1
|
Charrasse S, Poquillon T, Saint-Omer C, Schunemann A, Weill M, Racine V, Aouacheria A. Computational histology reveals that concomitant application of insect repellent with sunscreen impairs UV protection in an ex vivo human skin model. Parasit Vectors 2025; 18:84. [PMID: 40038831 PMCID: PMC11881410 DOI: 10.1186/s13071-025-06712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Histological alterations such as nuclear abnormalities are sensitive biomarkers associated with diseases, tissue injury and environmental insults. While visual inspection and human interpretation of histology images are useful for initial characterization, such low-throughput procedures suffer from inherent limitations in terms of reliability, objectivity and reproducibility. Artificial intelligence and digital morphometry offer unprecedented opportunities to quickly and accurately assess nuclear morphotypes in relation to tissue damage including skin injury. METHODS In this work, we designed NoxiScore, a pipeline providing an integrated, deep learning-based software solution for fully automated and quantitative analysis of nucleus-related features in histological sections of human skin biopsies. We used this pipeline to evaluate the efficacy and safety of three dermato-cosmetic products massively sold at the time of the study in the Montpellier area (South of France): a sunscreen containing UV filters, a mosquito repellent (with synthetic active ingredient IR3535) and a product combining a natural insect repellent plus a sunscreen. Hematoxylin and eosin or hematoxylin-eosin saffron staining was performed to assess skin structure before morphometric parameter computation. RESULTS We report the identification of a specific nuclear feature based on variation in texture information that can be used to assess skin tissue damage after oxidative stress or UV exposure. Our data show that application of the commercial sun cream provided efficient protection against UV effects in our ex vivo skin model, whereas application of the mosquito repellent as a single product exerted no protective or toxic effect. Notably, we found that concurrent application of the insect repellent with the sunscreen significantly decreased the UVB protective effect of the sunscreen. Last, histometric analysis of human skin biopsies from multiple donors indicates that the sunscreen-insect repellent combo displayed variable levels of protection against UV irradiation. CONCLUSIONS To our knowledge, our study is the first to evaluate the potential toxicity of combining real-life sunscreen and insect repellent products using ex vivo human skin samples, which most closely imitate the cutaneous physiology. The NoxiScore wet-plus-dry methodology has the potential to provide information about the pharmaco-toxicological profile of topically applied formulations and may also be useful for diagnostic purposes and evaluation of the skin exposome including pesticide exposure, air pollution and water contaminants.
Collapse
Affiliation(s)
| | - Titouan Poquillon
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
- QuantaCell SAS, Hôpital Saint Eloi, IRMB, 80 Av Augustin Fliche, 34090, Montpellier, France
| | | | | | - Mylène Weill
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Victor Racine
- QuantaCell SAS, Hôpital Saint Eloi, IRMB, 80 Av Augustin Fliche, 34090, Montpellier, France
| | | |
Collapse
|
2
|
Serafin R, Koyuncu C, Xie W, Huang H, Glaser AK, Reder NP, Janowczyk A, True LD, Madabhushi A, Liu JT. Nondestructive 3D pathology with analysis of nuclear features for prostate cancer risk assessment. J Pathol 2023; 260:390-401. [PMID: 37232213 PMCID: PMC10524574 DOI: 10.1002/path.6090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Prostate cancer treatment decisions rely heavily on subjective visual interpretation [assigning Gleason patterns or International Society of Urological Pathology (ISUP) grade groups] of limited numbers of two-dimensional (2D) histology sections. Under this paradigm, interobserver variance is high, with ISUP grades not correlating well with outcome for individual patients, and this contributes to the over- and undertreatment of patients. Recent studies have demonstrated improved prognostication of prostate cancer outcomes based on computational analyses of glands and nuclei within 2D whole slide images. Our group has also shown that the computational analysis of three-dimensional (3D) glandular features, extracted from 3D pathology datasets of whole intact biopsies, can allow for improved recurrence prediction compared to corresponding 2D features. Here we seek to expand on these prior studies by exploring the prognostic value of 3D shape-based nuclear features in prostate cancer (e.g. nuclear size, sphericity). 3D pathology datasets were generated using open-top light-sheet (OTLS) microscopy of 102 cancer-containing biopsies extracted ex vivo from the prostatectomy specimens of 46 patients. A deep learning-based workflow was developed for 3D nuclear segmentation within the glandular epithelium versus stromal regions of the biopsies. 3D shape-based nuclear features were extracted, and a nested cross-validation scheme was used to train a supervised machine classifier based on 5-year biochemical recurrence (BCR) outcomes. Nuclear features of the glandular epithelium were found to be more prognostic than stromal cell nuclear features (area under the ROC curve [AUC] = 0.72 versus 0.63). 3D shape-based nuclear features of the glandular epithelium were also more strongly associated with the risk of BCR than analogous 2D features (AUC = 0.72 versus 0.62). The results of this preliminary investigation suggest that 3D shape-based nuclear features are associated with prostate cancer aggressiveness and could be of value for the development of decision-support tools. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Robert Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Can Koyuncu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Weisi Xie
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Hongyi Huang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Nicholas P Reder
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Janowczyk
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Precision Oncology Center Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Clinical Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lawrence D True
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Anant Madabhushi
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jonathan Tc Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
4
|
Janssen AFJ, Breusegem SY, Larrieu D. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Cells 2022; 11:347. [PMID: 35159153 PMCID: PMC8834579 DOI: 10.3390/cells11030347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Any given cell type has an associated "normal" nuclear morphology, which is important to maintain proper cellular functioning and safeguard genomic integrity. Deviations from this can be indicative of diseases such as cancer or premature aging syndrome. To accurately assess nuclear abnormalities, it is important to use quantitative measures of nuclear morphology. Here, we give an overview of several nuclear abnormalities, including micronuclei, nuclear envelope invaginations, blebs and ruptures, and review the current methods used for image-based quantification of these abnormalities. We discuss several parameters that can be used to quantify nuclear shape and compare their outputs using example images. In addition, we present new pipelines for quantitative analysis of nuclear blebs and invaginations. Quantitative analyses of nuclear aberrations and shape will be important in a wide range of applications, from assessments of cancer cell anomalies to studies of nucleus deformability under mechanical or other types of stress.
Collapse
Affiliation(s)
| | | | - Delphine Larrieu
- Department of Clinical Biochemistry, Addenbrookes Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; (A.F.J.J.); (S.Y.B.)
| |
Collapse
|
5
|
Hein AL, Mukherjee M, Talmon GA, Natarajan SK, Nordgren TM, Lyden E, Hanson CK, Cox JL, Santiago-Pintado A, Molani MA, Ormer MV, Thompson M, Thoene M, Akhter A, Anderson-Berry A, Yuil-Valdes AG. QuPath Digital Immunohistochemical Analysis of Placental Tissue. J Pathol Inform 2021; 12:40. [PMID: 34881095 PMCID: PMC8609285 DOI: 10.4103/jpi.jpi_11_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 01/24/2023] Open
Abstract
Background: QuPath is an open-source digital image analyzer notable for its user-friendly design, cross-platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G-protein coupled receptor 18 (GPR18), the receptor for the pro-resolving lipid mediator Resolvin D2, in placental tissue. Methods: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in-training pathologists, while QuPath scoring was performed with the methodology described herein. Results: Bland–Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high-intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. Conclusions: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further.
Collapse
Affiliation(s)
- Ashley L Hein
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Elizabeth Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Corrine K Hanson
- Division of Medical Nutrition Education College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Annelisse Santiago-Pintado
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariam A Molani
- University of Texas-Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Van Ormer
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maranda Thompson
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Thoene
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aunum Akhter
- Department of Pediatrics, College of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
7
|
Shukla N, Siva N, Malik B, Suravajhala P. Current Challenges and Implications of Proteogenomic Approaches in Prostate Cancer. Curr Top Med Chem 2020; 20:1968-1980. [PMID: 32703135 DOI: 10.2174/1568026620666200722112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
In the recent past, next-generation sequencing (NGS) approaches have heralded the omics era. With NGS data burgeoning, there arose a need to disseminate the omic data better. Proteogenomics has been vividly used for characterising the functions of candidate genes and is applied in ascertaining various diseased phenotypes, including cancers. However, not much is known about the role and application of proteogenomics, especially Prostate Cancer (PCa). In this review, we outline the need for proteogenomic approaches, their applications and their role in PCa.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India.,Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Narmadhaa Siva
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India
| |
Collapse
|
8
|
Carleton NM, Zhu G, Miller MC, Davis C, Kulkarni P, Veltri RW. Characterization of RNA-Binding Motif 3 (RBM3) Protein Levels and Nuclear Architecture Changes in Aggressive and Recurrent Prostate Cancer. Cancer Rep (Hoboken) 2020; 3:e1237. [PMID: 32587951 PMCID: PMC7316183 DOI: 10.1002/cnr2.1237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/04/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background The RNA-binding motif protein 3 (RBM3) has been shown to be up-regulated in several types of cancer, including prostate cancer (PCa), compared to normal tissues. Increased RBM3 nuclear expression has been linked to improved clinical outcomes. Aims Given that RBM3 has been hypothesized to play a role in critical nuclear functions such as chromatin remodeling, DNA damage response, and other post-transcriptional processes, we sought to: (1) quantify RBM3 protein levels in archival PCa samples; (2) develop a nuclear morphometric model to determine if measures of RBM3 protein levels and nuclear features could be used to predict disease aggressiveness and biochemical recurrence. Methods & Results This study utilized two tissue microarrays (TMAs) stained for RBM3 that included 80 total cases of PCa stratified by Gleason score. A software-mediated image processing algorithm identified RBM3-positive cancerous nuclei in the TMA samples and calculated twenty-two features quantifying RBM3 expression and nuclear architecture. Multivariate logistic regression (MLR) modeling was performed to determine if RBM3 levels and nuclear structural changes could predict PCa aggressiveness and biochemical recurrence (BCR). Leave-one-out cross validation (LOOCV) was used to provide insight on how the predictive capabilities of the feature set might behave with respect to an independent patient cohort to address issues such as model overfitting. RBM3 expression was found to be significantly downregulated in highly aggressive GS ≥ 8 PCa samples compared to other Gleason scores (P < 0.0001) and significantly down-regulated in recurrent PCa samples compared to non-recurrent samples (P = 0.0377). An eleven-feature nuclear morphometric MLR model accurately identified aggressive PCa, yielding a receiver operating characteristic area under the curve (ROC-AUC) of 0.90 (P < 0.0001) in the raw data set and 0.77 (95% CI: 0.83-0.97) for LOOCV testing. The same eleven-feature model was then used to predict recurrence, yielding a ROC-AUC of 0.92 (P = 0.0004) in the raw data set and 0.76 (95% CI: 0.64-0.87) for LOOCV testing. Conclusions The RBM3 biomarker alone is a strong prognostic marker for the prediction of aggressive PCa and biochemical recurrence. Further, RBM3 appears to be down-regulated in aggressive and recurrent tumors.
Collapse
Affiliation(s)
- Neil M. Carleton
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Guangjing Zhu
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | | | - Christine Davis
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics ResearchCity of HopeDuarteCalifornia
| | - Robert W. Veltri
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
9
|
Vicente‐Munuera P, Burgos‐Panadero R, Noguera I, Navarro S, Noguera R, Escudero LM. The topology of vitronectin: A complementary feature for neuroblastoma risk classification based on computer-aided detection. Int J Cancer 2020; 146:553-565. [PMID: 31173338 PMCID: PMC6899647 DOI: 10.1002/ijc.32495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Tumors are complex networks of constantly interacting elements: tumor cells, stromal cells, immune and stem cells, blood/lympathic vessels, nerve fibers and extracellular matrix components. These elements can influence their microenvironment through mechanical and physical signals to promote tumor cell growth. To get a better understanding of tumor biology, cooperation between multidisciplinary fields is needed. Diverse mathematic computations and algorithms have been designed to find prognostic targets and enhance diagnostic assessment. In this work, we use computational digital tools to study the topology of vitronectin, a glycoprotein of the extracellular matrix. Vitronectin is linked to angiogenesis and migration, two processes closely related to tumor cell spread. Here, we investigate whether the distribution of this molecule in the tumor stroma may confer mechanical properties affecting neuroblastoma aggressiveness. Combining image analysis and graph theory, we analyze different topological features that capture the organizational cues of vitronectin in histopathological images taken from human samples. We find that the Euler number and the branching of territorial vitronectin, two topological features, could allow for a more precise pretreatment risk stratification to guide treatment strategies in neuroblastoma patients. A large amount of recently synthesized VN would create migration tracks, pinpointed by both topological features, for malignant neuroblasts, so that dramatic change in the extracellular matrix would increase tumor aggressiveness and worsen patient outcomes.
Collapse
Affiliation(s)
- Pablo Vicente‐Munuera
- Departamento de Biología CelularInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Roció/CSIC/Universidad de SevillaSevilleSpain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Rebeca Burgos‐Panadero
- Department of Pathology, Medical SchoolUniversity of Valencia/INCLIVAValenciaSpain
- Biomedical Network Research Centre on Oncology (CIBERONC)MadridSpain
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of ValenciaValenciaSpain
| | - Samuel Navarro
- Department of Pathology, Medical SchoolUniversity of Valencia/INCLIVAValenciaSpain
- Biomedical Network Research Centre on Oncology (CIBERONC)MadridSpain
| | - Rosa Noguera
- Department of Pathology, Medical SchoolUniversity of Valencia/INCLIVAValenciaSpain
- Biomedical Network Research Centre on Oncology (CIBERONC)MadridSpain
| | - Luis M. Escudero
- Departamento de Biología CelularInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Roció/CSIC/Universidad de SevillaSevilleSpain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED)MadridSpain
| |
Collapse
|
10
|
Turner OC, Aeffner F, Bangari DS, High W, Knight B, Forest T, Cossic B, Himmel LE, Rudmann DG, Bawa B, Muthuswamy A, Aina OH, Edmondson EF, Saravanan C, Brown DL, Sing T, Sebastian MM. Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology. Toxicol Pathol 2019; 48:277-294. [DOI: 10.1177/0192623319881401] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Toxicologic pathology is transitioning from analog to digital methods. This transition seems inevitable due to a host of ongoing social and medical technological forces. Of these, artificial intelligence (AI) and in particular machine learning (ML) are globally disruptive, rapidly growing sectors of technology whose impact on the long-established field of histopathology is quickly being realized. The development of increasing numbers of algorithms, peering ever deeper into the histopathological space, has demonstrated to the scientific community that AI pathology platforms are now poised to truly impact the future of precision and personalized medicine. However, as with all great technological advances, there are implementation and adoption challenges. This review aims to define common and relevant AI and ML terminology, describe data generation and interpretation, outline current and potential future business cases, discuss validation and regulatory hurdles, and most importantly, propose how overcoming the challenges of this burgeoning technology may shape toxicologic pathology for years to come, enabling pathologists to contribute even more effectively to answering scientific questions and solving global health issues. [Box: see text]
Collapse
Affiliation(s)
- Oliver C. Turner
- Novartis, Novartis Institutes for Biomedical Research, Preclinical Safety, East Hanover, NJ, USA
| | - Famke Aeffner
- Amgen Inc, Research, Comparative Biology and Safety Sciences, San Francisco, CA, USA
| | | | - Wanda High
- High Preclinical Pathology Consulting, Rochester, NY, USA
| | - Brian Knight
- Boehringer Ingelheim Pharmaceuticals Incorporated, Nonclinical Drug Safety, Ridgefield, CT, USA
| | | | - Brieuc Cossic
- Roche, Pharmaceutical Research and Early Development (pRED), Roche Innovation Center, Basel, Switzerland
| | - Lauren E. Himmel
- Division of Animal Care, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | - Elijah F. Edmondson
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD, USA
| | - Chandrassegar Saravanan
- Novartis, Novartis Institutes for Biomedical Research, Preclinical Safety, Cambridge, MA, USA
| | | | - Tobias Sing
- Novartis, Novartis Institutes for Biomedical Research, NIBR Informatics, Basel, Switzerland
| | - Manu M. Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
11
|
Xu N, Wu YP, Ke ZB, Liang YC, Cai H, Su WT, Tao X, Chen SH, Zheng QS, Wei Y, Xue XY. Identification of key DNA methylation-driven genes in prostate adenocarcinoma: an integrative analysis of TCGA methylation data. J Transl Med 2019; 17:311. [PMID: 31533842 PMCID: PMC6751626 DOI: 10.1186/s12967-019-2065-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
Background Prostate cancer (PCa) remains the second leading cause of deaths due to cancer in the United States in men. The aim of this study was to perform an integrative epigenetic analysis of prostate adenocarcinoma to explore the epigenetic abnormalities involved in the development and progression of prostate adenocarcinoma. The key DNA methylation-driven genes were also identified. Methods Methylation and RNA-seq data were downloaded for The Cancer Genome Atlas (TCGA). Methylation and gene expression data from TCGA were incorporated and analyzed using MethylMix package. Methylation data from the Gene Expression Omnibus (GEO) were assessed by R package limma to obtain differentially methylated genes. Pathway analysis was performed on genes identified by MethylMix criteria using ConsensusPathDB. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also applied for the identification of pathways in which DNA methylation-driven genes significantly enriched. The protein–protein interaction (PPI) network and module analysis in Cytoscape software were used to find the hub genes. Two methylation profile (GSE112047 and GSE76938) datasets were utilized to validate screened hub genes. Immunohistochemistry of these hub genes were evaluated by the Human Protein Atlas. Results A total of 553 samples in TCGA database, 32 samples in GSE112047 and 136 samples in GSE76938 were included in this study. There were a total of 266 differentially methylated genes were identified by MethylMix. Plus, a total of 369 differentially methylated genes and 594 differentially methylated genes were identified by the R package limma in GSE112047 and GSE76938, respectively. GO term enrichment analysis suggested that DNA methylation-driven genes significantly enriched in oxidation–reduction process, extracellular exosome, electron carrier activity, response to reactive oxygen species, and aldehyde dehydrogenase [NAD(P)+] activity. KEGG pathway analysis found DNA methylation-driven genes significantly enriched in five pathways including drug metabolism—cytochrome P450, phenylalanine metabolism, histidine metabolism, glutathione metabolism, and tyrosine metabolism. The validated hub genes were MAOB and RTP4. Conclusions Methylated hub genes, including MAOB and RTP4, can be regarded as novel biomarkers for accurate PCa diagnosis and treatment. Further studies are needed to draw more attention to the roles of these hub genes in the occurrence and development of PCa.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yu-Peng Wu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Ying-Chun Liang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Hai Cai
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Wen-Ting Su
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xuan Tao
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qing-Shui Zheng
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yong Wei
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Xue-Yi Xue
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| |
Collapse
|
12
|
Gorbounov M, Carleton NM, Asch-Kendrick RJ, Xian L, Rooper L, Chia L, Cimino-Mathews A, Cope L, Meeker A, Stearns V, Veltri RW, Bae YK, Resar LMS. High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer. Breast Cancer Res Treat 2019; 179:25-35. [DOI: 10.1007/s10549-019-05419-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
|