1
|
Wang S, Wang M, Sun S, Liu X, Li D. Effect of miR-654-3p targeting EMP1 on osteoblast activity and differentiation in delayed fracture healing. J Orthop Surg Res 2025; 20:322. [PMID: 40156038 PMCID: PMC11951503 DOI: 10.1186/s13018-025-05736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Delayed fracture healing (DFH) is a common postoperative complication in fracture patients, and a validated serum marker may aid in the clinical management and improve the prognosis of fracture patients. In this study, we investigated the diagnostic role and potential regulatory mechanisms of miR-654-3p in DFH. METHODS 73 patients with DFH and 75 patients with normal fracture healing (NFH) were included. Expression of miR-654-3p and EMP1 and several mRNA markers of osteogenic differentiation were evaluated by RT-qPCR. The diagnostic value of miR-654-3p and EMP1 alone and in combination was assessed using ROC curves. Cell proliferation capacity was assessed by CCK-8 and apoptosis rate by flow cytometry. DLR experiments demonstrated the targeting relationship between miR-654-3p and EMP1. RESULTS Levels of miR-654-3p were found to be significantly lower in DFH compared to NFH. Following cell differentiation treatment, miR-654-3p levels increased and EMP1 levels decreased. Furthermore, a negative correlation was identified between miR-654-3p and EMP1 target binding and expression levels. The combination of miR-654-3p and EMP1 holds significant diagnostic value for DFH. miR-654-3p high expression can inhibit EMP1 levels, which promotes cell proliferation, increases osteoblast activity and levels of differentiation markers, and decreases the rate of apoptosis. CONCLUSION miR-654-3p and EMP1 are aberrantly expressed in DFH, and both have high diagnostic value for DFH. miR-654-3p is involved in the proliferation, differentiation, and apoptotic activities of osteoblasts by regulating the level of EMP1, thus affecting the progression of DFH.
Collapse
Affiliation(s)
- Shantao Wang
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China.
| | - Mingwei Wang
- Department of Pediatric, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Shengliang Sun
- Hand, Foot and Ankle Surgery, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Xinsheng Liu
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China
| | - Danzhi Li
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou, Weifang, 262500, China
| |
Collapse
|
2
|
Vrščaj LA, Marc J, Ostanek B. Towards an enhanced understanding of osteoanabolic effects of PTH-induced microRNAs on osteoblasts using a bioinformatic approach. Front Endocrinol (Lausanne) 2024; 15:1380013. [PMID: 39086902 PMCID: PMC11289717 DOI: 10.3389/fendo.2024.1380013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Lucija Ana Vrščaj
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Clinical Chemistry and Biochemistry, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Rajendran AK, Anthraper MSJ, Hwang NS, Rangasamy J. Osteogenesis and angiogenesis promoting bioactive ceramics. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 159:100801. [DOI: 10.1016/j.mser.2024.100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Shang P, Liu Y, Ren J, Liu Q, Song H, Jia J, Liu Q. Overexpression of miR-532-5p restrains oxidative stress response of chondrocytes in nontraumatic osteonecrosis of the femoral head by inhibiting ABL1. Open Med (Wars) 2024; 19:20240943. [PMID: 38584839 PMCID: PMC10997031 DOI: 10.1515/med-2024-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
This study is to probe into the meaning of serum miR-532-5p in nontraumatic osteonecrosis of the femoral head (ONFH), and a molecular mechanism of miR-532-5p in the development of nontraumatic ONFH. This study enrolled 96 patients diagnosed with nontraumatic ONFH and 96 patients with femoral neck fracture. The levels of miR-532-5p, ABL1, MMP-3, MMP-13, and cleaved-caspase3 were determined. Radiographic progression was assessed by ARCO staging system. Visual analog scale (VAS) and Harris hip score (HHS) were employed for evaluation of the symptomatic severity of nontraumatic ONFH. Cell viability and apoptosis in chondrocytes isolated from clinical samples were investigated with CCK-8 and flow cytometry. The levels of lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS) were determined. miR-532-5p was downregulated in tissues and serum of patients with nontraumatic ONFH, negatively related with ARCO staging and VAS, and positively correlated with HHS. Cell apoptosis, LDH, MDA, and ROS strengthened, while cell viability, ΔΨm, and SOD reduced in chondrocytes of nontraumatic ONFH patients. ABL1 was upregulated in cartilage tissues from nontraumatic ONFH patients. miR-532-5p targeted ABL1, and overexpressed miR-532-5p alleviated nontraumatic ONFH-induced oxidative stress damage of chondrocytes by restraining ABL1. miR-532-5p ameliorated oxidative stress injury in nontraumatic ONFH by inhibiting ABL1.
Collapse
Affiliation(s)
- Peng Shang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Ying Liu
- Department of Oncology, Second Hospital of Shanxi Medial University, Taiyuan, Shanxi, 030001, P.R. China
| | - Jie Ren
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Qingqing Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Haobo Song
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi, 030032, P.R. China
| | - Junqing Jia
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| | - Qiang Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi, 030032, P.R. China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
5
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
6
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
7
|
lncRNA MEG3 Promotes PDK4/GSK-3 β/ β-Catenin Axis in MEFs by Targeting miR-532-5p. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3563663. [PMID: 36778210 PMCID: PMC9908332 DOI: 10.1155/2023/3563663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
Studies reported the positive and negative osteogenic effects of MEG3 in mesenchymal stem cells (MSCs). This study aims at clarifying the osteogenic potential of MEG3 and the underlying mechanism. Bone morphogenetic protein 9- (BMP9-) transfected MSCs were recruited as an osteogenic model in vitro, and ectopic bone formation were used in vivo to explore the effect of MEG3 on osteogenesis. We found that overexpression of MEG3 facilitated BMP9-induced osteogenic markers, ALP activities, and matrix mineralization. However, knockdown of MEG3 attenuated BMP9-induced osteogenic markers. MEG3 increased the phosphorylation of GSK-3β and the protein level of β-catenin. Pyruvate dehydrogenase kinase 4 (PDK4) can also combine with GSK-3β and increase the latter phosphorylation. Moreover, MEG3 increased the mRNA level of PDK4. The ceRNA analysis showed that MEG3 may regulate the expression of PDK4 via microRNA 532-5p (miR-532-5p). The MEG3-enhanced GSK-3β/β-catenin axis can be attenuated by miR-532-5p, and miR-532-5p inhibitor partly rescued endogenous PDK4 and MEG3-mediated expression of PDK4. MEG3 may potentiate PDK4 and GSK-3β/β-catenin by inhibiting miR-532-5p.
Collapse
|
8
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Lan X, Ma H, Xiong Y, Zou L, Yuan Z, Xiao Y. Bone marrow mesenchymal stem cells‐derived exosomes mediate nuclear receptor coactivator‐3 expression in osteoblasts by delivering miR‐532‐5p to influence osteonecrosis of the femoral head development. Cell Biol Int 2022; 46:2185-2197. [DOI: 10.1002/cbin.11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- XiaoYong Lan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - HaiPing Ma
- Department of Nursing Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YiPin Xiong
- Department of Ultrasound (Musculoskeletal Ultrasound) Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - LingFeng Zou
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - Zhen Yuan
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| | - YuHong Xiao
- Department of Rehabilitation Medicine Second Affiliated Hospital of Nanchang University Nanchang City Jiangxi Province China
| |
Collapse
|
10
|
Zhong X, Wang H. circSKIL promotes osteoblastic differentiation of periodontal ligament cells by sponging miR-532-5p to activate Notch signaling. J Periodontal Res 2022; 57:1148-1158. [PMID: 36063416 DOI: 10.1111/jre.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells (PDLCs) possess the capacity to differentiate into a variety of cell types to benefit periodontal regeneration. In this study, we examined the circSKIL/miR-532-5p/Notch1 axis in controlling the osteoblastic differentiation of PDLCs. METHODS Primary human PDLCs (hPDLCs) were isolated and induced to differentiate into osteoblasts. Osteogenic responses were assessed for the expressions of osteoblast-related marker proteins (including alkaline phosphatase (ALP), osteocalcin (OCN), bone morphogenetic protein-2 (BMP2), and runt-related transcription factor 2 (RUNX2) by RT-PCR. The formation of mineralized nodules was examined by Alizarin Red S (ARS) staining and ALP activity. Expressions of circSKIL, miR-532-5p, and Notch1 were measured by RT-PCR and western blotting, and their regulations by combining bioinformatic analysis and luciferase reporter assay. Notch signaling was assessed for the expressions of hairy and enhancer of split-1 (HES1) and Notch intracellular domain (NICD). RESULTS During osteoblastic differentiation of hPDLCs, circSKIL, and Notch1 were up-regulated, while miR-532-5p down-regulated. By sponging miR-532-5p, circSKIL activated Notch signaling, increasing levels of Notch1, HES1, and NICD. Functionally, knocking down circSKIL or overexpressing miR-532-5p inhibited osteoblastic differentiation of PDLCs, down-regulating ALP, OCN, BMP2, and RUNX2, and reducing ARS staining or ALP activity. The impacts of circSKIL knockdown were rescued by miR-532-5p inhibitor or overexpressing Notch1, while those caused by up-regulating miR-532-5p were reversed by overexpressing Notch1. CONCLUSION By targeting miR-532-5p and up-regulating Notch1, circSKIL critically controls osteoblastic differentiation of hPDLCs. Therefore, modulating this axis may maximize the differentiation of PDLCs into osteoblasts and benefit periodontal regeneration.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Huixin Wang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Vrščaj LA, Marc J, Ostanek B. Interactome of PTH-Regulated miRNAs and Their Predicted Target Genes for Investigating the Epigenetic Effects of PTH (1-34) in Bone Metabolism. Genes (Basel) 2022; 13:genes13081443. [PMID: 36011354 PMCID: PMC9407897 DOI: 10.3390/genes13081443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a metabolic bone disease that mostly affects the elderly. A lot of drugs are available, mostly with an antiresorptive effect but just a few with an osteoanabolic effect, meaning they promote bone building. PTH (1-34) or teriparatide is an osteoanabolic drug, but its efficacy varies between individuals. We performed a literature review and extracted a dataset of 62 microRNAs (miRNAs) from 10 different studies; predicted miRNA target interactions (MTIs) were obtained with the help of four software tools: DIANA, miRWalk, miRDB and TargetScan. With the construction of an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated miR-146a-5p, miR-551b-5p, miR-205-3p, miR-33a-3p, miR-338-5p as miRNAs with the most interactions and miR-410-3p as the miRNA targeting bone-related pathways with the highest significance. These miRNAs could help in further understanding the mechanism of action of PTH on bone metabolism and osteoporosis. They also have the potential for novel network-based biomarkers for osteoporosis treatment efficacy and safety and as new therapeutic targets.
Collapse
|
12
|
Parathyroid hormone (PTH) regulation of metabolic homeostasis: An old dog teaches us new tricks. Mol Metab 2022; 60:101480. [PMID: 35338013 PMCID: PMC8980887 DOI: 10.1016/j.molmet.2022.101480] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Late in the nineteenth century, it was theorized that a circulating product produced by the parathyroid glands could negatively impact skeletal homeostasis. A century later, intermittent administration of that protein, namely parathyroid hormone (PTH), was approved by the FDA and EMA as the first anabolic agent to treat osteoporosis. Yet, several unanswered but important questions remain about the skeletal actions of PTH. SCOPE OF REVIEW Current research efforts have focused on improving the efficacy of PTH treatment by designing structural analogs and identifying other targets (e.g., the PTH or the calcium sensing receptor). A unique but only recently described aspect of PTH action is its regulation of cellular bioenergetics and metabolism, namely in bone and adipose tissue but also in other tissues. The current review aims to provide a brief background on PTH's previously described actions on bone and highlights how PTH regulates osteoblast bioenergetics, contributing to greater bone formation. It will also shed light on how PTH could alter metabolic homeostasis through its actions in other cells and tissues, thereby impacting the skeleton in a cell non-autonomous manner. MAJOR CONCLUSIONS PTH administration enhances bone formation by targeting the osteoblast through transcriptional changes in several pathways; the most prominent is via adenyl cyclase and PKA. PTH and its related protein, PTHrP, also induce glycolysis and fatty acid oxidation in bone cells and drive lipolysis and thermogenic programming in adipocytes; the latter may indirectly but positively influence skeletal metabolism. While much work remains, alterations in cellular metabolism may also provide a novel mechanism related to PTH's temporal actions. Thus, the bioenergetic impact of PTH can be considered another of the myriad anabolic effects of PTH on the skeleton. Just as importantly from a translational perspective, the non-skeletal metabolic effects may lead to a better understanding of whole-body homeostasis along with new and improved therapies to treat musculoskeletal conditions.
Collapse
|
13
|
Li W, Zhang S, Wang D, Zhang H, Shi Q, Zhang Y, Wang M, Ding Z, Xu S, Gao B, Yan M. Exosomes Immunity Strategy: A Novel Approach for Ameliorating Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:822149. [PMID: 35223870 PMCID: PMC8870130 DOI: 10.3389/fcell.2021.822149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), which is one of the most severe medical and social problems globally, has affected nearly 80% of the population worldwide, and intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that happens to be the primary trigger of LBP. The pathology of IDD is based on the impaired homeostasis of catabolism and anabolism in the extracellular matrix (ECM), uncontrolled activation of immunologic cascades, dysfunction, and loss of nucleus pulposus (NP) cells in addition to dynamic cellular and biochemical alterations in the microenvironment of intervertebral disc (IVD). Currently, the main therapeutic approach regarding IDD is surgical intervention, but it could not considerably cure IDD. Exosomes, extracellular vesicles with a diameter of 30–150 nm, are secreted by various kinds of cell types like stem cells, tumor cells, immune cells, and endothelial cells; the lipid bilayer of the exosomes protects them from ribonuclease degradation and helps improve their biological efficiency in recipient cells. Increasing lines of evidence have reported the promising applications of exosomes in immunological diseases, and regarded exosomes as a potential therapeutic source for IDD. This review focuses on clarifying novel therapies based on exosomes derived from different cell sources and the essential roles of exosomes in regulating IDD, especially the immunologic strategy.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Huan Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuyuan Zhang
- Department of Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mo Wang
- The First Brigade of Basic Medical College, Air Force Military Medical University, Xi’an, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Songjie Xu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| |
Collapse
|
14
|
Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022; 124:43-51. [DOI: 10.1016/j.diff.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
15
|
Zhu G, Yang X, Peng C, Yu L, Hao Y. Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5. Exp Cell Res 2020; 393:112109. [PMID: 32464126 DOI: 10.1016/j.yexcr.2020.112109] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022]
Abstract
The transplantation of bone marrow mesenchymal stem cells (BMSCs) has been found to be used as an effective therapy of intervertebral disc degeneration (IDD). However, the underlying mechanisms of BMSCs in the progress of IDD are not fully explained. In this study, we found that exosomes derived from BMSCs (BMSCs-Exos) inhibited the apoptotic rate, extracellular matrix (ECM) degradation, and fibrosis deposition in TNF-α-induced nucleus pulposus cells (NPCs). Importantly, the level of miR-532-5p was observed to be decreased in apoptotic NPCs, but abundant in BMSCs-Exos with TNF-α treatment. The results showed that BMSCs-Exos under TNF-α stimuli exerted better effects on NPCs than BMSCs-Exos, which might be mitigated by the inhibition of miR-532-5p in BMSCs-Exos. The gain-of-function results suggested that the direct overexpression of miR-532-5p in NPCs could inhibit TNF-α-induced increase of apoptotic process, activation of apoptotic proteins, imbalance of anabolism/catabolism levels, and accumulation of collagen I. In addition, RASSF5 was demonstrated to be a target of miR-532-5p. Knockdown of RASSF5 could decrease the apoptotic cells and reduce the activated apoptotic protein levels in TNF-α-induced NPCs. Overall, these data indicate that exosomes from BMSCs may suppress TNF-α-induced apoptosis, ECM degradation, and fibrosis deposition in NPCs through the delivery of miR-532-5p via targeting RASSF5. This work provides a promising therapeutic strategy for the progress of IDD.
Collapse
Affiliation(s)
- Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaowei Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
16
|
Guo X, Wei S, Xu F, Cai X, Wang H, Ding R. MicroRNA-532-5p is implicated in the regulation of osteoporosis by forkhead box O1 and osteoblast differentiation. BMC Musculoskelet Disord 2020; 21:296. [PMID: 32404197 PMCID: PMC7218624 DOI: 10.1186/s12891-020-03317-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis. Methods Osteoporotic fractures (OP group, n = 10) or osteoarthritis without osteoporosis (control group, n = 10) were selected as subjects in this study. Quantitative analysis of gene expression was performed by RT-PCR. Western blot was used to determine the expression levels of protein forkhead O1 (FOXO1). Bioinformatics analyses and luciferase reporter assay were used to verify the downstream target of miR-532-5p. Results Compared with the non-osteoporotic controls, miR-532-5p was upregulated in osteoporotic samples, and expression of miR-532-5p was downregulated in the osteogenic C2C12 cell model. Overexpression of miR-532-5p resulted in decreased expression levels of key osteoblast markers, including alkaline phosphatase (ALP), osteocalcin (OC), and collagen type I alpha 1 (COL1A1). The inhibitory results of miR-532-5p were reversed. MiR-532-5p contained a putative FOXO1 binding site. Moreover, miR-532-5p inhibited the expression of FOXO1, and overexpression of FOXO1 inhibited the effect of miR-532-5p on osteoblast markers. Conclusions MiR-532-5p can provide references to osteoporosis by regulating the expression of FOXO1 and osteoblast differentiation. MiR-532-5p might serve as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Orthopaedics, Guizhou Provincial Orthopaedic Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Shijun Wei
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Feng Xu
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Xianhua Cai
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Huasong Wang
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China
| | - Ran Ding
- Orthopedic surgery of Wuhan General Hospital of People's Liberation Army, No.627 Wuluo Road, Wuhan City, Hubei Province, 430000, PR China.
| |
Collapse
|
17
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Malavika D, Shreya S, Raj Priya V, Rohini M, He Z, Partridge NC, Selvamurugan N. miR‐873‐3p targets HDAC4 to stimulate matrix metalloproteinase‐13 expression upon parathyroid hormone exposure in rat osteoblasts. J Cell Physiol 2020; 235:7996-8009. [DOI: 10.1002/jcp.29454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Desai Malavika
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Srinivasan Shreya
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Vembar Raj Priya
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Zhiming He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry New York University New York New York
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry New York University New York New York
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| |
Collapse
|
19
|
Shreya S, Malavika D, Priya VR, Selvamurugan N. Regulation of Histone Deacetylases by MicroRNAs in Bone. Curr Protein Pept Sci 2019; 20:356-367. [PMID: 30381072 DOI: 10.2174/1389203720666181031143129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Formation of new bone by osteoblasts is mediated via the activation of signaling pathways, such as TGF-β, BMP, and Wnt. A number of transcription factors participate in the signaling cascades that are tightly regulated by other regulatory factors. Histone deacetylases (HDACs) are one such class of regulatory factors that play an essential role in influencing chromatin architecture and regulate the expression of the genes that play a role in osteoblast differentiation by the mechanism of deacetylation. Four classes of HDACs have been identified namely, class I, class II A, class II B, class III and class IV. MicroRNAs (miRNAs) are small fragments of non-coding RNAs typically 19-25 nucleotides long that target mRNAs to upregulate or downregulate gene expression at a post-transcriptional level. A number of miRNAs that target HDACs in bone have been recently reported. Hence, in this review, we elaborate on the various miRNAs that target the different classes of HDACs and impact of the same on osteogenesis.
Collapse
Affiliation(s)
- S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Raj Priya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
20
|
Saiganesh S, Saathvika R, Arumugam B, Vishal M, Udhaya V, Ilangovan R, Selvamurugan N. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. Int J Biol Macromol 2019; 132:541-549. [PMID: 30951775 DOI: 10.1016/j.ijbiomac.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic and ubiquitous cytokine involved in bone development and bone remodeling. Matrix metalloproteinase-13 (MMP13) plays a role in the degradation of the extracellular matrix (ECM), and the regulation of this gene is critical in bone remodeling. We previously reported that TGF-β1 stimulates MMP13 expression in rat osteoblasts. Recently, studies have examined the regulation of bone metabolism by microRNAs (miRNAs) to determine their therapeutic potential in osteogenesis. Here, we assessed the effect of TGF-β1 on down-regulation of miRNAs that target MMP13 and stimulation of MMP13 expression in osteoblasts. We used in silico analysis and identified 11 specific miRNAs which directly target rat MMP13. Among these miRNAs, miR-203a-5p expression was significantly decreased by TGF-β1-treatment in rat osteoblasts. Transient transfection of a miR-203a-5p mimic into rat osteoblasts reduced MMP13 expression. A luciferase reporter assay confirmed a direct targeting of miR-miR-203a-5p with the 3' untranslated regions of the MMP13 gene. Hence, we suggest that TGF-β1 stimulated down-regulation of miR-203a-5p, resulting in the stimulation of MMP13 expression in rat osteoblasts. Thus, identification of the role of miR-203a-5p via TGF-β1 and MMP13 in bone remodeling indicated its potential as a biomarker or therapeutic agent for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- S Saiganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Saathvika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - V Udhaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
21
|
Bellavia D, De Luca A, Carina V, Costa V, Raimondi L, Salamanna F, Alessandro R, Fini M, Giavaresi G. Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis. Bone 2019; 122:52-75. [PMID: 30772601 DOI: 10.1016/j.bone.2019.02.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has shown to enhance or inhibit cell proliferation, differentiation and activity of different cell types in bone tissue. The discovery of miRNA actions and their targets has helped to identify them as novel regulations actors in bone. Various studies have shown that miRNA deregulation mediates the progression of bone-related pathologies, such as osteoporosis. The present review intends to give an exhaustive overview of miRNAs with experimentally validated targets involved in bone homeostasis and highlight their possible role in osteoporosis development. Moreover, the review analyzes miRNAs identified in clinical trials and involved in osteoporosis.
Collapse
Affiliation(s)
- D Bellavia
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - A De Luca
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - F Salamanna
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - R Alessandro
- Department of Biopathology and Medical Biotechnologies, Section of Biology and Genetics, University of Palermo, Palermo 90133, Italy; Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - M Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - G Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
22
|
Xie X, Pan J, Han X, Chen W. Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/β-catenin signaling. Chem Biol Interact 2019; 300:73-81. [PMID: 30639441 DOI: 10.1016/j.cbi.2019.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has shown that altered expression of microRNA-532-5p (miR-532-5p) is involved in the development and progression of various cancers. However, little is known about the role of miR-532-5p in bladder cancer. In this study, we aimed to investigate the expression, biological function, and regulatory mechanism of miR-532-5p in bladder cancer. Herein, we found that miR-532-5p expression was frequently downregulated in bladder cancer tissues and cell lines compared with normal controls. Functional experiments showed that overexpression of miR-532-5p inhibited the proliferation and invasion of bladder cancer cells, whereas inhibition of miR-532-5p showed opposite effects. Interestingly, bioinformatics analysis predicted high-mobility group protein B3 (HMGB3) as a potential target gene of miR-532-5p. Further experiments showed that miR-532-5p directly targeted the 3'-UTR of HMGB3 and negatively regulated its expression in bladder cancer cells. Moreover, HMGB3 expression was upregulated in bladder cancer tissues and showed inverse correlation with miR-532-5p expression. Notably, miR-532-5p regulated the nuclear expression of β-catenin and activation of Wnt/β-catenin signaling in bladder cancer cells. However, restoration of HMGB3 expression partially reversed the antitumor effect of miR-532-5p overexpression, while knockdown of HMGB3 partially abrogated the oncogenic effect of miR-532-5p inhibition. Taken together, our results demonstrated that miR-532-5p inhibited the proliferation and invasion of bladder cancer cells by targeting HMGB3 and downregulating Wnt/β-catenin signaling, suggesting a tumor suppressive role of miR-532-5p in bladder cancer. Our study highlights an importance of the miR-532-5p/HMGB3 axis in bladder cancer and suggests that targeting miR-532-5p/HMGB3 may have potential applications for development of bladder cancer therapy.
Collapse
Affiliation(s)
- Xiaojuan Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Center for Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xi Han
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
23
|
Rohini M, Gokulnath M, Miranda P, Selvamurugan N. miR-590–3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie 2018; 154:10-18. [DOI: 10.1016/j.biochi.2018.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
|
24
|
Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 2018; 119:1228-1239. [PMID: 30107161 DOI: 10.1016/j.ijbiomac.2018.08.056] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
In the recent years, a paradigm shift is taking place where metallic/synthetic implants and tissue grafts are being replaced by tissue engineering approach. A well designed three-dimensional scaffold is one of the fundamental tools to guide tissue formation in vitro and in vivo. Bone is a highly dynamic and an integrative tissue, and thus enormous efforts have been invested in bone tissue engineering to design a highly porous scaffold which plays a critical role in guiding bone growth and regeneration. Numerous techniques have been developed to fabricate highly interconnected, porous scaffold for bone tissue engineering applications with the help of biomolecules such as chitosan, collagen, gelatin, silk, etc. We aim, in this review, to provide an overview of different types of fabrication techniques for scaffold preparation in bone tissue engineering using biological macromolecules.
Collapse
Affiliation(s)
- S Preethi Soundarya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - S Viji Chandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|