1
|
Yang X, Li J, Xu C, Zhang G, Che X, Yang J. Potential mechanisms of rheumatoid arthritis therapy: Focus on macrophage polarization. Int Immunopharmacol 2024; 142:113058. [PMID: 39236455 DOI: 10.1016/j.intimp.2024.113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengchao Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinzhen Che
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Zhao F, Ding Z, Chen M, Ji M, Li F. Cepharanthine as an effective small cell lung cancer inhibitor: integrated insights from network pharmacology, RNA sequencing, and experimental validation. Front Pharmacol 2024; 15:1517386. [PMID: 39669201 PMCID: PMC11634586 DOI: 10.3389/fphar.2024.1517386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Background Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options and poor prognosis, underscoring the need for new therapeutic agents. Methods A library of 640 natural products was screened for anti-proliferative activity in SCLC cells. The effects of Cepharanthine (CE) on SCLC cells were assessed in vitro and in vivo. Network pharmacology and RNA sequencing (RNA-seq) were used to elucidate the molecular mechanisms. Pathway enrichment analysis was performed using Gene Set Enrichment Analysis (GSEA) with Hallmark and Reactome gene sets. Protein-protein interaction (PPI) networks, along with the Cytoscape cytoHubba plugin, were used to identify key hub genes. RT-PCR and Western blotting were employed to validate mRNA and protein expression. Molecular docking studies assessed the binding affinity of CE to potential targets. Bioinformatics analyses, including expression profiling, prognostic evaluation, and loss-of-function studies, were used to explore the role of specific genes in SCLC. Results CE was identified as a promising SCLC inhibitor. In vitro, CE significantly inhibited SCLC cell proliferation, colony formation, migration, and invasion, while promoting apoptosis. In vivo, CE treatment notably reduced tumor volume in xenograft models. Network pharmacology identified 60 potential target genes, with enrichment analysis indicating their involvement in cholesterol metabolism regulation. RNA-seq and experimental validation further confirmed that CE inhibits cholesterol synthesis in SCLC cells by downregulating key enzymes, including HMGCR, HMGCS1, IDI1, FDFT1, and SQLE. Molecular docking studies confirmed the binding of CE to these enzymes. Additionally, these enzymes were found to be highly expressed in SCLC cells, with elevated levels of HMGCS1, HMGCR, and IDI1 correlating with poor prognosis. Functional assays revealed that silencing these genes significantly suppressed SCLC cell proliferation. Conclusion This study identifies CE as a potential therapeutic agent for SCLC, acting through the suppression of cholesterol synthesis, and uncovers novel therapeutic targets for the treatment of this aggressive cancer.
Collapse
Affiliation(s)
- Fengyun Zhao
- Cancer Research Institute of Zhongshan City, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Zhaowei Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mengting Chen
- South China Normal University, Guangzhou, Guangdong, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
3
|
Hijam AC, Tongbram YC, Nongthombam PD, Meitei HN, Koijam AS, Rajashekar Y, Haobam R. Neuroprotective potential of traditionally used medicinal plants of Manipur against rotenone-induced neurotoxicity in SH-SY5Y neuroblastoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118197. [PMID: 38636579 DOI: 10.1016/j.jep.2024.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alternanthera sessilis (L.) R. Br. ex DC., Eryngium foetidum L., and Stephania japonica (Thunb.) Miers plants are traditionally used to treat various central nervous system disorders like paralysis, epilepsy, seizure, convulsion, chronic pain, headache, sleep disturbances, sprain, and mental disorders. However, their possible neuroprotective effects have not been evaluated experimentally so far. AIM OF THE STUDY The study aims to examine the neuroprotective potential of the three plants against cytotoxicity induced by rotenone in SH-SY5Y neuroblastoma cells and assess its plausible mechanisms of neuroprotection. MATERIALS AND METHODS The antioxidant properties of the plant extracts were determined chemically by DPPH and ABTS assay methods. The cytotoxicity of rotenone and the cytoprotective activities of the extracts were evaluated using MTT assays. Microtubule-associated protein 2 (MAP2) expression studies in cells were performed to assess neuronal survival after rotenone and extract treatments. Mitochondrial membrane potential and intracellular levels of reactive oxygen species were evaluated using Rhodamine 123 and DCF-DA dye, respectively. Catalase, glutathione peroxidase, and superoxide dismutase activities were also measured. Apoptotic nuclei were examined using DAPI staining. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS) analysis of the plant extracts was also performed. RESULTS The methanol extracts of A. sessilis, S. japonica, and E. foetidum showed excellent free radical scavenging activities. MAP2 expression studies show that A. sessilis and S. japonica have higher neuroprotective effects against rotenone-induced neurotoxicity in SH-SY5Y cells than E. foetidum. Pre-treating cells with the plant extracts reverses the rotenone-induced increase in intracellular ROS. The plant extracts could also restore the reduced mitochondrial membrane potential induced by rotenone treatment and reinstate rotenone-induced increases in catalase, glutathione peroxidase, and superoxide dismutase activities. All the extracts inhibited rotenone-induced changes in nuclear morphology and DNA condensation, an early event of cellular apoptosis. LC-QTOF-MS analysis of the plant extracts shows the presence of neuroprotective compounds. CONCLUSIONS The plant extracts showed neuroprotective activities against rotenone-treated SH-SY5Y cells through antioxidant and anti-apoptotic mechanisms. These findings support the ethnopharmacological uses of these plants in treating neurological disorders. They probably are a good source of neuroprotective compounds that could be further explored to develop treatment strategies for neurodegenerative diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Pooja Devi Nongthombam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Yallapa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
4
|
Lu C, Cheng RJ, Zhang Q, Hu Y, Pu Y, Wen J, Zhong Y, Tang Z, Wu L, Wei S, Tsou PS, Fox DA, Li S, Luo Y, Liu Y. Herbal compound cepharanthine attenuates inflammatory arthritis by blocking macrophage M1 polarization. Int Immunopharmacol 2023; 125:111175. [PMID: 37976601 DOI: 10.1016/j.intimp.2023.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yidan Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yutong Zhong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shixiong Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuai Fu Yuan, Wang Fu Jing Street, Beijing 100730, China
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Shasha Li
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Xia B, Zheng L, Li Y, Sun W, Liu Y, Li L, Pang J, Chen J, Li J, Cheng H. The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19. Front Pharmacol 2023; 14:1098972. [PMID: 37583901 PMCID: PMC10423819 DOI: 10.3389/fphar.2023.1098972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug.
Collapse
Affiliation(s)
- Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yali Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liushui Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiaxin Li
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Xie F, Han J, Wang D, Liu P, Liu C, Sun F, Xu K. Disturbing effect of cepharanthine on valve interstitial cells calcification via regulating glycolytic metabolism pathways. Front Pharmacol 2022; 13:1070922. [PMID: 36467082 PMCID: PMC9714323 DOI: 10.3389/fphar.2022.1070922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/04/2022] [Indexed: 10/27/2023] Open
Abstract
Osteogenic differentiation of valve interstitial cells (VICs) directly leads to aortic valve calcification, which is a common cardiovascular disease caused by inflammation and metabolic disorder. There is still no ideal drug for its treatment and prevention. The purpose of this study was to explore the effect and molecular mechanism of cepharanthine (CEP), a natural product, on inhibiting the osteogenic differentiation of VICs. First, CCK8 assay was used to evaluate cell viability of CEP on VICs. CEP concentration of 10 μM was the effective dose with slight cytotoxicity, which was used for further study. The alizarin red staining analysis showed that CEP significantly inhibited calcium deposition caused by osteogenic medium related calcification induction. In order to explore the anti-calcification molecular mechanism of CEP, transcriptome and metabolome were synchronously used to discover the possible molecular mechanism and target of CEP. The results showed that CEP inhibited valve calcification by regulating the glycolytic pathway. The molecular docking of CEP and selected key factors in glycolysis showed significant binding energies for GLUT1 (-11.3 kcal/mol), ENO1 (-10.6 kcal/mol), PKM (-9.8 kcal/mol), HK2 (-9.2 kcal/mol), PFKM (-9.0 kcal/mol), and PFKP (-8.9 kcal/mol). The correlation analysis of RUNX2 expression and cellular lactate content showed R2 of 0.7 (p < 0.001). In conclusion, this study demonstrated that CEP inhibited osteoblastic differentiation of VICs by interfering with glycolytic metabolisms via downregulation of the production of lactate and glycolysis-associated metabolites.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanjuan Han
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Henan Cardiovascular Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuqiang Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Ye C, Zhang W, Zhao Y, Zhang K, Hou W, Chen M, Lu J, Wu J, He R, Gao W, Zheng Y, Cai X. Prussian Blue Nanozyme Normalizes Microenvironment to Delay Osteoporosis. Adv Healthc Mater 2022; 11:e2200787. [PMID: 35851764 DOI: 10.1002/adhm.202200787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Indexed: 01/27/2023]
Abstract
Osteoporosis (OP) is the most common orthopedic disease in the elderly and the main cause of age-related mortality and disability. However, no satisfactory intervention is currently available in clinical practice. Thus, an effective therapy to prevent or delay the development of OP should be devised. Osteoclastogenesis overactivation and excessive bone resorption are the main characteristics of OP. Accordingly, a paradigm for nanozyme-mediated normalization of the disease microenvironment to regulate osteoclast differentiation and delay OP is proposed. Hollow Prussian blue nanozymes (HPBZs) are prepared via template-free hydrothermal synthesis and selected as representative nanozymes. The intrinsic osteoclast activity-remodeling bioactivities of the HPBZs are explored in vitro and in vivo, focusing on their impact on osteogenesis and specific molecular mechanisms using an OP murine model. The HPBZs significantly normalize the OP microenvironment, thereby inhibiting osteoclast formation and osteoclast resorption, possibly owing to the suppression of intracellular reactive oxygen species generation, the mitogen-activated protein kinase, and nuclear factor κB signaling pathways. Consistently, in an ovariectomy-induced OP murine model, HPBZ treatment significantly attenuates osteoporotic bone loss in vivo. The findings confirm the HPBZ-mediated normalization of the disease microenvironment for the treatment of OP and suggest its application to other inflammation-related diseases.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongzheng Zhao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kai Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mo Chen
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Wei Gao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
9
|
Mechanism of miRNA-based Aconitum leucostomum Worosch. Monomer inhibition of bone marrow-derived dendritic cell maturation. Int Immunopharmacol 2020; 88:106791. [PMID: 32871480 DOI: 10.1016/j.intimp.2020.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Delvestidine (DLTD) is a monomeric compound isolated from Aconitum leucostomum Worosch, a widely used medicine for local treatment of rheumatoid arthritis (RA). Studies have shown that Aconitum leucostomum Worosch. can inhibit maturation of bone marrow-derived dendritic cells (BMDCs). Further, microRNAs (miRNAs) have regulatory effects on DC maturity and function. However, the mechanism underlying DLTD effects on DC maturity and RA remains to be elucidated. This study investigated whether DLTD-mediated inhibition of DC maturation is regulated by miRNAs. LPS-induced mature BMDCs were treated with DLTD for 48 h. CD80 and CD86 expression on BMDCs was detected by flow cytometry, and levels of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α were detected by ELISA and PCR. Further, gene expression and miRNA expression profiles were investigated by bioinformatics analysis and verified by PCR. DLTD was found to inhibit CD80 and CD86 expression on the surface of BMDCs and secretion of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α. In total, 54 differentially expressed miRNAs were detected, including 29 up-regulated and 25 down-regulated miRNAs after DLTD treatment. Analysis of biological information revealed that the differentially expressed target genes mainly regulated biological processes, including cell differentiation, cell cycle, and protein kinase complexes. Additionally, miR-511-3p downstream targets Calcr, Fzd10, and Eps8, were closely related to BMDCs maturation. DLTD may induce BMDCs maturity through regulation of miRNAs that affect Calcr, Fzd10, and Eps8 gene signals.
Collapse
|
10
|
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:449-489. [PMID: 32336965 PMCID: PMC7180683 DOI: 10.1007/s11101-020-09673-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
ABSTRACT Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as "Fen Fang Ji". It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Haitao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
11
|
Liao L, Lin Y, Liu Q, Zhang Z, Hong Y, Ni J, Yu S, Zhong Y. Cepharanthine ameliorates titanium particle-induced osteolysis by inhibiting osteoclastogenesis and modulating OPG/RANKL ratio in a murine model. Biochem Biophys Res Commun 2019; 517:407-412. [DOI: 10.1016/j.bbrc.2019.07.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 01/09/2023]
|