1
|
Zhang T, Chen L, Xu X, Shen C. Knockdown of Long Noncoding RNA Urothelial Carcinoma-Associated 1 Represses Gallbladder Cancer Advancement by Regulating SPOCK1 Expression Through Sponging miR-613. Cancer Biother Radiopharm 2023; 38:354-363. [PMID: 33090888 DOI: 10.1089/cbr.2020.4290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Gallbladder cancer (GBC) is the most common biliary tract malignancy. Long noncoding RNA urothelial carcinoma-associated 1 (UCA1) and MicroRNA-613 (miR-613) have been reported to be involved in the progression of various cancers. However, the regulatory mechanism between UCA1 and miR-613 in GBC is unclear. Materials and Methods: The expression levels of UCA1, miR-613, and secreted protein/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) mRNA were detected using quantitative real-time polymerase chain reaction. Cell proliferation, migration, invasion, and apoptosis were determined with MTT, transwell, or flow cytometry assays. The levels of SPOCK1 protein, Bax, cleaved-casp-3, and Bcl-2 were determined by Western blot analysis. The relationship between miR-613 and UCA1 or SPOCK1 was verified through dual-luciferase reporter and/or RNA immunoprecipitation assays. Xenograft assay was performed to verify the role of UCA1 in vivo. Results: UCA1 and SPOCK1 were upregulated, whereas miR-613 was downregulated in GBC tissues and cells. UCA1 silencing decreased tumor growth in vivo and impeded proliferation, migration, invasion, and induced apoptosis of GBC cells in vitro. Notably, UCA1 acted as a sponge for miR-613, which targeted SPOCK1 in GBC cells. Moreover, UCA1 enhancement reversed the repressive impact of miR-613 mimic on the malignancy of GBC cells. UCA1 regulated SPOCK1 expression through adsorbing miR-613. Furthermore, SPOCK1 elevation overturned UCA1 silencing mediated the malignant behaviors of GBC cells. Conclusion: UCA1 knockdown suppressed GBC progression through downregulating SPOCK1 via sponging miR-613, providing an evidence for UCA1 as a target for GBC treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Hepatobiliary Surgery, Loudi Central Hospital of Hunan, Loudi, China
| | - Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Xundi Xu
- Department of Hepatobiliary Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Shen
- Department of Urology, Loudi Central Hospital of Hunan, Loudi, China
| |
Collapse
|
2
|
Broseghini E, Filippini DM, Fabbri L, Leonardi R, Abeshi A, Dal Molin D, Fermi M, Ferracin M, Fernandez IJ. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Noncoding RNA 2023; 9:ncrna9010009. [PMID: 36827542 PMCID: PMC9966707 DOI: 10.3390/ncrna9010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is one of the most common malignant tumors of the head and neck region, with a poor survival rate (5-year overall survival 50-80%) as a consequence of an advanced-stage diagnosis and high recurrence rate. Tobacco smoking and alcohol abuse are the main risk factors of LSCC development. An early diagnosis of LSCC, a prompt detection of recurrence and a more precise monitoring of the efficacy of different treatment modalities are currently needed to reduce the mortality. Therefore, the identification of effective diagnostic and prognostic biomarkers for LSCC is crucial to guide disease management and improve clinical outcomes. In the past years, a dysregulated expression of small non-coding RNAs, including microRNAs (miRNAs), has been reported in many human cancers, including LSCC, and many miRNAs have been explored for their diagnostic and prognostic potential and proposed as biomarkers. We searched electronic databases for original papers that were focused on miRNAs and LSCC, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. According to the outcome, 566 articles were initially screened, of which 177 studies were selected and included in the analysis. In this systematic review, we provide an overview of the current literature on the function and the potential diagnostic and prognostic role of tissue and circulating miRNAs in LSCC.
Collapse
Affiliation(s)
- Elisabetta Broseghini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Daria Maria Filippini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
- Correspondence: (E.B.); (D.M.F.)
| | - Laura Fabbri
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Roberta Leonardi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero, Universitaria Policlinico Sant’Orsola Malpighi of Bologna, 40138 Bologna, Italy
| | - Andi Abeshi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Davide Dal Molin
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Matteo Fermi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero, Universitaria di Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| |
Collapse
|
3
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5‑year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non‑canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p‑STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl‑xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non‑coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non‑coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Clinical Medical College, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
4
|
Engineered Exosomes Loaded with miR-563 Inhibit Lung Cancer Growth. JOURNAL OF ONCOLOGY 2022; 2022:6141857. [PMID: 36090893 PMCID: PMC9462977 DOI: 10.1155/2022/6141857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/15/2022] [Indexed: 12/28/2022]
Abstract
The malignancy of lung cancer (LC) is serious in the world. Exosomes are well-known natural nanovesicles, which are reported to have the potential to carry functional miRNAs as natural carriers and deliver chemotherapeutic drugs. However, the safety and functions of the engineered exosomes for delivering miRNA for the treatment of LC remain to be evaluated. In this study, we found that miR-563 is related to lung cancer from GeneCard database. RT-qPCR and in situ hybridization (ISH) were used to assess miR-563 expression in clinical samples. We prepared and verified the engineered exosomes loaded with miR-563 both in vitro and in vivo. In vitro, flow cytometry, Western blot, and other experimental methods were performed to evaluate the antitumor effect of miR-563 loaded exosomes. In in vivo, the LC mouse model was used to observe the effect of the prepared exosomes. The safety of using this exosomes was accessed by liver function test, hematological analysis, and H&E staining in major organs of the mice. Our findings indicated that the miR-563 loaded engineered exosomes inhibit the A549 cells growth in vitro, by inhibiting the tumor cell proliferation, migration, and invasion and promoting apoptosis. In in vivo, these engineered exosomes were enriched in tumor tissue after injecting to LC model mice and impacted tumor tissue by inhibiting the tumor volume and tumor weight. Importantly, our study indicated that miR-563 loaded engineered exosomes have the potential for clinical application for LC treatment with acceptable safety profiles. Our findings indicate a novel potential therapeutic target for lung cancer patients by miR-563 loaded engineered exosomes.
Collapse
|
5
|
Zhou J, Zhang J, Zhang W, Ke Z, Lv Y, Zhang B, Liao Z. Ribophorin II promotes the epithelial-mesenchymal transition and aerobic glycolysis of laryngeal squamous cell carcinoma via regulating reactive oxygen species-mediated Phosphatidylinositol-3-Kinase/Protein Kinase B activation. Bioengineered 2022; 13:5141-5151. [PMID: 35156537 PMCID: PMC8974210 DOI: 10.1080/21655979.2022.2036914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ribophorin II (RPN2), a part of an N-oligosaccharyl transferase complex, plays vital roles in the development of multiple cancers. Nevertheless, its biological role in laryngeal squamous cell carcinoma (LSCC) remains unclear. The RPN2 expression levels in LSCC tissues and cell lines (AMC-HN-8 and TU212) were measured using real-time PCR, immunohistochemistry, or Western blot. The influences of RPN2 on the proliferation, migration, epithelial–mesenchymal transition, and aerobic glycolysis of LSCC cells were investigated after upregulation or downregulation of RPN2 in vitro and in vivo. Mechanically, we assessed the impact of RPN2 on the reactive oxygen species (ROS)/Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (Akt) signaling pathway. We found that compared with the control, RPN2 was highly expressed in LSCC tissues and cells. Overexpression of RPN2 elevated the proliferation, migration, glucose uptake, lactate production release, and levels of Vimentin, hexokinase-2 (HK-2), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA), and ROS, but inhibited E-cadherin expression in AMC-HN-8 cells. Knockdown of RPN2 in TU212 cells showed opposite effects on the above indexes. Meanwhile, RPN2 upregulation increased the levels of p-PI3K/PI3K and p-Akt/Akt, which were attenuated by N-acetyl-L-cysteine (NAC), an ROS inhibitor. Both NAC and PI3K inhibitor LY294002 could reverse the effects of RPN2 overexpression on the malignant phenotypes of LSCC cells. In xenografted mice, silencing RPN2 expression reduced tumor growth, ROS production, and levels of Ki-67, Vimentin, LDHA, and p-Akt/Akt, but enhanced E-cadherin expression. In conclusion, our data suggested that RPN2 promoted the proliferation, migration, EMT, and glycolysis of LSCC via modulating ROS-mediated PI3K/Akt activation.
Collapse
Affiliation(s)
- Jingchun Zhou
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yanlu Lv
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bo Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhifang Liao
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
6
|
CircPTK2 (hsa_circ_0003221) Contributes to Laryngeal Squamous Cell Carcinoma by the miR-1278/YAP1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:2408384. [PMID: 34691176 PMCID: PMC8528618 DOI: 10.1155/2021/2408384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
Laryngeal cancer accounts for 20% of all head and neck malignancies. Laryngeal squamous cell carcinoma (LSCC) is the most common type of laryngeal cancer and is characterized by squamous differentiation, a high mortality rate, and poor prognosis. Accumulating studies have indicated that circular RNAs (circRNAs) are critical regulators in many cancers. CircPTK2 exerts an important regulatory role in several cancers. In this study, we aimed to elucidate the function of circPTK2 (hsa_circ_0003221) in LSCC. Through a series of investigations, we discovered that circPTK2 was significantly upregulated in LSCC tissues cells. Functionally, cell counting kit-8 (CCK-8) and flow cytometry analyses revealed that knockdown of circPTK2 suppressed LSCC cell viability and the cell cycle while promoting cell apoptosis. Notably, silencing circPTK2 inhibited tumor growth in vivo. Mechanistically, circPTK2 functioned as a molecular sponge of miR-1278 to upregulate YAP1 expression in LSCC cells. Moreover, YAP1 knockdown inhibited malignant phenotypes of LSCC cells. The rescue experiments showed that YAP1 overexpression reversed the effects of circPTK2 on LSCC cells. Therefore, we concluded that circPTK2 facilitates LSCC progression through the miR-1278/YAP1 axis.
Collapse
|
7
|
Huang Y, Zhang H, Wang L, Liu C, Guo M, Tan H, Liu Z. MiR-613 inhibits the proliferation, migration, and invasion of papillary thyroid carcinoma cells by directly targeting TAGLN2. Cancer Cell Int 2021; 21:494. [PMID: 34530821 PMCID: PMC8447791 DOI: 10.1186/s12935-021-02083-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC), with a rapidly increasing incidence, is the most prevalent malignant cancer of the thyroid. However, its pathogenesis is unclear and its specific clinical indicators have not yet been identified. There is increasing evidence that microRNAs (miRNAs) play important roles in tumor occurrence and progression. Specifically, miR-613 participates in the regulation of tumor development in various cancers; however, its effects and mechanisms of action in PTC are still unclear. Therefore, in this study, we investigated the expression and function of miR-613 in PTC. Methods qRT-PCR was used to determine miR-613 expression in 107 pairs of PTC and adjacent-normal tissues as well as in PTC cell lines and to detect TAGLN2 mRNA expression in PTC tissues and adjacent normal tissues. Western blot analysis was performed to identify TAGLN2 and epithelial–mesenchymal transition (EMT) biomarkers. The effects of miR-613 on PTC progression were evaluated by performing MTS, wound-healing, and Transwell assays in vitro. Luciferase reporter assays were also performed to validate the target of miR-613. Results In PTC, miR-613 was significantly downregulated and its low expression level was associated with cervical lymph node metastasis. However, its overexpression significantly suppressed PTC cell proliferation, migration, and invasion and inhibited EMT. TAGLN2 was identified as a target of miR-613, which also significantly inhibited the expression of TAGLN2. Further, the restoration of TAGLN2 expression attenuated the inhibitory effects of miR-613 on PTC cell proliferation and metastasis. Conclusion Our findings demonstrated that miR-613 can suppress the progression of PTC cells by targeting TAGLN2, indicating that miR-613 plays the role of a tumor suppressor in PTC. Overall, these results suggest that the upregulation of miR-613 is a promising therapeutic strategy for PTC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02083-8.
Collapse
Affiliation(s)
- Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Donggang West Rd, Lanzhou, 730000, China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Mingyue Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
8
|
LncRNA UCA1 elevates the resistance of human leukemia cells to daunorubicin by the PI3K/AKT pathway via sponging miR-613. Biosci Rep 2021; 41:228611. [PMID: 33969374 PMCID: PMC8193642 DOI: 10.1042/bsr20201389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Acute leukemia is a hematological malignant tumor. Long non-coding RNA urothelial cancer-associated 1 (UCA1) is involved in the chemo-resistance of diverse cancers, but it is unclear whether UCA1 is associated with the sensitivity of acute leukemia cells to daunorubicin (DNR). DNR (100 nM) was selected for functional analysis. The viability, cell cycle progression, apoptosis, and invasion of treated acute leukemia cells (HL-60 and U-937) were evaluated by cell counting kit-8 (CCK-8) assay, flow cytometry assay, or transwell assay. Protein levels were detected with Western blot analysis. Expression patterns of UCA1 and miR-613 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between UCA1 and microRNA-613 (miR-613) was verified by dual-luciferase reporter assay. We observed that UCA1 expression was elevated in HL-60 and U-937cells. DNR constrained viability, cell cycle progression, invasion, and facilitated apoptosis of HL-60 and U-937 cells in a dose-dependent manner, but these impacts mediated by DNR were reverted after UCA1 overexpression. MiR-613 was down-regulated in HL-60 and U-937 cells, and UCA1 was verified as a miR-613 sponge. MiR-613 inhibitor reversed DNR treatment-mediated effects on viability, cell cycle progression, apoptosis, and invasion of HL-60 and U-937 cells, but these impacts mediated by miR-613 inhibitor were counteracted after UCA1 inhibition. Notably, the inactivation of the PI3K/AKT pathway caused by DNR treatment was reversed after miR-613 inhibitor introduction, but this influence mediated by miR-613 inhibitor was offset after UCA1 knockdown. In conclusion, UCA1 up-regulation facilitated the resistance of acute leukemia cells to DNR via the PI3K/AKT pathway by sponging miR-613.
Collapse
|
9
|
Zhao J, Li XD, Wang M, Song LN, Zhao MJ. Circular RNA ABCB10 contributes to laryngeal squamous cell carcinoma (LSCC) progression by modulating the miR-588/CXCR4 axis. Aging (Albany NY) 2021; 13:14078-14087. [PMID: 34015764 PMCID: PMC8202875 DOI: 10.18632/aging.203025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common head and neck cancer with a high metastasis and poor prognosis. Circular RNAs (circRNAs) are a type of non-coding RNAs (ncRNAs) with regulatory function and broadly participate in cancer development. However, the correlation of circular RNA ABCB10 (circABCB10) with LSCC remains unclear. Here, we were interested in the role of circABCB10 in the modulation of LSCC progression. Our data demonstrated that the depletion of circABCB10 significantly inhibited the proliferation and induced the apoptosis of LSCC cells. Meanwhile, circABCB10 knockdown was able to remarkably reduce the invasion and migration of LSCC cells. Mechanically, circABCB10 served as a sponge for microRNAs-588 (miR-588) and miR-588 could target and down-regulated chemokine receptor 4 (CXCR4) expression in LSCC cells. The overexpression of CXCR4 or miR-588 inhibitor could reverse circABCB10 depletion-attenuated malignant phenotypes of LSCC cells. Functionally, the depletion of circABCB10 alleviated the tumor growth of LSCC cells in the tumorigenicity analysis of nude mice. The CXCR4 expression was decreased while the miR-588 expression was enhanced by circABCB10 depletion in vivo. Thus, we concluded that circABCB10 was involved in the malignant progression of LSCC by regulating miR-588/CXCR4 axis. Our finding provides new insights into the mechanism of circRHOT1 contributing to the development of LSCC. CircABCB10 and miR-588 may be used as potential targets for the treatment of LSCC.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xing-De Li
- Department of Radiation Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ming Wang
- Department of Radiation Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Li-Na Song
- Department of Radiation Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Mei-Jiao Zhao
- Department of Radiation Oncology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
10
|
Diao X, Yao L, Wang Y, Zhang X, Sun H, Lao K, Ma H. Identification of critical miRNAs and mRNAs associated with polycystic ovary syndrome. J Obstet Gynaecol Res 2021; 47:1416-1424. [PMID: 33590597 DOI: 10.1111/jog.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/14/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a complicated endocrine and metabolic abnormality diseases common in women of child-bearing age. This study aims to screen out critical miRNAs and mRNAs associated with PCOS, which may be conducive to offer novel insights and treatment for the diseases. METHODS Three mRNA datasets and one miRNA dataset derived from granulosa cells of patients with PCOS and normal controls were downloaded to obtain the differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs). Then, DEmiRNA-target DEmRNAs analysis and functional annotation of DEmiRNA-target DEmRNAs were performed. Quantitative real time polymerase chain reaction (qRT-PCR) validation of the expression of the selected DEmRNAs and DEmiRNAs were performed. RESULTS A total of 1643 DEmRNAs, 88 DEmiRNAs, 2406 DEmiRNA (down)-DEmRNA (up), and 2179 DEmiRNA (up)-DEmRNA (down) pairs were obtained. The functional annotation of DEmiRNA-target DEmRNAs revealed that C-type lectin receptor signaling pathway, Steroid biosynthesis and Galactose metabolism were significantly enriched KEGG pathways. CONCLUSION These findings may provide make contribution to understanding PCOS pathogenesis, diagnosis, or treatment.
Collapse
Affiliation(s)
- Xinghua Diao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lijuan Yao
- Department of Obstetrics, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xianghui Zhang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongliang Sun
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Kaixue Lao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - He Ma
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
11
|
Song F, Yang Y, Liu J. Long non-coding RNA MIAT promotes the proliferation and invasion of laryngeal squamous cell carcinoma cells by sponging microRNA-613. Exp Ther Med 2021; 21:232. [PMID: 33603840 PMCID: PMC7851618 DOI: 10.3892/etm.2021.9663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that the long non-coding RNA myocardial infarction associated transcript (lncRNA MIAT) serves an important role in the progression of a number of cancer types. However, the precise molecular mechanism of MIAT in laryngeal squamous cell carcinoma (LSCC) progression remain elusive. The aim of the current study was to assess the effects and to clarify the molecular mechanism of MIAT on the proliferation and invasion of LSCC cells. The expression of MIAT was detected in LSCC tissues and cells using reverse transcription-quantitative PCR. MTT and colony formation assays were performed to examine the effects of MIAT on the proliferation of LSCC cells. Additionally, wound healing and Transwell experiments were employed to examine cellular migration and invasion. Luciferase reporter gene assay was also used to confirm the direct binding between MIAT and microRNA (miR)-613 in LSCC cells. An RNA immunoprecipitation assay was performed to verify the interaction between MIAT and miR-613. In the present study, it was found that the expression of MIAT in LSCC tissues was markedly higher compared with that in adjacent non-tumor tissues. In addition, MIAT expression was also increased in the human LSCC cell lines TU686, TU-177 and AMC-HN-8 compared with that in normal human keratinocytes (HaCaT). Knocking down MIAT expression significantly reduced LSCC cell proliferation and inhibited colony formation, a shown by MTT and colony formation assays, respectively. MIAT knockdown also substantially inhibited the migratory and invasive abilities of LSCC cells, as shown by wound healing and Transwell invasion assays, respectively. Subsequently, luciferase reporter assays verified that MIAT could bind to miR-613, where a negative correlation was observed between the expression of MIAT and miR-613 in LSCC tissues. Suppression of miR-613 partially reversed the inhibitory effects of MIAT knockdown on the proliferation, migration and invasion of LSCC cells. Taken together, the present study identified that MIAT may function as an oncogenic lncRNA to promote LSCC progression, which provides a potential therapeutic target or as a novel diagnostic biomarker for LSCC.
Collapse
Affiliation(s)
- Fucun Song
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yang Yang
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jixiang Liu
- Department of Otolaryngology Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
12
|
Liu H, Hu K. The Long Intergenic Noncoding RNA 00707 Sponges MicroRNA-613 (miR-613) to Promote Proliferation and Invasion of Gliomas. Technol Cancer Res Treat 2020; 19:1533033820962092. [PMID: 33107401 PMCID: PMC7607719 DOI: 10.1177/1533033820962092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Glioma is one of the most deadly malignant tumors in humans. Long non-coding RNA (lncRNA) plays a key role in the occurrence, development and invasion of tumors by regulating oncogenic and tumor suppressor pathways. However, the role and action mechanism of long intergenic non-coding RNA 00707 (LINC00707) in gliomas have not been elucidated. This study aimed to investigate the interaction between LINC00707 and miR-613 as well as its role in gliomas. Materials and Methods: The expression levels of LINC00707 and miR-613 were detected by qRT-PCR. The chi-square test was used to analyze the correlation between LINC00707 expression and clinicopathological parameters. CCK-8 and colony formation assays were used to detect glioma cell proliferation; and wound healing and transwell assays were used to detect glioma cell migration and invasion. The relationship between LINC00707 and miR-613 was predicted by Starbase, and verified by qRT-PCR and dual luciferase reporter gene assay. Results: LINC00707 was up-regulated in gliomas. Up-regulated LINC00707 increased the proliferation, migration and invasion of glioma cells, and silenced LINC00707 reduced these abilities. The increase of the expression level of LINC00707 down-regulated miR-613 in glioma cells, while the inhibition of the expression level of LINC00707 up-regulated miR-613 in glioma cells. The high expression of LINC00707 was related to the Karnofsky performance status (KPS) score and WHO staging. LINC00707 could offset the ability of miR-613 to inhibit glioma proliferation and invasion. Conclusion: LINC00707 promotes proliferation and invasion of glioma cells by sponging miR-613. The regulatory axis of LINC00707/miR-613 provides new insights into the mechanism and treatment of gliomas.
Collapse
Affiliation(s)
- Handong Liu
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Keqi Hu
- Department of Neurosurgery, Xiangyang Center Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Li D, Meng D, Niu R. Exosome-Reversed Chemoresistance to Cisplatin in Non-Small Lung Cancer Through Transferring miR-613. Cancer Manag Res 2020; 12:7961-7972. [PMID: 32943930 PMCID: PMC7481302 DOI: 10.2147/cmar.s254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Non-small lung cancer (NSCLC) is one of the most common malignant tumors in the world. Chemoresistance is the main reason of adverse effects leading to the death of patients; thus, it is important to discover the potential target of chemotherapeutic resistance. Methods The expression of differentially expressed miRNA was detected in BEAS-2B, A549 and A549/cisplatin (DDP) by qRT-PCR. Transmission electron microscopy (TEM) and exosome biomarkers were used to validate the extracted exosome. Cells incubated with miR-613 enriched exosomes were used to detect the function of exo-miR-613 in vitro. Then, exo-miR-613 was injected to mice treated with DDP to investigate the function role of exo-miR-613 in vivo. Results Comparing to BEAS-2B, the expression of miR-613 inA549 was significantly reduced, which was more obvious in A549/DDP. After incubated with exo-miR-613 and corresponding exo-negative control (NC), we found overexpression of miR-613 remarkably increased the inhibition of cell proliferation induced by cisplatin. Exo-miR-613 fused into cells to significantly enhance the inhibited effect of DDP on the proliferation, migration and showed a promotion on cell apoptosis and DNA damage. The in vivo study showed that exo-miR-613 significantly inhibited the tumor growth, and promote the sensitivity to DDP, probably by down-regulating the expressions of GJA1, TBP and EIF-4E in tumor cells and tissues. Conclusion Exo-miR-613 reversed chemoresistance to DDP in NSCLC cell to involve in the process of tumor progression, and might be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Delong Li
- Department of Special Geriatrics, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Debin Meng
- Department of Special Geriatrics, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China.,Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Rungui Niu
- Department of Special Geriatrics, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
14
|
Cheng Y, Zhu H, Gao W. MicroRNA-330-3p represses the proliferation and invasion of laryngeal squamous cell carcinoma through downregulation of Tra2β-mediated Akt signaling. Mol Cell Probes 2020; 52:101574. [PMID: 32289378 DOI: 10.1016/j.mcp.2020.101574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs), a type of post-transcriptional regulators, exert a crucial role in the malignant progression of laryngeal squamous cell carcinoma (LSCC). MicroRNA-330-3p (miR-330-3p), a recently identified tumor-associated miRNA, is implicated in multiple cancers. Yet, the relevance of miR-330-3p in LSCC remains unexplored. The findings of our study demonstrated a lower expression of miR-330-3p in LSCC. Functional assays revealed that upregulation of miR-330-3p marked restricted the proliferation, colony formation and invasion of LSCC cells. Transformer-2 protein homolog beta (Tra2β) was identified as a target gene of miR-330-3p. An inverse correlation between miR-330-3p and Tra2β mRNA expression was evidenced in LSCC specimens. The upregulation of miR-330-3p significantly repressed Tra2β expression and the phosphorylation of the Akt protein. In addition, Tra2β overexpression markedly abrogated the tumor suppressive role of miR-330-3p in LSCC cells. Overall, our results uncovered that miR-330-3p exerted a tumor-inhibition function in LSCC through targeting Tra2β to inhibit Akt activation.
Collapse
Affiliation(s)
- Ying Cheng
- The Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhu
- The Department of Computer, Xi'an University of Post and Telecommunications, Xi'an, 710121, China
| | - Wei Gao
- The Department of Chest Surgery, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, China.
| |
Collapse
|
15
|
Su X, Gao C, Feng X, Jiang M. miR-613 suppresses migration and invasion in esophageal squamous cell carcinoma via the targeting of G6PD. Exp Ther Med 2020; 19:3081-3089. [PMID: 32256796 PMCID: PMC7086187 DOI: 10.3892/etm.2020.8540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common cancer in China and has a high mortality rate. MicroRNAs (miRs) are a family of post-transcriptional regulators, which negatively regulate target gene expression. miR-613 has been revealed to be a diagnostic and prognostic biomarker in ESCC. However, the role of miR-613 in ESCC remains unclear. In the present study, miR-613 expression was identified to be reduced in tumor tissues in comparison with corresponding adjacent normal tissues. TargetScan and a dual-luciferase reporter assay verified glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-613. In contrast with miR-613, G6PD expression was increased in tumor tissues compared with matched healthy tissues. Furthermore, overexpression of miR-613 inhibited cell migration and invasion of Eca109 cells compared with controls, while G6PD overexpression reversed the inhibition induced by miR-613, as determined by wound healing and Transwell assays. In addition, miR-613 overexpression decreased the mRNA and protein expression of G6PD, matrix metalloproteinase (MMP)2 and MMP9, and reduced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) compared with controls, while G6PD reversed the effects of miR-613. However, miR-613 and G6PD did not affect the expression of STAT3. In conclusion, the aforementioned results suggest that miR-613 targets G6PD to suppress ESCC cell migration and invasion through reduced MMP2 and MMP9 expression and inactivation of the STAT3 signaling pathway. Thus, the present study may provide a new molecular foundation for treatment of ESCC.
Collapse
Affiliation(s)
- Xiangyu Su
- Department of Oncology, Zhongda Hospital, The Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
- Clinical Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chanchan Gao
- Department of Oncology, Zhongda Hospital, The Affiliated Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
- Clinical Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoyao Feng
- Department of Radiation Oncology, General Hospital of Eastern Theater Command, Nanjing, Jiangsu 210002, P.R. China
| | - Ming Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
16
|
Zheng X, Dong S, Sun L, Xu J, Liu J, Hao R. LncRNA LINC00152 Promotes Laryngeal Cancer Progression by Sponging MiR-613. Open Med (Wars) 2020; 15:240-248. [PMID: 32266320 PMCID: PMC7126196 DOI: 10.1515/med-2020-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long noncoding RNA (lncRNA) LINC00152 (CYTOR) has been reported to be upregulated and to serve as a diagnostic biomarker in multiple types of cancers, including laryngeal squamous cell cancer (LSCC). However, the functional role and molecular mechanisms of LINC00152 in LSCC progression need to be further investigated. Methods LINC00152 levels in LSCC and adjacent normal tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Gene knockdown of LINC00152 was achieved in LSCC cells by use of small interfering RNA (siRNA). Cell proliferation, apoptosis, migration and invasion were examined by a series of methods. The micoRNA (miRNA) interaction with LINC00152 was screened by starBase v2.0 and confirmed by luciferase reporter activity. Results LINC00152 levels in LSCC tissues were significantly higher than those in adjacent normal tissue, and patients with lymph node metastasis or an advanced clinical stage displayed higher LINC00152 expression. Moreover, siRNA-mediated LINC00152 knockdown significantly inhibited the proliferation, migration and invasion of LSCC cells and induced apoptosis in those cells. Mechanistically, LINC00152 functioned as a competing endogenous RNA (ceRNA) sponging miR-613. The inhibitory effect of LINC00152 knockdown on malignant behavior was abrogated by inhibiting miR-613. Conclusion LINC00152 exerts an oncogenic effect on the tumorigenesis of LSCC by sponging miR-613 and may serve as a potential target for treating LSCC.
Collapse
Affiliation(s)
- Xuesong Zheng
- Department of Otolaryngology Head and Neck surgery, the Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| | - Su Dong
- Departments of Anesthesia, the First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Lele Sun
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jialu Xu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Rui Hao
- Department of Infection, The Affiliated Hospital of Beihua University, Jilin 132001, P.R. China
| |
Collapse
|
17
|
MicroRNA-613: A novel tumor suppressor in human cancers. Biomed Pharmacother 2020; 123:109799. [DOI: 10.1016/j.biopha.2019.109799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022] Open
|
18
|
Silencing of miR-17-5p suppresses cell proliferation and promotes cell apoptosis by directly targeting PIK3R1 in laryngeal squamous cell carcinoma. Cancer Cell Int 2020; 20:14. [PMID: 31938022 PMCID: PMC6954602 DOI: 10.1186/s12935-020-1096-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. Methods qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. Results In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3′-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. Conclusions In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.
Collapse
|
19
|
Dong K, Xue H, Cheng J, Su J, Li D, Zhang J, Zhang H. PRPH2 Activates Hippo Signalling and Suppresses the Invasion and Anoikis Inhibition of Laryngeal Cancer. Cancer Manag Res 2019; 11:10107-10115. [PMID: 31819643 PMCID: PMC6896914 DOI: 10.2147/cmar.s222527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction Laryngeal cancer is the most common head and neck cancer worldwide. It is urgent to identify the mechanisms underlying laryngeal cancer pathogenesis. In the present study, we investigated the biological functions of Peripherin 2 (PRPH2) in laryngeal cancer and uncovered the molecular mechanism underlying this disease. Methods Laryngeal cancer tissues were used to analyze the expression of PRPH2. In vitro transwell matrigel invasion assay and annexin V anoikis assay in laryngeal cancer cells were conducted to investigate PRPH2 related biological functions. Quantitative real-time PCR and Western blotting were performed to investigate the expression and mechanism of PRPH2 in laryngeal cancer. Results We found that the expression of PRPH2 was significantly downregulated in laryngeal cancer tissues. Overexpression of PRPH2 suppressed the invasion and anoikis inhibition of laryngeal cancer cells. Furthermore, PRPH2 overexpression increased the phosphorylation of YAP and LATS1 and decreased the activities of Rho GTPases, while PRPH2 knockdown had opposite effects. Inhibitors of the Hippo pathway abrogated PRPH2 knockdown-induced laryngeal cancer cell invasion and anoikis inhibition. Discussion These results suggested that PRPH2 suppresses laryngeal cancer cell invasion and anoikis inhibition by activating Hippo signalling. PRPH2 may serve as a potential therapeutic target for laryngeal cancer in the future.
Collapse
Affiliation(s)
- KaiFeng Dong
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| | - HaiTao Xue
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| | - JianGang Cheng
- Department of Ear-Nose-Throat, Shijiazhuang Ping'an Hospital, Shijiazhuang, Hebei 050021, People's Republic of China
| | - Jing Su
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| | - Dan Li
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| | - JiHua Zhang
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| | - HaoLei Zhang
- Department of Ear-Nose-Throat, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, People's Republic of China
| |
Collapse
|
20
|
Liu L, Zuo Y, Xu Y, Zhang Z, Li Y, Pang J. MiR-613 inhibits proliferation and invasion and induces apoptosis of rheumatoid arthritis synovial fibroblasts by direct down-regulation of DKK1. Cell Mol Biol Lett 2019; 24:8. [PMID: 31019537 PMCID: PMC6474051 DOI: 10.1186/s11658-018-0130-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effects of miR-613 on the proliferation, invasion and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs). METHODS Synovial tissue samples were collected from 20 rheumatoid arthritis (RA) patients and 10 patients with joint trauma undergoing joint replacement surgery. The RASFs were isolated and cultured. MiR-613 and DKK1 expression in both synovial tissues and cells was detected using quantitative real-time PCR (qRT-PCR). Dual luciferase reporter gene assay was employed to evaluate the effect of miR-613 on the luciferase activity of DKK1. Then RASFs were transfected with miR-613 mimics, si-DKK1 and pcDNA-DKK1. Changes in cellular proliferation, invasion and apoptosis were detected through BrdU assay, Transwell invasion assay and flow cytometry analysis, respectively. RESULTS MiR-613 was significantly down-regulated in RA tissues and RASFs compared to normal tissues and cells, whereas DKK1 was up-regulated in RA tissues and RASFs. Dual luciferase reporter gene assay showed that miR-613 could specifically bind to the 3'UTR of DKK1 and significantly inhibit the luciferase activity. Moreover, miR-613 significantly reduced the expression of DKK1. Overexpression of miR-613 or knockdown of DKK1 suppressed proliferation and invasion of RASFs, and induced RASF apoptosis. The reverse results were observed when DKK1 was up-regulated in miR-613-overexpressing RASFs. CONCLUSIONS MiR-613 can inhibit proliferation and invasion and induce apoptosis of RASFs by directly targeting DKK1 expression.
Collapse
Affiliation(s)
- Liang Liu
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Yanhua Zuo
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Yan Xu
- The Second Nephrology Department, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Zongfang Zhang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Ying Li
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| | - Jie Pang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, 061000 People’s Republic of China
| |
Collapse
|
21
|
Zhao L, Cao H, Chi W, Meng W, Cui W, Guo W, Wang B. Expression profile analysis identifies the long non-coding RNA landscape and the potential carcinogenic functions of LINC00668 in laryngeal squamous cell carcinoma. Gene 2019; 687:47-55. [DOI: 10.1016/j.gene.2018.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/05/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
|
22
|
Han T, Wu N, Wang Y, Shen W, Zou J. miR‑16‑2‑3p inhibits cell proliferation and migration and induces apoptosis by targeting PDPK1 in maxillary primordium mesenchymal cells. Int J Mol Med 2019; 43:1441-1451. [PMID: 30664182 PMCID: PMC6365086 DOI: 10.3892/ijmm.2019.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting the 3′ untranslated region (UTR) of target genes, and serve diverse roles in cell proliferation, differentiation and apoptosis. However, the association between miR-16-2-3p and 3-phosphoinositide-dependent protein kinase-1 (PDPK1) in nonsyndromic cleft lip (NSCL) remains unclear. In the present study, a luciferase activity assay indicated that miR-16-2-3p negatively regulated PDPK1 in maxillary primordium mesenchymal cells (MPMCs). In addition, it was confirmed that the expression levels of miR-16-2-3p was markedly increased in cleft lip tissues compared with those in adjacent normal lip tissues. A negative correlation between miR-16-2-3p and PDPK1 in cleft lip tissues was observed. Furthermore, miR-16-2-3p inhibited cell proliferation and migration, and induced apoptosis of MPMCs via repressing PDPK1. Finally, miR-16-2-3p exerted its suppressive role in MPMCs by inhibiting the PDPK1/protein kinase B signaling pathway. These results indicate that miR-16-2-3p may inhibit cell proliferation and migration, and promote apoptosis in MPMCs through repression of PDPK1 and may be a potential target for future clinical prevention and treatment of NSCL.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ni Wu
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Youjing Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
23
|
Han T, Yan J, Chen H, Ji Y, Chen J, Cui J, Shen W, Zou J. HIF-1α contributes to tube malformation of human lymphatic endothelial cells by upregulating VEGFR-3. Int J Oncol 2018; 54:139-151. [PMID: 30431105 PMCID: PMC6254933 DOI: 10.3892/ijo.2018.4623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is upregulated in various tumors and associated with lymphangiogenesis and angiogenesis during tumor development and metastasis. However, the role of HIF-1α in cystic lymphatic malformations (cLM) remains unclear. In the present study, expression of HIF-1α and vascular endothelial growth factor receptor 3 (VEGFR-3) was evaluated in 20 pairs of cLM specimens from patients who accepted curative surgery at Children’s Hospital of Nanjing Medical University (Nanjing, China). Additionally, a stable HIF-1α-overexpressing human lymphatic endothelial cell (HLEC) line was established. Overexpression and silencing of HIF-1α were used to investigate the biological role in colony formation, migration and lymphatic tube formation. HIF-1α and VEGFR-3 were upregulated in cLM specimens compared with adjacent normal tissues. In addition, HIF-1α effectively induced HLEC colony formation and migration. Furthermore, lymphatic malformation of HLECs was promoted in vitro by overexpression of HIF-1α. HIF-1α overexpression upregulated VEGFR-3 during lymphangiogenesis. Additionally, expression of lymphatic endothelial markers prospero homeobox protein 1 and lymphatic vessel endothelial hyaluronan receptor 1 increased significantly during lymphatic tube malformation. The presented data demonstrated that HIF-1α overexpression in HLECs promoted colony formation, migration and tube malformation via upregulation of VEGFR-3. These findings may assist in the development of HIF-1α-targeted cLM therapeutics in the future.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Haini Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yi Ji
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jianbing Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Cui
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
24
|
Yang D, Cheng W, Chen X, Tang Y, Miao P. Ultrasensitive electrochemical detection of miRNA based on DNA strand displacement polymerization and Ca2+-dependent DNAzyme cleavage. Analyst 2018; 143:5352-5357. [DOI: 10.1039/c8an01555d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An ultrasensitive electrochemical sensing strategy for the detection of miRNA is developed combining strand displacement polymerization and a DNAzyme-catalyzed cleavage reaction.
Collapse
Affiliation(s)
- Dawei Yang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| |
Collapse
|