TNFSF10 were identified as key genes among 48 Necroptosis-associated differential genes by three machine learning algorithms (LASSO, RF and SVM-RFE), and the key genes had good diagnostic power in distinguishing RA patients from healthy controls. According to functional enrichment analysis, these genes may regulate multiple pathways, such as B-cell receptor signaling, T-cell receptor signaling pathways, chemokine signaling pathways and cytokine-cytokine receptor interactions, and play corresponding roles in RA. Furthermore, we predicted 48 targeted drugs against key genes and 31 chemical structural formulae based on targeted drug prediction. Moreover, key genes were associated with complex regulatory relationships in the ceRNA network. According to CIBERSORT analysis, FAS, MAPK8 and TNFSF10 may be associated with changes in the immune microenvironment of RA patients. Our study developed a diagnostic validity and provided insight to the mechanisms of RA. Further studies will be required to test its diagnostic value for RA before it can be implemented in clinical practice.
Collapse
Affiliation(s)
- Qingshan He
- Nanyang Medical College, Henan, 473000, China
| | | |
Collapse
|
11
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
12
|
Popescu D, Rezus E, Badescu MC, Dima N, Seritean Isac PN, Dragoi IT, Rezus C. Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy. Life (Basel) 2023; 13:life13020319. [PMID: 36836675 PMCID: PMC9965162 DOI: 10.3390/life13020319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common of the chronic inflammatory autoimmune diseases (CIADs), is recognized as an independent cardiovascular risk factor. Traditional risk factors such as smoking, arterial hypertension, dyslipidemia, insulin resistance, and obesity are frequently found in RA. Given the increased risk of mortality and morbidity associated with cardiovascular disease (CVD) in RA patients, screening for risk factors is important. Moreover, there is a need to identify potential predictors of subclinical atherosclerosis. Recent studies have shown that markers such as serum homocysteine, asymmetric dimethylarginine, or carotid intima-media thickness (cIMT) are correlated with cardiovascular risk. Although RA presents a cardiovascular risk comparable to that of diabetes, it is not managed as well in terms of acute cardiovascular events. The introduction of biological therapy has opened new perspectives in the understanding of this pathology, confirming the involvement and importance of the inflammatory markers, cytokines, and the immune system. In addition to effects in inducing remission and slowing disease progression, most biologics have demonstrated efficacy in reducing the risk of major cardiovascular events. Some studies have also been conducted in patients without RA, with similar results. However, early detection of atherosclerosis and the use of targeted therapies are the cornerstone for reducing cardiovascular risk in RA patients.
Collapse
Affiliation(s)
- Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore. T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (E.R.); (M.C.B.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (E.R.); (M.C.B.)
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ioan-Teodor Dragoi
- Department of Rheumatology and Physiotherapy, “Grigore. T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
13
|
Bo L, Jin X, Hu Y, Yang R. Role of Liquid Biopsies in Rheumatoid Arthritis. Methods Mol Biol 2023; 2695:237-246. [PMID: 37450123 DOI: 10.1007/978-1-0716-3346-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by genetic and environmental factors. Early diagnosis is crucial for effective therapy and prognosis of RA, while biomarkers play important roles in early diagnosis. Traditional laboratory tests include rheumatoid factor, anti-cyclic citrullinated peptide antibody, which are inadequate in the ability of early diagnosis. Liquid biopsy technology is a technique using biomarkers found in the blood, urine, and other biological samples from patients, including DNA, RNA, exosome, etc. Evidence indicates that these biomarkers are involved in pathological and physiological conditions of RA. We reviewed the effects of liquid biopsy technology in the early diagnosis of RA and may provide new ideas for effective and precise treatment.
Collapse
Affiliation(s)
- Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojia Jin
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Li Z, Wang J, Lin Y, Fang J, Xie K, Guan Z, Ma H, Yuan L. Newly discovered circRNAs in rheumatoid arthritis, with special emphasis on functional roles in inflammatory immunity. Front Pharmacol 2022; 13:983744. [PMID: 36278188 PMCID: PMC9585171 DOI: 10.3389/fphar.2022.983744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Circular RNA (circRNA) is a unique type of endogenous RNA. It does not have free 3 ′or 5′ ends, but forms covalently closed continuous rings. Rheumatoid arthritis (RA) is a common chronic autoimmune joint disease, characterized by chronic inflammation of the joint synovial membrane, joint destruction, and the formation of pannus. Although the pathogenesis of rheumatoid arthritis remains incompletely understood, a growing amount of research shows that circRNA has a close relationship with RA. Researchers have found that abnormally expressed circRNAs may be associated with the occurrence and development of RA. This article reviews the inflammatory immune, functions, mechanisms, and values of the circRNAs in RA to provide new ideas and novel biomarkers for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
| | - Jianpeng Wang
- The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yudong Lin
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jihong Fang
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Kang Xie
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Zhiye Guan
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Hailong Ma
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Liang Yuan
- Department of Pediatric Orthopedics, Anhui Provincial Children’s Hospital, Hefei, China
- *Correspondence: Liang Yuan,
| |
Collapse
|
15
|
Llop D, Ibarretxe D, Plana N, Rosales R, Taverner D, Masana L, Vallvé JC, Paredes S. A panel of plasma microRNAs improves the assessment of surrogate markers of cardiovascular disease in rheumatoid arthritis patients. Rheumatology (Oxford) 2022; 62:1677-1686. [PMID: 36048908 DOI: 10.1093/rheumatology/keac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) present increased risk of cardiovascular (CV) disease compared with the general population. Moreover, CV risk factors that have causal relationship with atherosclerosis do not seem to fully explain the accelerated process that they exhibit. We evaluated the association of a 10 microRNAs panel with surrogate markers of subclinical arteriosclerosis (carotid intima media thickness (cIMT), carotid plaque presence (cPP), pulse wave velocity (PWV) and distensibility) in a cohort of RA patients. METHODS 199 patients with RA were included. Surrogate markers of arteriosclerosis were measured with My Lab 60 X-Vision sonographer. MicroRNAs were extracted from plasma and quantified with qPCR. Multivariate models and classification methods were performed. RESULTS Multivariate models showed that microRNAs-24 (β = 15.48), 125a (β = 9.93), 132 (β = 11.52), 146 (β = 15.12), 191 (β = 13.25) and 223 (β = 13.30) were associated with cIMT globally. MicroRNA-24 (OR = 0.41), 146 (OR = 0.36) and Let7a (OR = 0.23) were associated with cPP in men. Including the microRNAs in a PLS-DA model properly classified men with and without cPP. MicroRNA-96 (β = -0.28) was associated with PWV in male patients. Finally, several miRNAs were also associated with cIMT, cPP and arterial stiffness in the high DAS28 group and in the earlier tertile groups of disease duration. CONCLUSION Plasmatic expression of microRNA-24, 96, 103, 125a, 132, 146, 191, 223 and Let7a were associated with surrogate markers of CV disease and could be predictors of CV risk in patients with RA.
Collapse
Affiliation(s)
- Didac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Núria Plana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Lluís Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Joan Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| |
Collapse
|
16
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|
17
|
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines 2022; 10:biomedicines10061280. [PMID: 35740302 PMCID: PMC9220071 DOI: 10.3390/biomedicines10061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Collapse
|
18
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
19
|
Adiponectin Promotes VEGF Expression in Rheumatoid Arthritis Synovial Fibroblasts and Induces Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-106a-5p. Cells 2021; 10:cells10102627. [PMID: 34685605 PMCID: PMC8534315 DOI: 10.3390/cells10102627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an erosive polyarthritis that can lead to severe joint destruction and painful disability if left untreated. Angiogenesis, a critical pathogenic mechanism in RA, attracts inflammatory leukocytes into the synovium, which promotes production of proinflammatory cytokines and destructive proteases. Adipokines, inflammatory mediators secreted by adipose tissue, also contribute to the pathophysiology of RA. The most abundant serum adipokine is adiponectin, which demonstrates proinflammatory effects in RA, although the mechanisms linking adiponectin and angiogenic manifestations of RA are not well understood. Our investigations with the human MH7A synovial cell line have revealed that adiponectin dose- and time-dependently increases vascular endothelial growth factor (VEGF) expression, stimulating endothelial progenitor cell (EPC) tube formation and migration. These adiponectin-induced angiogenic activities were facilitated by MEK/ERK signaling. In vivo experiments confirmed adiponectin-induced downregulation of microRNA-106a-5p (miR-106a-5p). Inhibiting adiponectin reduced joint swelling, bone destruction, and angiogenic marker expression in collagen-induced arthritis (CIA) mice. Our evidence suggests that targeting adiponectin has therapeutic potential for patients with RA. Clinical investigations are needed.
Collapse
|
20
|
Taverner D, Llop D, Rosales R, Ferré R, Masana L, Vallvé JC, Paredes S. Plasma expression of microRNA-425-5p and microRNA-451a as biomarkers of cardiovascular disease in rheumatoid arthritis patients. Sci Rep 2021; 11:15670. [PMID: 34341435 PMCID: PMC8329234 DOI: 10.1038/s41598-021-95234-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
To validate in a cohort of 214 rheumatoid arthritis patients a panel of 10 plasmatic microRNAs, which we previously identified and that can facilitate earlier diagnosis of cardiovascular disease in rheumatoid arthritis patients. We identified 10 plasma miRs that were downregulated in male rheumatoid arthritis patients and in patients with acute myocardial infarction compared to controls suggesting that these microRNAs could be epigenetic biomarkers for cardiovascular disease in rheumatoid arthritis patients. Six of those microRNAs were validated in independent plasma samples from 214 rheumatoid arthritis patients and levels of expression were associated with surrogate markers of cardiovascular disease (carotid intima-media thickness, plaque formation, pulse wave velocity and distensibility) and with prior cardiovascular disease. Multivariate analyses adjusted for traditional confounders and treatments showed that decreased expression of microRNA-425-5p in men and decreased expression of microRNA-451 in women were significantly associated with increased (β = 0.072; p = 0.017) and decreased carotid intima-media thickness (β = -0.05; p = 0.013), respectively. MicroRNA-425-5p and microRNA-451 also increased the accuracy to discriminate patients with pathological carotid intima-media thickness by 1.8% (p = 0.036) in men and 3.5% (p = 0.027) in women, respectively. In addition, microRNA-425-5p increased the accuracy to discriminate male patients with prior cardiovascular disease by 3% (p = 0.008). Additionally, decreased expression of microRNA-451 was significantly associated with decreased pulse wave velocity (β = -0.72; p = 0.035) in overall rheumatoid arthritis population. Distensibility showed no significant association with expression levels of the microRNAs studied. We provide evidence of a possible role of microRNA-425-5p and microRNA-451 as useful epigenetic biomarkers to assess cardiovascular disease risk in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Dídac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Raimon Ferré
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Luis Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Joan-Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
- Facultat de Medicina, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Silvia Paredes
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| |
Collapse
|
21
|
Luo Z, Chen S, Chen X. CircMAPK9 promotes the progression of fibroblast-like synoviocytes in rheumatoid arthritis via the miR-140-3p/PPM1A axis. J Orthop Surg Res 2021; 16:395. [PMID: 34154607 PMCID: PMC8215771 DOI: 10.1186/s13018-021-02550-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, and fibroblast-like synoviocytes (FLSs) are key effector cells in RA development. Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of RA. However, the precise mechanism of circRNA mitogen-activated protein kinase (circMAPK9) in the cell processes of FLSs has not been reported. Methods The expression levels of circMAPK9, microRNA-140-3p (miR-140-3p), and protein phosphatase magnesium-dependent 1A (PPM1A) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cell migration and invasion were tested by transwell assay. All the proteins were inspected by western blot assay. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-140-3p and circMAPK9 or PPM1A was verified by dual-luciferase reporter assay. Results CircMAPK9 and PPM1A were upregulated and miR-140-3p was downregulated in RA patients and FLSs from RA patients (RA-FLSs). CircMAPK9 silence suppressed cell proliferation, migration, invasion, inflammatory response, and promoted apoptosis in RA-FLSs. MiR-140-3p was a target of circMAPK9, and miR-140-3p downregulation attenuated the effects of circMAPK9 knockdown on cell progression and inflammatory response in RA-FLSs. PPM1A was targeted by miR-140-3p, and circMAPK9 could regulate PPM1A expression by sponging miR-140-3p. Furthermore, miR-140-3p could impede cell biological behaviors in RA-FLSs via targeting PPM1A. Conclusion CircMAPK9 knockdown might inhibit cell proliferation, migration, invasion, inflammatory response, and facilitate apoptosis in RA-FLSs via regulating miR-140-3p/PPM1A axis, offering a new mechanism for the comprehension of RA development and a new insight into the potential application of circMAPK9 in RA treatment.
Collapse
Affiliation(s)
- Zhihuan Luo
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Shaojian Chen
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| | - Xiaguang Chen
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
22
|
Zhang J, Zhu L, Shi H, Zheng H. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells. Exp Ther Med 2021; 22:882. [PMID: 34194560 PMCID: PMC8237265 DOI: 10.3892/etm.2021.10314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs/miRs) serve a vital role in the pathogenesis of Sjögren's syndrome (SS). The present study aimed to investigate the role of miR-155-5p in SS and determine its underlying molecular mechanism. An inflammatory lesion model was established by stimulating salivary gland epithelial cells (SGECs) with interferon-γ (IFN-γ). The apoptosis of SGECs was measured by using flow cytometry. Levels of proinflammatory factors were detected by reverse transcription-quantitative PCR and ELISA, respectively. Immunofluorescence was used for p65 staining. Dual-luciferase reporter assay was performed to verify the interaction between miR-155-5p and arrestin β2 (ARRB2). The protein levels in the NF-κB signaling pathway were assessed by western blotting. The results of the present study demonstrated that treatment with IFN-γ increased miR-155-5p expression, in addition to inducing apoptosis and inflammation in SGECs. Furthermore, overexpression of miR-155-5p promoted IFN-γ-induced apoptosis and inflammation in SGECs. Overexpression of miR-155-5p also increased Bax protein expression, enzyme activities of caspase 3 and caspase 9, release of inflammatory cytokines interleukin-6 and tumor necrosis factor-α, and decreased Bcl-2 protein expression in IFN-γ-treated SGECs. By contrast, all of the effects aforementioned were reversed following miR-155-5p knockdown. These results demonstrated that miR-155-5p activated the NF-κB signaling pathway, where treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, reversed the effects of miR-155-5p overexpression on the inflammatory factors in IFN-γ-induced SGECs. miR-155-5p was demonstrated to target ARRB2 and negatively regulated its expression levels, such that overexpression of ARRB2 reversed the effects of miR-155-5p overexpression on the inflammatory response, apoptosis and the NF-κB signaling pathway in IFN-γ-treated SGECs. Collectively, results from the present study suggest that miR-155-5p may activate the NF-κB signaling pathway by negatively regulating ARRB2 to promote salivary gland damage during SS pathogenesis. This suggests that miR-155-5p may serve to be a potential target for the treatment of SS.
Collapse
Affiliation(s)
- Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingling Zhu
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hong Shi
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
23
|
Zhang MF, Yang P, Shen MY, Wang X, Gao NX, Zhou XP, Zhou LL, Lu Y. MicroRNA-26b-5p alleviates murine collagen-induced arthritis by modulating Th17 cell plasticity. Cell Immunol 2021; 365:104382. [PMID: 34049010 DOI: 10.1016/j.cellimm.2021.104382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease, and the abnormal differentiation of IL-17-producing T helper (Th17) cells is an important factor in the pathogenesis. Previous studies have shown that microRNAs (miRNAs, miR) act as key regulators of Th17 cells. However, the effects of miRNAs on Th17 cell differentiation and plasticity in RA are not clear. In this study, not only low miR-26b-5p expression and high IL-17A level were observed in the peripheral blood of RA patients, but also the negative correlation between miR-26b-5p and IL-17A was explored. The changes in collagen-induced arthritis (CIA) mice were consistent with those in RA patients. The results of in vitro experiments showed that miR-26b-5p mainly inhibited the initial differentiation of Th17 cells but did not impact the differentiation of induced-Treg into Th17-like cells. Meanwhile, miR-26b-5p mimics treatment alleviated inflammatory responses and reduced Th17 proportion in CIA mice. These results indicated that miR-26b-5p could alleviate the development of mice CIA by inhibiting the excessive Th17 cells, and that miR-26b-5p could modulate the plasticity of Th17 cell differentiation in RA, mainly block the initial differentiation. This may provide a novel strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Ming-Fei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Mei-Yu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Xiang Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China
| | - Nai-Xin Gao
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, NO.155 Hanzhong Road, 210029, Nanjing, Jiangsu Province, PR China; The First Clinical Medical College, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China
| | - Ling-Ling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023 Nanjing, Jiangsu Province, PR China.
| | - Yan Lu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, NO.155 Hanzhong Road, 210029, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
24
|
Gut microbiota-microRNA interactions in ankylosing spondylitis. Autoimmun Rev 2021; 20:102827. [PMID: 33864943 DOI: 10.1016/j.autrev.2021.102827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disability that is part of the rheumatic disease group of spondyloarthropathies. AS commonly influences the joints of the axial skeleton. The contributions to AS pathogenesis of genetic susceptibility (particularly HLA-B27 and ERAP-1) and epigenetic modifications, like non-coding RNAs, as well as environmental factors, have been investigated over the last few years. But the fundamental etiology of AS remains elusive to date. The evidence summarized here indicates that in the immunopathogenesis of AS, microRNAs and the gut microbiome perform critical functions. We discuss significant advances in the immunological mechanisms underlying AS and address potential cross-talk between the gut microbiome and host microRNAs. This critical interaction implicates a co-evolutionary symbiotic link between host immunity and the gut microbiome.
Collapse
|
25
|
MicroRNA-101-3p inhibits fibroblast-like synoviocyte proliferation and inflammation in rheumatoid arthritis by targeting PTGS2. Biosci Rep 2021; 40:221734. [PMID: 31894846 PMCID: PMC6960065 DOI: 10.1042/bsr20191136] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is the most frequently occurring inflammatory arthritis. The present study was performed to characterize the role of microRNA-101-3p (miR-101-3p) and prostaglandin-endoperoxide synthase 2 (PTGS2) in inflammation and biological activities of fibroblast-like synoviocytes (FLSs) in RA. METHODS Initially, miR-101-3p and PTGS2 expression in RA tissues of RA patients and RA rats was detected by qRT-PCR and Western blot analysis. Rat model of type II collagen-induced arthritis (CIA) was adopted to simulate RA, followed by injection of miR-101-3p mimics or siRNA against PTGS2. Next, the apoptosis in synovial tissue and the levels of tumor necrosis factor (TNF)-α, IL-1β and IL-6 were identified. Subsequently, FLSs in RA (RA-FLSs) were isolated, after which in vitro experiments were conducted to analyze cell proliferation, apoptosis, migration and invasion upon treatment of up-regulated miR-101-3p and silenced PTGS2. Furthermore, the relationship of miR-101-3p and PTGS2 was determined by bioinformatics prediction and luciferase activity assay. RESULTS We identified poorly expressed miR-101-3p and highly expressed PTGS2 in synovial tissues of RA patients and RA rats, which showed reduced synoviocyte apoptosis and enhanced inflammation. In response to miR-101-3p mimics and si-PTGS2, the RA-FLSs were observed with attenuated cell proliferation, migration and invasion, corresponding to promoted apoptosis. Down-regulation of PTGS2 could rescue the effect of inhibited miR-101-3p in synovial injury and phenotypic changes of FLS in RA rats. Notably, miR-101-3p was found to negatively regulate PTGS2. CONCLUSION Taken together, miR-101-3p reduces the joint swelling and arthritis index in RA rats by down-regulating PTGS2, as evidenced by inhibited FLS proliferation and inflammation.
Collapse
|
26
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M, Sahebkar A. A Systems Biology Approach for miRNA-mRNA Expression Patterns Analysis in Rheumatoid Arthritis. Comb Chem High Throughput Screen 2021; 24:195-212. [DOI: 10.2174/1386207323666200605150024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/22/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Objective:
Considering the molecular complexity and heterogeneity of rheumatoid
arthritis (RA), the identification of novel molecular contributors involved in RA initiation and
progression using systems biology approaches will open up potential therapeutic strategies. The
bioinformatics method allows the detection of associated miRNA-mRNA as both therapeutic and
prognostic targets for RA.
Methods:
This research used a system biology approach based on a systematic re-analysis of the
RA-related microarray datasets in the NCBI Gene Expression Omnibus (GEO) database to find out
deregulated miRNAs. We then studied the deregulated miRNA-mRNA using Enrichr and
Molecular Signatures Database (MSigDB) to identify novel RA-related markers followed by an
overview of miRNA-mRNA interaction networks and RA-related pathways.
Results:
This research mainly focused on mRNA and miRNA interactions in all tissues and
blood/serum associated with RA to obtain a comprehensive knowledge of RA. Recent systems
biology approach analyzed seven independent studies and presented important RA-related
deregulated miRNAs (miR-145-5p, miR-146a-5p, miR-155-5p, miR-15a-5p, miR-29c-3p, miR-
103a-3p, miR-125a-5p, miR-125b-5p, miR-218); upregulation of miR-125b is shown in the study
(GSE71600). While the findings of the Enrichr showed cytokine and vitamin D receptor pathways
and inflammatory pathways. Further analysis revealed a negative correlation between the vitamin
D receptor (VDR) and miR-125b in RA-associated gene expression.
Conclusion:
Since vitamin D is capable of regulating the immune homeostasis and decreasing the
autoimmune process through its receptor (VDR), it is regarded as a potential target for RA.
According to the results obtained, a comparative correlation between negative expression of the
vitamin D receptor (VDR) and miR-125b was suggested in RA. The increasing miR-125b
expression would reduce the VitD uptake through its receptor.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
27
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin Rheumatol 2020; 40:2387-2394. [PMID: 33210166 PMCID: PMC8121735 DOI: 10.1007/s10067-020-05502-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Recent studies have demonstrated an altered expression of certain microRNAs in patients with rheumatoid arthritis (RA) as well as their first-degree relatives (FDRs) compared to healthy controls (HCs), suggesting a role of microRNA in the progression of the disease. To corroborate this, a set of well-characterized RA families originating from northern Sweden were analyzed for differential expression of a selected set of microRNAs. METHOD MicroRNA was isolated from frozen peripheral blood cells obtained from 21 different families and included 26 RA patients, 22 FDRs, and 21 HCs. Expression of the selected microRNAs miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-3p, miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-451a was determined by a two-step quantitative real-time polymerase chain reaction (qRT-PCR). Statistical analysis including clinical variables was applied. RESULTS Out of the nine selected microRNAs that previously have been linked to RA, we confirmed four after adjusting for age and gender, i.e., miR-22-3p (p = 0.020), miR-26b-5p (p = 0.018), miR-142-3p (p = 0.005), and miR-155 (p = 0.033). Moreover, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs. In addition, analysis of the effect of corticosteroid use showed modulation of miR-103a-3p expression. CONCLUSIONS We confirm that microRNAs seem to be involved in the development of RA, and that the expression pattern in FDR is partly overlapping with RA patients. The contribution of single microRNAs in relation to the complex network including all microRNAs and other molecules is still to be revealed. Key Points • Expression levels of miR-22-3p, miR-26b-5p, miR-142-3p, and miR-155 were significantly altered in RA patients compared to those in controls. • In first-degree relatives, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs.
Collapse
|
29
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis. Curr Gene Ther 2020; 20:297-312. [DOI: 10.2174/1566523220666200916120708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Background:
Rheumatoid arthritis (RA) is a severe inflammatory joint disorder, and several
studies have taken note of the probability that microRNAs (miRNAs) play an important role in
RA pathogenesis. MiR-146 and miR-155 arose as primary immune response regulators. Mesenchymal
stem cells (MSCs) immunomodulatory function is primarily regulated by paracrine factors,
such as exosomes. Exosomes, which serve as carriers of genetic information in cell-to-cell communication,
transmit miRNAs between cells and have been studied as vehicles for the delivery of therapeutic
molecules.
Aims:
The current research aimed to investigate the therapeutic effect of miR-146a/miR-155 transduced
mesenchymal stem cells (MSC)-derived exosomes on the immune response.
Methods:
Here, exosomes were extracted from normal MSCs with over-expressed
miR-146a/miR-155; Splenocytes were isolated from collagen-induced arthritis (CIA) and control
mice. Expression levels miR-146a and miR-155 were then monitored. Flow cytometry was performed
to assess the impact of the exosomes on regulatory T-cell (Treg) levels. Expression of some
key autoimmune response genes and their protein products, including retinoic acid-related orphan
receptor (ROR)-γt, tumor necrosis factor (TNF)-α, interleukin (IL)-17, -6, -10, and transforming
growth factor (TGF)-β in the Splenocytes was determined using both quantitative real-time PCR
and ELISA. The results showed that miR-146a was mainly down-regulated in CIA mice. Treatment
with MSC-derived exosomes and miR-146a/miR-155-transduced MSC-derived exosomes significantly
altered the CIA mice Treg cell levels compared to in control mice.
Results:
Ultimately, such modulation may promote the recovery of appropriate T-cell responses in
inflammatory situations such as RA.
Conclusion:
miR-146a-transduced MSC-derived exosomes also increased forkhead box P3 (Fox-
P3), TGFβ and IL-10 gene expression in the CIA mice; miR-155 further increased the gene expressions
of RORγt, IL-17, and IL-6 in these mice. Based on the findings here, Exosomes appears to
promote the direct intracellular transfer of miRNAs between cells and to represent a possible therapeutic
strategy for RA. The manipulation of MSC-derived exosomes with anti-inflammatory miRNA
may increase Treg cell populations and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Sciences, Tehran, Iran
| |
Collapse
|
30
|
Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Bondareva KI, Kalinkin AI, Lukashev AN, Tarasov VV, Zamyatnin AA, Nemtsova MV. Analysis of miRNA Expression in Patients with Rheumatoid Arthritis during Olokizumab Treatment. J Pers Med 2020; 10:jpm10040205. [PMID: 33142700 PMCID: PMC7712090 DOI: 10.3390/jpm10040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common autoimmune disease worldwide. Epigenetic alternations of microRNAs (miRNAs) can contribute to its pathogenesis and progression. As the first line therapy with DMARDs is not always successful, other drugs and therapeutic targets should be applied. This study aims to measure the expression level of plasma miRNAs in RA patients treated with olokizumab and to evaluate their potential as prognostic biomarkers. The expression of 9 miRNAs was quantified in 103 RA patients before treatment and at weeks 12 and 24 of olokizumab therapy by reverse transcription-polymerase chain reaction (RT-PCR) assay and analyzed in groups of responders and non-responders. Almost all miRNAs changed their expression during therapy. The ROC curve analysis of the most prominent of them together with consequent univariate and multivariate regression analysis revealed statistically significant associations with the olokizumab therapy efficiency scores for miR-26b, miR-29, miR-451, and miR-522. Therefore, these miRNAs might be a potential therapeutic response biomarker.
Collapse
Affiliation(s)
- Irina V. Bure
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
| | - Dmitry S. Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina A. Alekseeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Kristina I. Bondareva
- Biostatistics Department, OCT Rus, Bolshaya Moskovskaya str., 8/2, 191002 Saint-Petersburg, Russia;
| | - Alexey I. Kalinkin
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (A.A.Z.J.); (M.V.N.)
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
- Correspondence: (A.A.Z.J.); (M.V.N.)
| |
Collapse
|
31
|
Taha M, Shaker OG, Abdelsalam E, Taha N. Serum a proliferation-inducing ligand and MicroRNA-223 are associated with rheumatoid arthritis: diagnostic and prognostic implications. Mol Med 2020; 26:92. [PMID: 32998682 PMCID: PMC7528601 DOI: 10.1186/s10020-020-00199-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current blood-based tests for rheumatoid arthritis (RA) have inherent limitations, necessitating the need for additional new biomarkers for its diagnosis and monitoring disease activity and responsiveness to therapy. MicroRNAs (miRNAs) and a proliferation-inducing ligand (APRIL) are deregulated in RA and were linked to its pathogenesis. This study investigated serum levels of APRIL, miR-223 and miR-155 in RA patients, their potential as diagnostic and prognostic biomarkers, and their correlation with disease activity and clinicopathological data. METHODS One hundred and twenty Egyptian patients with RA and 130 healthy controls were included. Serum miRNAs and APRIL were assayed by RT-qPCR and ELISA, respectively. RESULTS Serum APRIL and miR-223 were significantly upregulated, while miR-155 was unchanged in RA patients compared to controls. Serum miR-223 discriminated RA patients from controls with AUC = 0.85, whereas serum APRIL superiorly distinguished the two groups with AUC = 1 (sensitivity and specificity = 100% at cutoff> 4.19 ng/ml) by receiver-operating-characteristic analysis. Serum miR-223 was a significant predictor for RA diagnosis in multivariate logistic regression analysis. In RA group, serum APRIL was positively correlated with disease activity score (DAS28-CRP). Serum miR-223 expression was positively correlated with serum miR-155, APRIL levels and with the presence of subcutaneous nodules. Serum miR-155 levels were correlated with antinuclear antibody titer in reverse direction. CONCLUSION Our results suggest serum APRIL and miR-223 could serve as potential biomarkers of RA, with miR-223 as a predictor of RA risk and APRIL as an excellent biomarker of disease activity. Our data could be implicated for accurate and blood-based non-invasive diagnosis and prognosis of RA.
Collapse
Affiliation(s)
- Mohamed Taha
- Biochemistry Department, Faculty of Pharmacy, Cairo University, 23 Kasr Al Ainy Street, Cairo, 11562, Egypt.
| | - Olfat Gamil Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Enas Abdelsalam
- National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Noha Taha
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Gowayed MA, Mahmoud SA, Michel TN, Kamel MA, El-Tahan RA. Galantamine in rheumatoid arthritis: A cross talk of parasympathetic and sympathetic system regulates synovium-derived microRNAs and related pathogenic pathways. Eur J Pharmacol 2020; 883:173315. [DOI: 10.1016/j.ejphar.2020.173315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/18/2023]
|
33
|
Al-Heety RA, Al-Hadithi HS. Circulating miRNA-21-5p role in the development of orbitopathy in Graves disease. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Reyes-Long S, Cortes-Altamirano JL, Clavijio-Cornejo D, Gutiérrez M, Bertolazzi C, Bandala C, Pineda C, Alfaro-Rodríguez A. Nociceptive related microRNAs and their role in rheumatoid arthritis. Mol Biol Rep 2020; 47:7265-7272. [PMID: 32740794 DOI: 10.1007/s11033-020-05700-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease with unknown etiology and a global incidence around 1%, a positive family history increases the risk of RA roughly three to five times. Pain is one of the first symptoms to appear in this disease. MicroRNAs (miRNAs) belong to the class of small non-coding RNAs; they regulate multiple cellular processes including embryonic development, cellular proliferation, differentiation and apoptosis among others. A great deal of evidence points to the employment of miRNAs as therapeutic targets and biomarkers for several pathologies. The main objective of this Review is to assess how miRNAs participate in the pathogenesis of RA. Two advanced searches were conducted in databases, one using "micro-RNA" and "rheumatoid arthritis" as key words, and another one with "micro-RNA", "pain" and "nociception". In this Review, we describe how six miRNAs: miR-16-5p, miR-23b-3b, miR-124-3p, miR-146a-5p, miR-155-5p and miR-223-3p, involved in the modulation and transmission of the nociceptive input are unregulated in RA patients. Key molecular pathways involved in nociception, inflammation and autoimmune responses, are regulated by these miRNAs; the NF-κB, TNF-α, interleukins and TLR4. By means of gene repression, the miRNAs here described modulate the nociceptive process as well as the autoimmune response that characterize this disease.
Collapse
Affiliation(s)
- S Reyes-Long
- Department of Neurosciences, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340, Mexico City, Mexico
| | - J L Cortes-Altamirano
- Department of Neurosciences, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico
| | - D Clavijio-Cornejo
- Department of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - M Gutiérrez
- Department of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - C Bertolazzi
- Department of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - C Bandala
- Department of Neurosciences, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Col. Casco de Santo Tomas, 11340, Mexico City, Mexico
| | - C Pineda
- Department of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - A Alfaro-Rodríguez
- Department of Neurosciences, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
35
|
Tavasolian F, Moghaddam AS, Rohani F, Abdollahi E, Janzamin E, Momtazi-Borojeni AA, Moallem SA, Jamialahmadi T, Sahebkar A. Exosomes: Effectual players in rheumatoid arthritis. Autoimmun Rev 2020; 19:102511. [PMID: 32171920 DOI: 10.1016/j.autrev.2020.102511] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis is a well-known chronic inflammatory joint disorder. It encompasses systemic inflammation, autoimmunity and development of several joint abnormalities leading to the lifelong disability and increased mortality. Exosomes are nano-sized (30-100 nm) mammalian extracellular particles with essential properties to regulate biological processes and cellular signaling by transferring protein and genetic materials. Understanding the diversity in the exosomal contents and their corresponding targets may contribute to better recognition of the processes that are implicated in the development and progression of diseases such as autoimmune disorders. Exosomes may act as a potential biomarker for the diagnosis of autoimmune disorders. In the present review, we aimed to bring together the relevant evidence on the biology of exosomes in rheumatoid arthritis, and also discuss the recent findings regarding the diagnostic, prognostic and therapeutic promise of these nanoparticles.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Flowcyt Science-Based Company, Tehran, Iran
| | - Abbas Shapouri Moghaddam
- Department of Immunology, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fattah Rohani
- Faculty of Veterinary Medicine of Shahrekord, Shahrekord, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Wiese MD, Manning-Bennett AT, Abuhelwa AY. Investigational IRAK-4 inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2020; 29:475-482. [PMID: 32255710 DOI: 10.1080/13543784.2020.1752660] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that can lead to permanent disability and deformity. Despite current treatment modalities, many patients are still unable to reach remission. Interleukin-1 receptor-associated kinase 4 (IRAK-4) inhibitors are novel agents designed to suppress immune signaling pathways involved in inflammation and joint destruction in RA. Four IRAK-4 inhibitors have entered clinical trials. AREAS COVERED This review summarizes the current stage of development of IRAK-4 inhibitors in clinical trials, detailing their chemistry, pharmacokinetics, and therapeutic potential in the treatment of RA. PubMed, Embase and restricted Google searches were conducted using the term 'IRAK-4', and publicly accessible clinical trial databases were reviewed. EXPERT OPINION IRAK-4 inhibitors are an exciting therapeutic option in RA management because unlike other targeted disease-modifying agents, they target the innate immune system. The role of IRAK-4 as a key component of Toll/Interleukin-1 receptor signaling and its potential for a low rate of infectious complications is particularly exciting and this may facilitate their use in combination treatment. A key aspect of upcoming clinical trials will be the identification of biomarkers predictive of treatment efficacy, which will help to define if and how they will be used in the clinic.
Collapse
Affiliation(s)
- Michael D Wiese
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Health and Biomedical Innovation Group, University of South Australia , Adelaide, Australia
| | - Arkady T Manning-Bennett
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Health and Biomedical Innovation Group, University of South Australia , Adelaide, Australia
| | - Ahmad Y Abuhelwa
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Australian Centre for Precision Medicine, Cancer Research Institute, University of South Australia , Adelaide, Australia
| |
Collapse
|
37
|
Yang P, Qian F, Zhang M, Xu AL, Wang X, Jiang B, Zhou L, Zhou X. Zishen Tongluo formula ameliorates collagen-induced arthritis in mice by modulation of Th17/Treg balance. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112428. [PMID: 31783137 DOI: 10.1016/j.jep.2019.112428] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Tongluo formula (ZTF) is simplified from the Qingluo Tongbi formula, which has been applied to treat rheumatoid arthritis (RA) in clinical practices for several decades. Our previous studies have verified the effects of ZTF on arthritis animal models. However, its mechanism of treating RA is not clear. AIM OF THE STUDY The present study was designed to investigate the effects of ZTF on the Th17/Treg balance in RA mice and the role of the different herb groups with the effect of Zishen yangyin (YY), Huatan quyu (HT), or Qufeng chushi (QF) in ZTF. MATERIALS AND METHODS A mouse model of collagen-induced arthritis (CIA) was established. The animals were randomly divided into the normal, model, positive drug, YY, QF, HT, and the whole compound (ZTF) groups. After oral administration for one-month, cytokine levels in the plasma and histopathological changes of the joint were measured by ELISA and hematoxylin-eosin staining, respectively. Meanwhile, the balance of Th17/Treg cells in blood, spleen or lymph nodes was detected using flow cytometry and qPCR. RESULTS ZTF or the different functional groups could improve the joint inflammation, decrease the levels of proinflammatory cytokines, restore the balance of Th17 and Treg cells in CIA mice. However, there were some differences in each functional group: YY mainly promoted the responses of Treg cells while QF inhibited the functions of Th17 cells. Besides, HT regulated both Th17 and Treg cells to keep the immune balance. CONCLUSIONS ZTF could notably ameliorate CIA mice by restoring the balance of Th17/Treg cells. Each functional group could target Th17 and/or Treg cells to produce synergistic/enhancement effects, and ZTF had a better holistic effect in RA treatment.
Collapse
Affiliation(s)
- Pei Yang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Feiya Qian
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Mingfei Zhang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - A-Lan Xu
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiang Wang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Baoping Jiang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lingling Zhou
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
38
|
Wang J, Yan S, Yang J, Lu H, Xu D, Wang Z. Non-coding RNAs in Rheumatoid Arthritis: From Bench to Bedside. Front Immunol 2020; 10:3129. [PMID: 32047497 PMCID: PMC6997467 DOI: 10.3389/fimmu.2019.03129] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.
Collapse
Affiliation(s)
- Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Operating Room, Zhucheng People's Hospital, Zhucheng, China
| |
Collapse
|
39
|
Yang P, Zhang M, Wang X, Xu AL, Shen M, Jiang B, Zhou X, Zhou L. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation. Biochem Pharmacol 2020; 174:113822. [PMID: 31987855 DOI: 10.1016/j.bcp.2020.113822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease with complicated pathogenesis. IL-17-producing T helper cells (Th17) are important players in the RA process. Despite numerous researches have proven that microRNAs (miRNAs) are crucial to regulate autoimmune diseases including RA, the effect of miRNAs on Th17 cell differentiation and function in the RA progress is not clear. Here, our results showed that the expression of miRNA let-7g-5p was substantially lower in RA patients and CIA mice compared with healthy controls, accompanied by the increased Th17 cell population. Furthermore, the inhibition of let-7g-5p on Th17 cell differentiation and function were verified in vitro. Notably, the disease severity in CIA mice was significantly alleviated after the treatment of let-7g-5p mimics. In addition, let-7g-5p mimics treatment markedly down-regulated the frequency of Th17 cells in CIA mice. Taken together, our findings indicate that let-7g-5p can ameliorate CIA through blocking the differentiation of Th17 cells, which may be a novel strategy to treat autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Pei Yang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mingfei Zhang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiang Wang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - A-Lan Xu
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meiyu Shen
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Baoping Jiang
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lingling Zhou
- Jiangsu Provincial Key Laboratory of Pharmacology and Safety Evaluation of Material Medical, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
40
|
Wang Y, Feng T, Duan S, Shi Y, Li S, Zhang X, Zhang L. miR-155 promotes fibroblast-like synoviocyte proliferation and inflammatory cytokine secretion in rheumatoid arthritis by targeting FOXO3a. Exp Ther Med 2019; 19:1288-1296. [PMID: 32010301 PMCID: PMC6966213 DOI: 10.3892/etm.2019.8330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the expression and effects of microRNA (miR)-155 in synovial fibroblasts of patients with rheumatoid arthritis (RA). A total of 89 synovial tissues from RA patients and 49 control synovial tissues were collected, and the levels of miR-155 were measured by reverse transcription quantitative-PCR and western blotting. Fibroblast-like synoviocytes (FLS) were isolated from synovial tissues from the control group and were used to evaluate the roles of miR-155 and forkhead box protein O3a (FOXO3a). MTT assay was used to measure the proliferation of FLS. The expression of miR-155 in RA synovial tissues was significantly higher than that in the control group, but the expression of FOXO3a was significantly lower. In RA synovial tissues, miR-155 expression was negatively correlated with FOXO3a expression, but was positively correlated with the release of inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). A dual-luciferase reporter system showed that miR-155 inhibited the expression of FOXO3a in FLS cells. miR-155 also promoted secretion of the inflammatory cytokines IL-1β, IL-6 and TNF-α by FLS and proliferation of these cells by targeting FOXO3a.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Tianying Feng
- Department of Medical Ultrasound, Bao'an Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Shasha Duan
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yilu Shi
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Shuling Li
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiaoshan Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
41
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
42
|
Zhou Y, Li S, Chen P, Yang B, Yang J, Liu R, Li J, Xia D. MicroRNA-27b-3p inhibits apoptosis of chondrocyte in rheumatoid arthritis by targeting HIPK2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1766-1771. [PMID: 31066587 DOI: 10.1080/21691401.2019.1607362] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Understanding the mechanism of chondrocytes degeneration could provide a new potential therapeutic idea for rheumatoid arthritis (RA) treatment. MicroRNA-27b-3p (miR-27b-3p) has been shown to regulate a variety of cell behaviors in various cell types. However, the role of miR-27b-3p in RA remains unknown. MATERIALS AND METHODS Expression of miR-27b-3p and HIPK2 in cartilage tissues and chondrocytes was characterized using qRT-PCR and Western blot. MiR-27b-3p was overexpressed or suppressed in chondrocytes to observe the potential role of miR-27b-3p. RESULTS We found declined miR-27b-3p and elevated HIPK2 in RA tissues and cells using qRT-PCR. Dual-luciferase reporter assay validated HIPK2 is a direct target of miR-27b-3p, confirmed by Western blot results. Pearson correlation presented that there was a significantly negative correlation between miR-27b-3p and HIPK2 mRNA. Overexpression of miR-27b-3p significantly reduced the expression of pro-apoptotic protein c-caspase3 and increased the expression of anti-apoptotic Bcl-2; however, downregulation of miR-27b-3p has a significant effect of inducing apoptosis. Furthermore, overexpression of miR-27b-3p combined with recombinant HIPK2 protein showed the inhibitory effect of miR-27b-3p was abolished by HIPK2. CONCLUSION We found declined miR-27b-3p and elevated HIPK2 in RA tissues and cells. Further in vitro studies demonstrated that miR-27b might inhibit chondrocyte apoptosis and thus attenuate RA development by directly inhibiting HIPK2 expression.
Collapse
Affiliation(s)
- Yizhao Zhou
- a Department of Orthopedics , Hunan Provincial People's Hospital , Changsha , Hunan Province , China
| | - Sihong Li
- a Department of Orthopedics , Hunan Provincial People's Hospital , Changsha , Hunan Province , China
| | - Ping Chen
- b Department of Orthopedics , Xinsha Nianlun Orthopedic Hospital , Changsha , Hunan Province , China
| | - Benyu Yang
- c Department of Orthopedics , Huarong County People's Hospital , Huarong , Hunan Province , China
| | - Junjun Yang
- d School of Medicine , Hunan Normal University , Changsha , Hunan Province , China
| | - Renfeng Liu
- d School of Medicine , Hunan Normal University , Changsha , Hunan Province , China
| | - Jiamiao Li
- d School of Medicine , Hunan Normal University , Changsha , Hunan Province , China
| | - Duo Xia
- a Department of Orthopedics , Hunan Provincial People's Hospital , Changsha , Hunan Province , China
| |
Collapse
|
43
|
Association of MTMR3 rs12537 at miR-181a binding site with rheumatoid arthritis and systemic lupus erythematosus risk in Egyptian patients. Sci Rep 2019; 9:12299. [PMID: 31444373 PMCID: PMC6707250 DOI: 10.1038/s41598-019-48770-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in microRNA-target sites influence an individual's risk and prognosis for autoimmune diseases. Myotubularin-related protein 3 (MTMR3), an autophagy-related gene, is a direct target of miR-181a. We investigated whether MTMR3 SNP rs12537 in the miR-181a-binding site is associated with the susceptibility and progression of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Overall, 94 patients with RA, 80 patients with SLE, and 104 healthy volunteers were recruited. Genotyping and expression analysis of circulating MTMR3 and miR-181a were performed by qPCR. The autophagic marker MAP1LC3B was measured by ELISA. The rs12537 minor homozygote (TT) genotype was a candidate risk factor of both RA and SLE. rs12537TT was associated with lower serum MTMR3 expression and higher LC3B levels than other genotypes in patients with both diseases. Serum miR-181a expression was higher in rs12537TT carriers than in other genotypes among SLE patients. Serum miR-181a and MTMR3 levels were inversely correlated in SLE but not in RA patients. rs12537TT and serum miR-181a were positively associated with disease severity in both diseases. Our results identify a novel role of rs12537 in the susceptibility and progression of RA and SLE, possibly through impacting the interaction between miR-181a and MTMR3 leading to increased autophagy.
Collapse
|
44
|
Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med 2019; 29:313-323. [PMID: 30385010 DOI: 10.1016/j.tcm.2018.10.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Exosomes are nano-sized membranous vesicles that are secreted by cells. They have an important role in transferring proteins, mRNA, miRNA and other bioactive molecules between cells and regulate gene expression in recipient cells. Therefore, exosomes are a mechanism by which communication between cells is achieved and they are involved in a wide range of physiological processes, especially those requiring cell-cell communication. In the cardiovascular system, exosomes are associated with endothelial cells, cardiac myocytes, vascular cells, stem and progenitor cells, and play an essential role in development, injury and disease of the cardiovascular system. In recent years, accumulating evidence implicates exosomes in the development and progression of cardiovascular disease. Additionally, exosomal microRNAs are considered to be key players in cardiac regeneration and confer cardioprotective and regenerative properties on both cardiac and non-cardiac cells and, additionally, stem and progenitor cells. Notably, miRNAs may be isolated from blood and offer a potential source of novel diagnostic and prognostic biomarkers for cardiovascular disease. In this review, we summarize and assess the functional roles of exosomes in cardiovascular physiology, cell-to-cell communication and cardio-protective effects in cardiovascular disease.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Student Research Committee, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Platzer A, Nussbaumer T, Karonitsch T, Smolen JS, Aletaha D. Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns. PLoS One 2019; 14:e0219698. [PMID: 31344123 PMCID: PMC6657850 DOI: 10.1371/journal.pone.0219698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
The era of next-generation sequencing has mounted the foundation of many gene expression studies. In rheumatoid arthritis research, this has led to the discovery of important candidate genes which offered novel insights into mechanisms and their possible roles in the cure of the disease. In the last years, data generation has outstripped data analysis and while many studies focused on specific aspects of the disease, a global picture of the disease is not yet accomplished. Here, we analyzed and compared a collection of gene expression information from healthy individuals and from patients suffering under different arthritis conditions from published studies containing the following clinical conditions: early and established rheumatoid arthritis, osteoarthritis and arthralgia. We show comprehensive overviews of this data collection and give new insights specifically on gene expression in the early stage, into sex-dependent gene expression, and we describe general differences in expression of different biotypes of genes. Many genes that are related to cytoskeleton changes (actin filament related genes) are differently expressed in early rheumatoid arthritis in comparison to healthy subjects; interestingly, eight of these genes reverse their expression ratio significantly between men and women compared early rheumatoid arthritis and healthy subjects. There are some slighter changes between men and woman between the conditions early and established rheumatoid arthritis. Another aspect are miRNAs and other gene biotypes which are not only promising candidates for diagnoses but also change their expression grossly in average at rheumatoid arthritis and arthralgia compared to the healthy condition. With a selection of intersecting genes, we were able to generate simple classification models to distinguish between healthy and rheumatoid arthritis as well as between early rheumatoid arthritis to other arthritides based on gene expression.
Collapse
Affiliation(s)
- Alexander Platzer
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Nussbaumer
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University and Helmholtz Zentrum München, Augsburg, Germany
- Institute of Network Biology (INET), Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S. Smolen
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Hou C, Wang D, Zhang L. MicroRNA‑34a‑3p inhibits proliferation of rheumatoid arthritis fibroblast‑like synoviocytes. Mol Med Rep 2019; 20:2563-2570. [PMID: 31524250 PMCID: PMC6691200 DOI: 10.3892/mmr.2019.10516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial inflammation. Fibroblast‑like synoviocytes (FLS) serve a vital role in the initiation and perpetuation of the immune response in patients with RA. The present study aimed to investigate the potential role of microRNA (miR)‑34a‑3p in the pathogenesis of RA. FLS were collected from patients with RA and osteoarthritis (OA). The miR‑34a‑3p mimics and inhibitor vectors were constructed and transfected into RAFLS using Lipofectamine® 2000. Cell proliferation was determined by Cell Counting kit‑8 assay and cell cycle progression was analyzed by flow cytometry. In addition, the expression levels of cell cycle control genes, matrix metalloproteinase (MMP)‑1 and MMP‑9, and pro‑inflammatory cytokines were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The potential targets of miR‑34a‑3p were predicted by TargetScan and MiRWalk; the target genes were further verified using a luciferase reporter assay. The expression levels of miR‑34a‑3p were generally lower in RAFLS compared with in OAFLS. miR‑34a‑3p overexpression significantly inhibited the proliferation of FLS (P<0.01) by suppressing the expression levels of cyclin‑dependent kinase 2, cell division cycle 25A and cyclin D1 (P<0.01), and arresting FLS cell cycle progression at the G1 phase. Furthermore, the expression levels of MMP‑1 and 9 were markedly decreased, as were the mRNA and protein expression levels of pro‑inflammatory cytokines (tumor necrosis factor α and interleukin 6; P<0.01). Murine double minute 4 (MDM4) was predicted and verified as a potential target gene of miR‑34a‑3p; the 547‑554 nt position of the MDM4 3'‑untranslated region harbored one potential binding site for miR‑204‑3p. The results of the present study indicated that miR‑34a‑3p may be considered a promising therapeutic target for RA through inhibiting FLS proliferation and suppressing the production of pro‑inflammatory cytokines and MMPs.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dan Wang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lihua Zhang
- Department of Rheumatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
47
|
Wang X, Tang K, Wang Y, Chen Y, Yang M, Gu C, Wang J, Wang Y, Yuan Y. Elevated microRNA‑145‑5p increases matrix metalloproteinase‑9 by activating the nuclear factor‑κB pathway in rheumatoid arthritis. Mol Med Rep 2019; 20:2703-2711. [PMID: 31322192 PMCID: PMC6691224 DOI: 10.3892/mmr.2019.10499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The present study explored whether miR‑145‑5p can aggravate the development and progression of rheumatoid arthritis (RA) by regulating the expression of matrix metalloproteinases (MMPs). ELISAs, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), and western blotting were used to examine the expression levels of MMP‑1, MMP‑3, MMP‑9, and MMP‑13 in fibroblast‑like synoviocytes (FLS) from patients with RA. Levels of MMP‑1, MMP‑3, MMP‑9, and MMP‑13 were assessed in the right hind ankles of a murine collagen‑induced arthritis (CIA) model by RT‑qPCR and immunohistochemical (IHC) analysis. The effects of activation or inhibition of the nuclear factor‑κB (NF‑κB) pathway on MMPs were evaluated by RT‑qPCR and western blotting. Subcellular localization of NF‑κB p65 was visualized by confocal microscopy. Overexpression of miR‑145‑5p increased the expression of MMP‑3, MMP‑9, and MMP‑13 in RA‑FLS. Moreover, injection of a miR‑145‑5p agomir into mice increased MMP‑3, MMP‑9, and MMP‑13, as demonstrated by RT‑qPCR and IHC analysis. A chemical inhibitor that selectively targets NF‑κB (BAY11‑7082) significantly attenuated MMP‑9 expression, while it did not influence the levels of MMP‑3 and MMP‑13. Immunofluorescence analysis revealed that nuclear localization of p65 was significantly enhanced, indicating that miR‑145‑5p enhances activation of the NF‑κB pathway by promoting p65 nuclear translocation. miR‑145‑5p overexpression also significantly increased phosphorylated p65 levels; however, the levels of IkB‑a were reduced in response to this miRNA. Moreover, our results indicated that miR‑145‑5p aggravated RA progression by activating the NF‑κB pathway, which enhanced secretion of MMP‑9. In conclusion, modulation of miR‑145‑5p expression is potentially useful for the treatment of RA inflammation, by regulating the expression of MMPs, and MMP‑9 in particular, through inhibition of the NF‑κB pathway.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Clinical Laboratory Diagnostics, Tianjin Medical University General Hospital Airport Site, Tianjin 300308, P.R. China
| | - Ke Tang
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuanyuan Wang
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yaqing Chen
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Mengchen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chungang Gu
- Clinical Laboratory Diagnostics, Tianjin Third Center Hospital, Tianjin 300170, P.R. China
| | - Jing Wang
- Clinical Laboratory Diagnostics, Tianjin Medical University General Hospital Airport Site, Tianjin 300308, P.R. China
| | - Yi Wang
- Clinical Laboratory Diagnostics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yuhua Yuan
- Clinical Laboratory Diagnostics, Tianjin Medical University General Hospital Airport Site, Tianjin 300308, P.R. China
| |
Collapse
|
48
|
Chen Y, Wang W, Chen Y, Tang Q, Zhu W, Li D, Liao L. MicroRNA-19a-3p promotes rheumatoid arthritis fibroblast-like synoviocytes via targeting SOCS3. J Cell Biochem 2019; 120:11624-11632. [PMID: 30854695 DOI: 10.1002/jcb.28442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease and effective treatment for RA is still lacking. In this study, the regulatory role of miR-19a-3p in RA was investigated. Quantitative polymerase chain reaction analysis of human blood samples showed that the level of miR-19a-3p was significantly lower in the RA patients compared with that in healthy patients (P < 0.05). In RA fibroblast-like synoviocytes (RAFLS), miR-19a-3p and suppressor of cytokine signaling 3 (SOCS3) were also downregulated and upregulated, respectively, compared with those of normal FLS. Transfection of miR-19a-3p mimic in RAFLS inhibited cell proliferation and promoted cell apoptosis. TargetScan identified SOCS3 as a target of miR-19a-3p, which was confirmed by dual-luciferase assay. Western blot indicated that SOCS3 protein level was significantly decreased after miR-19a-3p overexpression. Moreover, SOCS3 silencing through siRNA transfection also enhanced cell proliferation, meanwhile inhibiting RAFLS apoptosis. In addition, SOCS3 overexpression abrogated the effects of miR-19a-3p overexpression on cell proliferation and apoptosis, corroborating that SOCS3 acts as a downstream effector in the miR-19a-3p-mediated function of RAFLS. These findings suggest that miR-19a-3p plays an important role in RA, and the miR-19a-3p/SOCS3 axis may become a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yiyue Chen
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - You Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - Qi Tang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - Weihong Zhu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - Ding Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| | - Lele Liao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Furong District, Changsha, Hunan, People's Republic of China
| |
Collapse
|
49
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN, Zamyatnin AA. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet 2019; 10:570. [PMID: 31258550 PMCID: PMC6587113 DOI: 10.3389/fgene.2019.00570] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world’s population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina V Bure
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina A Alekseeva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Beloukhova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei A Deviatkin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Lukashev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
50
|
Cai Y, Jiang C, Zhu J, Xu K, Ren X, Xu L, Hu P, Wang B, Yuan Q, Guo Y, Sun J, Xu P, Qiu Y. miR-449a inhibits cell proliferation, migration, and inflammation by regulating high-mobility group box protein 1 and forms a mutual inhibition loop with Yin Yang 1 in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res Ther 2019; 21:134. [PMID: 31159863 PMCID: PMC6547523 DOI: 10.1186/s13075-019-1920-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/17/2019] [Indexed: 11/12/2022] Open
Abstract
Background We previously found that high-mobility group box protein 1 (HMGB1) promoted cell proliferation, migration, invasion, and autophagy in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), but little is known about its regulatory mechanism. The aim of this study was to investigate the regulatory mechanism of HMGB1 at the posttranscription level. Methods Real-time qPCR, CCK-8 cell proliferation assay, transwell cell migration assay, enzyme-linked immunosorbent assay (ELISA), and western blotting were used in this study. The targeting relationship between miRNA and mRNA was presented by the luciferase reporter assay. Results MiR-449a was downregulated in RA synovial tissue and inhibited RA-FLS proliferation, migration, and IL-6 production. MiR-449a directly targeted HMGB1 and inhibited its expression. Yin Yang 1(YY1) negatively regulated miR-449a expression and formed a mutual inhibition loop in RA-FLS. MiR-449a inhibited TNFα-mediated HMGB1 and YY1 overexpression and IL-6 production. Conclusions Our results reveal the regulatory mechanism of HMGB1 in RA and demonstrate that miR-449a is a crucial molecule in RA pathogenesis and a suitable candidate for miRNA replacement therapies in RA. Electronic supplementary material The online version of this article (10.1186/s13075-019-1920-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongsong Cai
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jialin Zhu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China
| | - Lin Xu
- Department of Orthopaedics of the 3201 Hospital, Hanzhong, 723000, China
| | - Peijing Hu
- Department of Cardiovascular Medicine of the Second Affiliated Hospital, Xi'an Medical School, Xi'an, 710038, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qiling Yuan
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710054, China.
| | - Yusheng Qiu
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|