1
|
Wei MY, Jiang YJ, Tang YT, Wang CR, Yin D, Li AJ, Guo JY, Gong YB. Effectiveness and safety of Tongxinluo capsule for diabetic kidney disease: A systematic review and meta-analysis. World J Diabetes 2025; 16:100980. [DOI: 10.4239/wjd.v16.i5.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/25/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), a common microvascular complication of diabetes mellitus, is the primary cause of end-stage renal disease. Tongxinluo capsule (TXLC), a traditional Chinese medicinal compound, is widely utilized in China for treating DKD.
AIM To analyze the effectiveness and safety of TXLC for treating DKD.
METHODS Eight electronic literature databases were retrieved to obtain randomized controlled trials (RCTs) of TXLC for DKD. RevMan 5.3 software was used for data analysis. Evidence quality was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation System. Publication bias was detected using Stata 16.0 software.
RESULTS Twenty-two RCTs involving 1941 patients with DKD were identified. Compared with conventional treatment, TXLC combination therapy significantly improved the primary outcomes, including 24-hour urine proteinuria, urine microalbumin, and urinary albumin excretion rate. Regarding secondary outcomes, TXLC combination therapy significantly reduced serum creatinine, blood urea nitrogen, β2-microglobulin, and cystatin C levels; however, it had no significant effect on creatinine clearance rate. In terms of additional outcomes, TXLC combination therapy significantly reduced total cholesterol, triglycerides, low-density lipoprotein cholesterol, fibrinogen, plasma viscosity, whole blood low shear viscosity, whole blood high shear viscosity, and endothelin-1 levels, while increasing nitric oxide levels. However, the addition of TXLC treatment did not significantly affect fasting plasma glucose, 2-hour postprandial blood glucose, glycosylated hemoglobin, high-density lipoprotein cholesterol, or C-reactive protein levels. The safety of TXLC in DKD remains uncertain due to limited adverse event reporting.
CONCLUSION TXLC may benefit individuals with DKD by improving various health parameters, such as urinary protein levels, renal function, blood lipids, hemorheology, and vascular endothelial function. However, TXLC did not improve all studied outcomes.
Collapse
Affiliation(s)
- Mao-Ying Wei
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi-Jia Jiang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi-Ting Tang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chu-Ran Wang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dan Yin
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ai-Jing Li
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Yi Guo
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan-Bing Gong
- Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
2
|
Ding S, Sun J, Wang L, Wu L, Liu W. Association Between Serum α-Klotho Levels and Diabetic Kidney Disease Prevalence in Middle-Aged and Elderly US Patients with Diabetes: A Cross-Sectional Study Using NHANES 2007-2016 Data. Diabetes Ther 2025; 16:499-511. [PMID: 39928222 PMCID: PMC11868003 DOI: 10.1007/s13300-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/05/2024] [Indexed: 02/11/2025] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) represents a significant microvascular complication associated with diabetes and serves as a major contributor to end-stage renal disease. While many studies have highlighted the renal protective effects of the anti-aging protein Klotho, the potential link between Klotho and DKD within individuals with diabetes remains a subject of debate, and comprehensive studies utilizing large population-based databases are still needed. METHODS This cross-sectional study, which is representative of the national population, examined data from US patients with diabetes aged 40-79 years, collected during the 2007-2016 cycles of the National Health and Nutrition Examination Survey (NHANES). Serum α-Klotho levels were determined using enzyme-linked immunosorbent assay (ELISA) techniques. Given that serum Klorho levels are not normally distributed, our analysis is based on values converted from the natural logarithm of Klotho. To assess the association between Klotho levels and the prevalence of DKD, multivariate regression models were utilized, taking into account potential confounding factors. Furthermore, we applied smooth curve fitting and segmented regression analyses to investigate possible threshold effects and identify inflection points. Subgroup analyses and cross-tests were performed to assess the consistency of associations in the general population. RESULTS The investigation included 4490 individuals with diabetes, with an median age of 60.0 years and 48.2% of them being male. Among these participants, 1352 (30.1%) were diagnosed with DKD. The fully adjusted model (model 3) indicated a significant inverse relationship between Klotho levels and DKD prevalence. Statistical analysis showed that in fully adjusted model 3, each 1-unit increase in log-transformed Klotho was associated with a 42% reduction in DKD prevalence [OR 0.58, 95% CI (0.42, 0.80), p = 0.002]. Further analysis using smooth curve fitting revealed a U-shaped relationship between Klotho levels and DKD prevalence, with an inflection point at 6.82 (after natural logarithm conversion). CONCLUSIONS This study identified a U-shaped relationship between Klotho levels and the prevalence of DKD in middle-aged and older adults with diabetes in the USA, with an inflection point of 6.82 (after natural logarithm conversion). Prior to this threshold, the relationship between Klotho and DKD prevalence was negatively correlated, while after the inflection point, the relationship became positive. Future studies are recommended to investigate the causal relationship behind this relationship.
Collapse
Affiliation(s)
- Shaowei Ding
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jinrui Sun
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ling Wu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
3
|
Wei Y, Wang M, Jiang Z, Jia Y, Si Y, Peng Z, Yang J, Shi Y, Wu Y, Ding X, Pan D, Zhao D, Leng X, Li X, Dong H. Investigating the molecular mechanisms of Jiangu Decoction in treating type 2 diabetic osteoporosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119346. [PMID: 39800245 DOI: 10.1016/j.jep.2025.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts. However, the specific mechanisms underlying these effects remain unclear. AIM OF THE STUDY This study aimed to elucidate the molecular mechanisms underlying the therapeutic effects of JGD in treating T2DOP. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC-MS) was utilized to elucidate the chemical profile of JGD. A T2DOP mouse model (C57BL/6) was established by combining a high-fat diet with streptozotocin (STZ). Micro-computed tomography (micro-CT) imaging, three-point bending tests, and histological staining were utilized to assess alterations in bone mass, bone quality, and bone strength in mice. Mouse Calvaria 3T3-E1 (MC3T3-E1) cells were treated with 33 mmol/L D-glucose (HG), and the protective effect of JGD on the high glucose injury model was observed. Western blotting and qRT-PCR were employed to analyze alterations in biomarkers associated with the Keap1/Nrf2/HO-1 signaling pathway, both in vivo and in vitro. RESULTS A total of 909 compounds were identified in JGD using LC-MS. Subsequently, the function of JGD was evaluated both in vitro and in vivo. The findings indicated that JGD promoted bone formation, enhanced bone microstructure, and ameliorated diabetic symptoms in T2DOP mice. Additionally, JGD increased alkaline phosphatase (ALP) activity, facilitated bone mineralization, and upregulated the expression levels of osteogenic marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and collagen type 1 alpha (Col1a1). Importantly, JGD reduced oxidative stress levels and decreased the accumulation of reactive oxygen species by modulating the Keap1/Nrf2/HO-1 axis both in vivo and in vitro. CONCLUSION Our study suggests that JGD could alleviate T2DOP impairment, closely linked to the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Zhanliang Jiang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yuyan Jia
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yongmei Si
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Ye Shi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Yongji Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Daian Pan
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Daqing Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 130117, Changchun, Jilin Province, China.
| |
Collapse
|
4
|
Jin Z, Zhang Q, Liu K, Wang S, Yan Y, Zhang B, Zhao L. The association between interleukin family and diabetes mellitus and its complications: An overview of systematic reviews and meta-analyses. Diabetes Res Clin Pract 2024; 210:111615. [PMID: 38513987 DOI: 10.1016/j.diabres.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To evaluate and summarize the association between interleukin (IL) concentrations and diabetes mellitus (DM) and its complications. METHODS Meta-analyses and eligible individual studies of observational studies investigating the associations between IL and DM and its complications were included. The random-effects model was used to estimate the summary effect, and the heterogeneity among studies was assessed using the Q-statistic and the I2 metric; The Egger's regression and the χ2 test were used to test for small study effects and excess significance bias. RESULTS This overview identified 34 meta-analyses that investigated the association between IL concentrations and DM and its complications. Meta-analyses of prospective studies indicated that elevated circulating IL-6 and IL-1β had predictive value for the incident of type 2 diabetes mellitus (T2DM), type 1 diabetes mellitus (T1DM) as well as gestational diabetes mellitus (GDM), and the overall Hazard Ratio (HR) of T2DM was 1.28 (95 % CI: 1.17, 1.40; P<0.001) per 1 log pg/ml increment in IL-6 levels, however, there was no correlation between circulating IL-10 levels and DM. Meanwhile, the increased level of IL-6 was significantly associated several diabetic complications (Diabetic kidney disease[DKD], diabetic peripheral neuropathy[DPN], and cognitive impairment[CI]), and for the diabetic retinopathy (DR), the levels of IL-1β, IL-8 and IL-10 in the aqueous humor and vitreous humor, but not the blood were significantly correlated with it. CONCLUSION Multiple ILs, such as the IL-6 and IL-1β, are definitively linked to DM and its complications, and they may be new targets for the diagnosis and treatment, but stronger evidence needs to be confirmed by prospective studies with larger sample sizes and longer observation periods.
Collapse
Affiliation(s)
- Zishan Jin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100105, China
| | - Qiqi Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Sicheng Wang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yan Yan
- Health Construction Administration Center, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Linhua Zhao
- Beijing University of Chinese Medicine, Beijing 100105, China.
| |
Collapse
|
5
|
Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol 2024; 15:1359600. [PMID: 38515749 PMCID: PMC10954773 DOI: 10.3389/fimmu.2024.1359600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The innate immune response represents the first-line of defense against invading pathogens. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been implicated in various aspects of innate immune function, which involves respiratory bursts and inflammasome activation. These reactive species widely distributed within the cellular environment are short-lived intermediates that play a vital role in cellular signaling and proliferation and are likely to depend on their subcellular site of formation. NADPH oxidase complex of phagocytes is known to generate superoxide anion radical (O2 •-) that functions as a precursor for antimicrobial hydrogen peroxide (H2O2) production, and H2O2 is utilized by myeloperoxidase (MPO) to generate hypochlorous acid (HOCl) that mediates pathogen killing. H2O2 modulates the expression of redox-responsive transcriptional factors, namely NF-kB, NRF2, and HIF-1, thereby mediating redox-based epigenetic modification. Survival and function of immune cells are under redox control and depend on intracellular and extracellular levels of ROS/RNS. The current review focuses on redox factors involved in the activation of immune response and the role of ROS in oxidative modification of proteins in macrophage polarization and neutrophil function.
Collapse
Affiliation(s)
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
6
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
7
|
Yazar İ, Sarıkaya B, Koyuncu İ, Gönel A, Bozkurt C, Sipahioğlu S, Çetin BV, Altay MA. Evaluation of oxidative stress in degenerative rotator cuff tears. J Shoulder Elbow Surg 2022; 31:e490-e497. [PMID: 35483566 DOI: 10.1016/j.jse.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Oxidative stress occurs as a result of the disruption of the balance between the formations of reactive oxygen species and antioxidant defense mechanisms during the conversion of nutrients into energy. Increased body oxidative stress has been reported to be involved in the etiology of several degenerative and chronic diseases. We hypothesized that the body oxidative stress level is higher in patients with atraumatic degenerative rotator cuff tear than that in healthy individuals. METHODS The patients who underwent arthroscopic repair for atraumatic, degenerative rotator cuff tear were prospectively evaluated. A total of 30 patients (group 1, 19 females and 11 males; mean age: 57.33 ± 6.96 years; range: 50-77 years) and 30 healthy individuals (group 2, 18 females and 12 males; mean age: 56.77 ± 6 years; range: 51-72 years) were included in the study. The Constant and American Shoulder and Elbow Surgeons scoring systems were used to evaluate the clinical outcomes. Serum oxidative stress parameters of the patients and the control group were biochemically evaluated. Accordingly, thiol/disulfide (DS) balance (DS/native thiol [NT], DS/total thiol [TT]), Total Oxidant Status (TOS), oxidative stress index, and nuclear factor erythroid-2-associated factor-2 values were used as the biochemical parameters indicating an increase in the serum oxidative stress level. Total antioxidant status and NT/TT values served as the biochemical parameters indicating a decrease in the serum oxidative stress level. RESULTS The study follow-up duration was 12 months. A statistically significant increase was observed in American Shoulder and Elbow Surgeons and Constant scores of patients who underwent arthroscopic rotator cuff repair relative to that during the preoperative period (P = .01). The values of biochemical parameters (DS/NT, DS/TT, TOS, oxidative stress index, and nuclear factor erythroid-2-associated factor-2), which indicated an increase in the serum oxidative stress, were significantly higher in preoperative patients than those in postoperative patients, albeit the control group values were significantly lower than those of the postoperative patients. The biochemical parameters (NT/TT and total antioxidant status) indicating a decrease in the serum oxidative stress levels were significantly higher in the postoperative patients than those in the preoperative patients and significantly lower than those in the control group. CONCLUSION High levels of markers indicating an increase in the serum oxidative stress in patients with degenerative rotator cuff rupture suggested that TOS may be involved in the etiopathogenesis of rotator cuff degeneration. Although the oxidative load decreases during the postoperative period, the fact that it is still higher than that in healthy individuals supports this claim.
Collapse
Affiliation(s)
- İzzettin Yazar
- Department of Orthopaedics and Traumatology, Göksun State Hospital, Kahramanmaraş, Turkey
| | - Baran Sarıkaya
- Department of Orthopaedics and Traumatology, Ankara City Hospital, Ankara, Turkey.
| | - İsmail Koyuncu
- Department of Medical Biochemistry, Harran University Medicine Faculty, Şanlıurfa, Turkey
| | - Ataman Gönel
- Department of Nutrition and Dietetics, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Celal Bozkurt
- Department of Orthopaedics and Traumatology, Gaziosmanpaşa Taksim Training and Research Hospital, İstanbul, Turkey
| | - Serkan Sipahioğlu
- Department of Orthopedics and Traumatology, Ordu University Medicine Faculty, Ordu, Turkey
| | - Baki Volkan Çetin
- Department of Orthopaedics and Traumatology, Harran University Medicine Faculty, Şanlıurfa, Turkey
| | - Mehmet Akif Altay
- Department of Orthopaedics and Traumatology, Harran University Medicine Faculty, Şanlıurfa, Turkey
| |
Collapse
|
8
|
Li Z, Liu A, Du Q, Zhu W, Liu H, Naeem A, Guan Y, Chen L, Ming L. Bioactive substances and therapeutic potential of camellia oil: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang F, Hou W, Li X, Lu L, Huang T, Zhu M, Miao C. SETD8 cooperates with MZF1 to participate in hyperglycemia-induced endothelial inflammation via elevation of WNT5A levels in diabetic nephropathy. Cell Mol Biol Lett 2022; 27:30. [PMID: 35350980 PMCID: PMC8962284 DOI: 10.1186/s11658-022-00328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/22/2023] Open
Abstract
Objective Diabetic nephropathy (DN) is regarded as the main vascular complication of diabetes mellitus, directly affecting the outcome of diabetic patients. Inflammatory factors were reported to participate in the progress of DN. Wingless-type family member 5 (WNT5A), myeloid zinc finger 1 (MZF1), and lysine methyltransferase 8 (SETD8) have also been reported to elevate inflammatory factor levels and activate the nuclear factor kappa B (NF-κB) pathway to induce endothelial dysfunction. In the current study, it was assumed that MZF1 associates with SETD8 to regulate WNT5A transcription, thus resulting in hyperglycemia-induced glomerular endothelial inflammation in DN. Methods The present study recruited 25 diagnosed DN patients (type 2 diabetes) and 25 control participants (nondiabetic renal cancer patients with normal renal function, stage I–II) consecutively. Moreover, a DN rat and cellular model was constructed in the present study. Immunohistochemistry, Western blot, and quantitative polymerase chain reaction (qPCR) were implemented to determine protein and messenger RNA (mRNA) levels. Coimmunoprecipitation (CoIP) and immunofluorescence were implemented in human glomerular endothelial cells (HGECs). Chromatin immunoprecipitation assays and dual luciferase assays were implemented to determine transcriptional activity. Results The results of this study indicated that levels of WNT5A expression, p65 phosphorylation (p-p65), and inflammatory factors were all elevated in DN patients and rats. In vitro, levels of p-p65 and inflammatory factors increased along with the increase of WNT5A expression in hyperglycemic HGECs. Moreover, high glucose increased MZF1 expression and decreased SETD8 expression. MZF1 and SETD8 inhibit each other under the stimulus of high glucose, but cooperate to regulate WNT5A expression, thus influencing p-p65 and endothelial inflammatory factors levels. Overexpression of MZF1 and silencing of SETD8 induced endothelial p-p65 and inflammatory factors levels, which can be reversed by si-WNT5A. Mechanistic research indicated that MZF1, SETD8, and its downstream target histone H4 lysine 20 methylation (H4K20me1) all occupied the WNT5A promoter region. sh-SETD8 expanded the enrichment of MZF1 on WNT5A promoter. Our in vivo study proved that SETD8 overexpression inhibited levels of WNT5A, p-p65 expression, and inflammatory factors in DN rats. Conclusions MZF1 links with SETD8 to regulate WNT5A expression in HGECs, thus elevating levels of hyperglycemia-mediated inflammatory factors in glomerular endothelium of DN patients and rats. Trial registration ChiCTR, ChiCTR2000029425. 2020/1/31, http://www.chictr.org.cn/showproj.aspx?proj=48548 Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00328-6.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lihong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Huang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Zaky A, Glastras SJ, Wong MYW, Pollock CA, Saad S. The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:9641. [PMID: 34502562 PMCID: PMC8431784 DOI: 10.3390/ijms22179641] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely to be involved in the initiation and progression of DKD. An extensive number of studies have demonstrated the role of microbiota in health and disease. Dysregulation in the microbiota resulting in a deficiency of short chain fatty acids (SCFAs) such as propionate, acetate, and butyrate, by-products of healthy gut microbiota metabolism, have been demonstrated in obesity, type 1 and type 2 diabetes. However, it is not clear to date whether such changes in the microbiota are causative or merely associated with the diseases. It is also not clear which microbiota have protective effects on humans. Few studies have investigated the centrality of reduced SCFA in DKD development and progression or the potential therapeutic effects of supplemental SCFAs on insulin resistance, inflammation, and metabolic changes. SCFA receptors are expressed in the kidneys, and emerging data have demonstrated that intestinal dysbiosis activates the renal renin-angiotensin system, which contributes to the development of DKD. In this review, we will summarize the complex relationship between the gut microbiota and the kidney, examine the evidence for the role of gut dysbiosis in diabetes and obesity-related kidney disease, and explore the mechanisms involved. In addition, we will describe the role of potential therapies that modulate the gut microbiota to prevent or reduce kidney disease progression.
Collapse
Affiliation(s)
- Amgad Zaky
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - May Y. W. Wong
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| |
Collapse
|
12
|
Romidepsin and metformin nanomaterials delivery on streptozocin for the treatment of Alzheimer's disease in animal model. Biomed Pharmacother 2021; 141:111864. [PMID: 34323698 DOI: 10.1016/j.biopha.2021.111864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Brain insulin signal anomalies are implicated in Alzheimer's disease (AD) pathology. In this background, metformin, an insulin sensitizer's neuroprotective effectiveness, has been established in the prior findings. In the present investigation, combining an epigenetic modulator, romidepsin, and metformin will improve the gene expressions of neurotrophic factors and reduce AD-associated biochemical and cellular changes by loading them mainly into a nanocarrier surface-modified framework for improved therapeutic effectiveness and bioavailability. In the present investigation, the mediated intra-cerebroventricular streptozocin (3 mg/kg) AD of the model was loaded with metformin and romidepsin into a poloxamer stabilized polymer nanocarrier system. Free combination drug therapy (Romidepsin 25 mg/kg and metformin 5 mg/kg) reduced biochemical and cellular variations over three weeks, respectively, compared to either free treatment (Romidepsin 50 mg/kg and metformin 10 mg/kg). The nanoformulations (Romidepsin 25 mg/kg and Metformin 5 mg/kg), as shown by enhanced significantly reduce stress and high neurotrophic factors, has also exerted superior neurological effectiveness than the free combination of drugs. Eventually, through the Poloxamer stable polymeric nanocarrier framework, the synergistic neuroprotective efficacy of metformin and romidepsin has improved.
Collapse
|
13
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|