1
|
Zhu M, Zhou H, Zhuo Y, Liu C, Li J, He P, Liu N, Zhao Z, Huafeng P. Pan-cancer multi-omics analysis to identify the potential pro-oncogenic properties of GREM1 as a promising targets for cancer prognosis and therapeutics. Int J Immunopathol Pharmacol 2025; 39:3946320251331850. [PMID: 40231657 PMCID: PMC12033649 DOI: 10.1177/03946320251331850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
We aimed to investigate the potential pro-oncogenic properties of GREM1 by Pan-cancer multi-omics analysis. Accumulating evidence has highlighted that GREM1 (Gremlin 1), serves as an inhibitor of BMP (Bone Morphogenetic Protein) family, involve in bone related diseases, carcinogenesis, cell stemness, and cell differentiation. However, the effect and underlying mechanism of GREM1 on the cancer biology remain largely elusive. The mRNA expression of GREM1 were extracted from GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) database. Analysis of OS (Overall Survival), PFI (Progression Free Interval), DSS (Disease-Specific Survival), and ROC (Receiver Operating Characteristic) were performed to predicted prognostic value of GREM1 in various cancers. The TIMER (Tumor Immune Estimation Resource) online tool was used to investigate the relationship between GREM1 transcriptional level and infiltration of immune cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis and GO (Gene Ontology) analysis were used to investigate the GREM1 related molecular events, and then constructed a PPI (Protein-Protein Interaction) network via the STRING (Search Tool for the Retrieval of Interaction Genes/Proteins) online tool. Western blot was performed to investigate the indicated protein expression. In the present study, our results showed that GREM1 tended to be upregulated in various cancers, which would correlate with the poor prognosis. Mechanistically, our results showed that GREM1 involve in regulating the ECM-receptor interaction pathway, upregulation of MMP activity, angiogenesis, and immune cell infiltration. In vitro studies, our results further showed that BMP agonist significantly decreased the protein level of GREM1 in GES-1 cells and BGC cells, which accompanied by inhibiting migration and proliferation in GES-1 cells and BGC cells. BMP inhibitor significantly promoted GREM1 expression and migration in BGC cells, but not GES-1 cells. GREM1 might serve as a potential and promising prognostic biomarker for drug development and cancer treatment.
Collapse
Affiliation(s)
- Menglu Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hengli Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyao He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Naihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M, Guangzhou, China
| | - Pan Huafeng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
3
|
Lei J, Qiao S. Circular RNA circ_001621 acts as a tumor promoter in lung cancer by regulating the miR-199a-3p/GREM1 axis. Arch Med Sci 2024; 20:876-886. [PMID: 39050152 PMCID: PMC11264106 DOI: 10.5114/aoms/174052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Investigating how circular RNAs (circRNAs) function during tumorigenesis may help uncover novel diagnostic markers for cancer treatment. The oncogenic role of circ_001621 has been verified in osteosarcoma, but its role in lung cancer has yet to be reported. This research is the first to investigate the circ_001621 expression and regulatory mechanism in lung cancer. Material and methods RT-qPCR was performed to assess the circ_001621 expression levels in lung cancer cells and tissues. The influence of circ_001621 on the viability, invasive ability, and apoptosis of lung cancer cells was investigated through CCK-8, transwell, and caspase-3 activity experiments, respectively. A xenograft nude mouse model was designed to evaluate how circ_001621 functions in vivo. The RIP and luciferase reporter experiments confirmed the binding among circRNA, miRNA, and mRNA. Results Circ_001621 was dramatically upregulated in lung cancer tissues and cells. Silencing circ_001621 in lung cancer cells reduced their viability and invasive ability but stimulated apoptosis. The nude mice experiment demonstrated that circ_001621 downregulation considerably stunted tumor growth in vivo. Additionally, circ_001621 could sponge miR-199a-3p. The inhibitor of miR-199a-3p improved the viability and invasion of cells while inhibiting apoptosis. Moreover, it offset the impact of circ_001621 on lung cancer cells. MiR-199a-3p was observed to target GREM1, and the downregulation of GREM1 could counteract miR-199a-3p-induced effects on lung cancer cells. Conclusions The circ_001621/miR-199a-3p/GREM1 axis exhibits an association with the development of lung cancer, suggesting its potential as a future therapeutic target for the disease.
Collapse
Affiliation(s)
- Jun Lei
- Department of Respiratory Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Song Qiao
- Massage Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
4
|
Takihira S, Yamada D, Osone T, Takao T, Sakaguchi M, Hakozaki M, Itano T, Nakata E, Fujiwara T, Kunisada T, Ozaki T, Takarada T. PRRX1-TOP2A interaction is a malignancy-promoting factor in human malignant peripheral nerve sheath tumours. Br J Cancer 2024; 130:1493-1504. [PMID: 38448751 PMCID: PMC11058259 DOI: 10.1038/s41416-024-02632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Paired related-homeobox 1 (PRRX1) is a transcription factor in the regulation of developmental morphogenetic processes. There is growing evidence that PRRX1 is highly expressed in certain cancers and is critically involved in human survival prognosis. However, the molecular mechanism of PRRX1 in cancer malignancy remains to be elucidated. METHODS PRRX1 expression in human Malignant peripheral nerve sheath tumours (MPNSTs) samples was detected immunohistochemically to evaluate survival prognosis. MPNST models with PRRX1 gene knockdown or overexpression were constructed in vitro and the phenotype of MPNST cells was evaluated. Bioinformatics analysis combined with co-immunoprecipitation, mass spectrometry, RNA-seq and structural prediction were used to identify proteins interacting with PRRX1. RESULTS High expression of PRRX1 was associated with a poor prognosis for MPNST. PRRX1 knockdown suppressed the tumorigenic potential. PRRX1 overexpressed in MPNSTs directly interacts with topoisomerase 2 A (TOP2A) to cooperatively promote epithelial-mesenchymal transition and increase expression of tumour malignancy-related gene sets including mTORC1, KRAS and SRC signalling pathways. Etoposide, a TOP2A inhibitor used in the treatment of MPNST, may exhibit one of its anticancer effects by inhibiting the PRRX1-TOP2A interaction. CONCLUSION Targeting the PRRX1-TOP2A interaction in malignant tumours with high PRRX1 expression might provide a novel tumour-selective therapeutic strategy.
Collapse
Affiliation(s)
- Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tatsunori Osone
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Michiyuki Hakozaki
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takuto Itano
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
5
|
Sun X, Jiang M, Wang Z, Xu C, Ma Z. GREM1 knockdown regulates the proliferation, apoptosis and EMT of benign prostatic hyperplasia by suppressing the STAT3/c-Myc signaling. Tissue Cell 2024; 86:102231. [PMID: 37931534 DOI: 10.1016/j.tice.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Gremlin 1 (GREM1) has been reported to be highly expressed in prostate hyperplasia tissues. However, the role and molecular mechanism of GREM1 in benign prostatic hyperplasia (BPH) is still unclear. METHODS In this study, expression of GREM1 in BPH-1 cells was detected by western blot assay. Cell counting kit-8 assay was performed to assess cell proliferation. Flow cytometry and western blot were used to assess cell apoptosis and cell cycle. The EMT process was detected by western blot assay and immunofluorescence staining. In addition, colivelin was used as a STAT3 activator and the expressions of STAT3/c-Myc signaling were assessed by western blot assay. RESULTS The data showed that GREM1 silencing inhibited BPH-1 cell proliferation and promoted cell apoptosis. Moreover, GREM1 silencing repressed the cell cycle progression and the development of EMT. In addition, knockdown of GREM1 suppressed the expression of the STAT3/c-Myc signaling in BPH-1 cells and colivelin treatment rehabilitated this signaling. Moreover, c-Myc overexpression or colivelin reversed the effects of GREM1 silencing on BPH-1 cell proliferation, cell apoptosis, cell cycle, as well as EMT. CONCLUSION To sum up, GREM1 silencing may alleviate the BPH progress by inhibiting the STAT3/c-Myc signaling.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zhenfan Wang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Chen Xu
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zheng Ma
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China.
| |
Collapse
|
6
|
Pasquereau-Kotula E, Nigro G, Dingli F, Loew D, Poullet P, Xu Y, Kopetz S, Davis J, Peduto L, Robbe-Masselot C, Sansonetti P, Trieu-Cuot P, Dramsi S. Global proteomic identifies multiple cancer-related signaling pathways altered by a gut pathobiont associated with colorectal cancer. Sci Rep 2023; 13:14960. [PMID: 37696912 PMCID: PMC10495336 DOI: 10.1038/s41598-023-41951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
In this work, we investigated the oncogenic role of Streptococcus gallolyticus subsp. gallolyticus (SGG), a gut bacterium associated with colorectal cancer (CRC). We showed that SGG UCN34 accelerates colon tumor development in a chemically induced CRC murine model. Full proteome and phosphoproteome analysis of murine colons chronically colonized by SGG UCN34 revealed that 164 proteins and 725 phosphorylation sites were differentially regulated. Ingenuity Pathway Analysis (IPA) indicates a pro-tumoral shift specifically induced by SGG UCN34, as ~ 90% of proteins and phosphoproteins identified were associated with digestive cancer. Comprehensive analysis of the altered phosphoproteins using ROMA software revealed up-regulation of several cancer hallmark pathways such as MAPK, mTOR and integrin/ILK/actin, affecting epithelial and stromal colonic cells. Importantly, an independent analysis of protein arrays of human colon tumors colonized with SGG showed up-regulation of PI3K/Akt/mTOR and MAPK pathways, providing clinical relevance to our findings. To test SGG's capacity to induce pre-cancerous transformation of the murine colonic epithelium, we grew ex vivo organoids which revealed unusual structures with compact morphology. Taken together, our results demonstrate the oncogenic role of SGG UCN34 in a murine model of CRC associated with activation of multiple cancer-related signaling pathways.
Collapse
Affiliation(s)
- Ewa Pasquereau-Kotula
- Biology of Gram-Positive Pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015, Paris, France.
| | - Giulia Nigro
- Stroma, Inflammation and Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, 75015, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, 75015, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Patrick Poullet
- Institut Curie, Bioinformatics Core Facility (CUBIC), INSERM U900, PSL Research University, Mines Paris Tech, 75005, Paris, France
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Bryan, TX, USA
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Davis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Kansas, Kansas City, KS, USA
| | - Lucie Peduto
- Stroma, Inflammation and Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, 75015, Paris, France
| | - Catherine Robbe-Masselot
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Philippe Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, 75005, Paris, France
| | - Patrick Trieu-Cuot
- Biology of Gram-Positive Pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015, Paris, France
| | - Shaynoor Dramsi
- Biology of Gram-Positive Pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015, Paris, France.
| |
Collapse
|
7
|
Gao Z, Houthuijzen JM, Ten Dijke P, Brazil DP. GREM1 signaling in cancer: tumor promotor and suppressor? J Cell Commun Signal 2023:10.1007/s12079-023-00777-4. [PMID: 37615860 DOI: 10.1007/s12079-023-00777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/07/2023] [Indexed: 08/25/2023] Open
Abstract
GREMLIN1 (GREM1) is member of a family of structurally and functionally related secreted cysteine knot proteins, which act to sequester and inhibit the action of multifunctional bone morphogenetic proteins (BMPs). GREM1 binds directly to BMP dimers, thereby preventing BMP-mediated activation of BMP type I and type II receptors. Multiple reports identify the overexpression of GREM1 as a contributing factor in a broad range of cancers. Additionally, the GREM1 gene is amplified in a rare autosomal dominant inherited form of colorectal cancer. The inhibitory effects of GREM1 on BMP signaling have been linked to these tumor-promoting effects, including facilitating cancer cell stemness and the activation of cancer-associated fibroblasts. Moreover, GREM1 has been described to bind and signal to vascular endothelial growth factor receptor (VEGFR) and stimulate angiogenesis, as well as epidermal and fibroblast growth factor receptor (EGFR and FGFR) to elicit tumor-promoting effects in breast and prostate cancer, respectively. In contrast, a 2022 report revealed that GREM1 can promote an epithelial state in pancreatic cancers, thereby inhibiting pancreatic tumor growth and metastasis. In this commentary, we will review these disparate findings and attempt to provide clarity around the role of GREM1 signaling in cancer.
Collapse
Affiliation(s)
- Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Julia M Houthuijzen
- Oncode Institute, Division of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
8
|
Bhukdee D, Nuwongsri P, Israsena N, Sriswasdi S. Improved Delineation of Colorectal Cancer Molecular Subtypes and Functional Profiles with a 62-Gene Panel. Mol Cancer Res 2023; 21:240-252. [PMID: 36490322 DOI: 10.1158/1541-7786.mcr-22-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Since its establishment in 2015, the transcriptomics-based consensus molecular subtype (CMS) classification has unified our understanding of colorectal cancer. Each of the four CMS exhibited distinctive high-level molecular signatures that correlated well with prognosis and treatment response. Nonetheless, many key aspects of colorectal cancer progression and intra-subtype heterogeneity remain unresolved. This is partly because the bulk transcriptomic data used to define CMS contain substantial interference from non-tumor cells. Here, we propose a concise panel of 62 genes that not only accurately recapitulates all key characteristics of the four original CMS but also identifies three additional subpopulations with unique molecular signatures. Validation on independent cohorts confirms that the new CMS4 intra-subtypes coincide with single-cell-derived intrinsic subtypes and that the panel consists of many immune cell-type markers that can capture the status of tumor microenvironment. Furthermore, a 2D embedding of CMS structure based on the proposed gene panel provides a high-resolution view of the functional pathways and cell-type markers that underlie each CMS intra-subtype and the continuous progression from CMS2 to CMS4 subtypes. Our gene panel and 2D visualization refined the delineation of colorectal cancer subtypes and could aid further discovery of molecular mechanisms in colorectal cancer. IMPLICATIONS : Well-selected gene panel and representation can capture both the continuum of cancer cell states and tumor microenvironment status.
Collapse
Affiliation(s)
- Dhup Bhukdee
- Science Division, Mahidol University International College, Nakhon Pathom, Thailand.,Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Pattarin Nuwongsri
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand.,Center of Excellence in Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Nipan Israsena
- Center of Excellence in Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand.,Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| |
Collapse
|
9
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Endothelial LRP1-ICD Accelerates Cognition-Associated Alpha-Synuclein Pathology and Neurodegeneration through PARP1 Activation in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023; 60:979-1003. [PMID: 36394710 DOI: 10.1007/s12035-022-03119-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and accumulation of misfolded alpha-synuclein (αSyn) into Lewy bodies. In addition to motor impairment, PD commonly presents with cognitive impairment, a non-motor symptom with poor outcome. Cortical αSyn pathology correlates closely with vascular risk factors and vascular degeneration in cognitive impairment. However, how the brain microvasculature regulates αSyn pathology and neurodegeneration remains unclear. Here, we constructed a rapidly progressive PD model by injecting alpha-synuclein preformed fibrils (αSyn PFFs) into the cerebral cortex and striatum. Brain capillaries in mice with cognitive impairment showed a reduction in diameter and length after 6 months, along with string vessel formation. The intracellular domain of low-density lipoprotein receptor-related protein-1 (LRP1-ICD) was upregulated in brain microvascular endothelium. LRP1-ICD promoted αSyn PFF uptake and exacerbated endothelial damage and neuronal apoptosis. Then, we overexpressed LRP1-ICD in brain capillaries using an adeno-associated virus carrying an endothelial-specific promoter. Endothelial LRP1-ICD worsened αSyn PFF-induced vascular damage, αSyn pathology, or neuron death in the cortex and hippocampus, resulting in severe motor and cognitive impairment. LRP1-ICD increased the synthesis of poly(adenosine 5'-diphosphate-ribose) (PAR) in the presence of αSyn PFFs. Inhibition of PAR polymerase 1 (PARP1) prevented vascular-derived injury, as did loss of PARP1 in the endothelium, which was further implicated in endothelial cell proliferation and inflammation. Together, we demonstrate a novel vascular mechanism of cognitive impairment in PD. These findings support a role for endothelial LRP1-ICD/PARP1 in αSyn pathology and neurodegeneration, and provide evidence for vascular protection strategies in PD therapy.
Collapse
|
11
|
Davies GCG, Dedi N, Jones PS, Kevorkian L, McMillan D, Ottone C, Schulze MSED, Scott-Tucker A, Tewari R, West S, Wright M, Rowley TF. Discovery of ginisortamab, a potent and novel anti-gremlin-1 antibody in clinical development for the treatment of cancer. MAbs 2023; 15:2289681. [PMID: 38084840 DOI: 10.1080/19420862.2023.2289681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients. To address this shortfall, we developed ginisortamab (UCB6114), a first-in-class clinical anti-human gremlin-1 antibody, currently in clinical development for the treatment of cancer, along with its murine analog antibody Ab7326 mouse immunoglobulin G1 (mIgG1). Surface plasmon resonance assays revealed that ginisortamab and Ab7326 mIgG1 had similar affinities for human and mouse gremlin-1, with mean equilibrium dissociation constants of 87 pM and 61 pM, respectively. The gremlin-1/Ab7326 antigen-binding fragment (Fab) crystal structure revealed a gremlin-1 dimer with a Fab molecule bound to each monomer that blocked BMP binding. In cell culture experiments, ginisortamab fully blocked the activity of recombinant human gremlin-1, and restored BMP signaling pathways in human colorectal cancer (CRC) cell lines. Furthermore, in a human CRC - fibroblast co-culture system where gremlin-1 is produced by the fibroblasts, ginisortamab restored BMP signaling in both the CRC cells and fibroblasts, demonstrating its activity in a relevant human tumor microenvironment model. The safety and efficacy of ginisortamab are currently being evaluated in a Phase 1/2 clinical trial in patients with advanced solid tumors (NCT04393298).
Collapse
|
12
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
13
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Deng F, Zhao J, Jia W, Fu K, Zuo X, Huang L, Wang N, Xia H, Zhang Y, Fu W, Liu G. Increased hypospadias risk by GREM1 rs3743104[G] in the southern Han Chinese population. Aging (Albany NY) 2021; 13:13898-13908. [PMID: 33962391 PMCID: PMC8202882 DOI: 10.18632/aging.202983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Hypospadias is a common congenital genitourinary malformation characterized by ventral opening of the urethral meatus. As a member of the bone morphogenic protein antagonist family, GREM1 has been identified as associated with susceptibility to hypospadias in the European population. The present study was designed to elaborate on the mutual relationship between replicated single-nucleotide polymorphisms (SNPs) and hypospadias in Asia's largest case-control study in the Southern Han Chinese population involving 577 patients and 654 controls. Our results demonstrate that the GREM1 risk allele rs3743104[G] markedly increases the risk of mild/moderate and severe hypospadias (P<0.01, 0.28≤OR≤0.66). GTEx expression quantitative trait locus data revealed that the eQTL SNP rs3743104 has more associations of eQTL SNP rs3743104 and GREM1 targets in pituitary tissues. Additionally, Bioinformatics and Luciferase Assays show that miR-182 is identified as a suppressor for GREM1 expression, likely through regulation of its binding affinity to rs3743104 locus. In conclusion, the GREM1 risk allele rs3743104[G] increases hypospadias susceptibility in mild/moderate and severe cases among the southern Han population. rs3743104 regulates GREM1 expression by altering the binding affinity of miR-182 to their locus. Collectively, this study provides new evidence that GREM1 rs3743104 is associated with an increased risk of hypospadias. These findings provide a promising biomarker and merit further exploration.
Collapse
Affiliation(s)
- Fuming Deng
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Kai Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ning Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiming Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
15
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
16
|
Xia Y, Chen J, Liu G, Huang W, Wei X, Wei Z, He Y. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway. Chem Biol Interact 2021; 341:109446. [PMID: 33766539 DOI: 10.1016/j.cbi.2021.109446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Stress-induced phosphoprotein 1 (STIP1) plays an important role in cancer tumorigenesis and progression. However, the role of STIP1 in colorectal cancer (CRC) remains unclear. This study aimed to explore clinical significance, biological function and potential molecular mechanism of STIP1 in CRC. Immunohistochemistry (IHC) and Western bolt were performed to detect STIP1 protein level in CRC and adjacent normal tissues. DLD1 and HCT116 cell lines were treated with shSTIP1, cell proliferation was detected by CCK8 and colony formation assays, and cell migration and invasion were detected by wound healing and transwell assays. Moreover, western blot and immunofluorescence assays were performed to explore the potential molecular mechanism of STIP1 in the progression of CRC. We found that STIP1 expression in CRC tissues was significantly higher than in adjacent normal tissues. High STIP1 expression was associated with poor overall survival (OS) in CRC patients. Furthermore, secreted STIP1 promoted CRC cell proliferation and invasion through STAT3 signaling pathway, while STIP1 knockdown inhibited the proliferation, migration and invasion of CRC cells. Mechanistically, STIP1 knockdown suppressed the activation of STAT3 signaling pathway in CRC. In conclusion, STIP1 knockdown suppresses CRC cell proliferation, migration and invasion by inhibiting the activation of STAT3 signaling, and STIP1 is a potential target for CRC therapy.
Collapse
Affiliation(s)
- YuJian Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Guangyao Liu
- Department of Gastrointestinal Surgery, Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Shenyuan Road, Shenzhen, Guangdong, 518106, China
| | - WeiBin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - XiaoJing Wei
- Department of Medical Record Management, Affiliated Hospital of Yangzhou University, No. 45 Taizhou Road, Yangzhou, Jiangsu, 225000, China
| | - ZheWei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - YuLong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
17
|
Analysis of genomics and immune infiltration patterns of epithelial-mesenchymal transition related to metastatic breast cancer to bone. Transl Oncol 2020; 14:100993. [PMID: 33333372 PMCID: PMC7736716 DOI: 10.1016/j.tranon.2020.100993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This study aimed to design a weighted co-expression network and a breast cancer (BC) prognosis evaluation system using a specific whole-genome expression profile combined with epithelial-mesenchymal transition (EMT)-related genes; thus, providing the basis and reference for assessing the prognosis risk of spreading of metastatic breast cancer (MBC) to the bone. METHODS Four gene expression datasets of a large number of samples from GEO were downloaded and combined with the dbEMT database to screen out EMT differentially expressed genes (DEGs). Using the GSE20685 dataset as a training set, we designed a weighted co-expression network for EMT DEGs, and the hub genes most relevant to metastasis were selected. We chose eight hub genes to build prognostic assessment models to estimate the 3-, 5-, and 10-year survival rates. We evaluated the models' independent predictive abilities using univariable and multivariable Cox regression analyses. Two GEO datasets related to bone metastases from BC were downloaded and used to perform differential genetic analysis. We used CIBERSORT to distinguish 22 immune cell types based on tumor transcripts. RESULTS Differential expression analysis showed a total of 304 DEGs, which were mainly related to proteoglycans in cancer, and the PI3K/Akt and the TGF-β signaling pathways, as well as mesenchyme development, focal adhesion, and cytokine binding functionally. The 50 hub genes were selected, and a survival-related linear risk assessment model consisting of eight genes (FERMT2, ITGA5, ITGB1, MCAM, CEMIP, HGF, TGFBR1, F2RL2) was constructed. The survival rate of patients in the high-risk group (HRG) was substantially lower than that of the low-risk group (LRG), and the 3-, 5-, and 10-year AUCs were 0.68, 0.687, and 0.672, respectively. In addition, we explored the DEGs of BC bone metastasis, and BMP2, BMPR2, and GREM1 were differentially expressed in both data sets. In GSE20685, memory B cells, resting memory T cell CD4 cells, T regulatory cells (Tregs), γδ T cells, monocytes, M0 macrophages, M2 macrophages, resting dendritic cells (DCs), resting mast cells, and neutrophils exhibited substantially different distribution between HRG and LRG. In GSE45255, there was a considerable difference in abundance of activated NK cells, monocytes, M0 macrophages, M2 macrophages, resting DCs, and neutrophils in HRG and LRG. CONCLUSIONS Based on the weighted co-expression network for breast-cancer-metastasis-related DEGs, we screened hub genes to explore a prognostic model and the immune infiltration patterns of MBC. The results of this study provided a factual basis to bioinformatically explore the molecular mechanisms of the spread of MBC to the bone and the possibility of predicting the survival of patients.
Collapse
|
18
|
Kim NH, Sung NJ, Youn HS, Park SA. Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells. Biochem Biophys Res Commun 2020; 533:1378-1384. [PMID: 33097188 DOI: 10.1016/j.bbrc.2020.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023]
Abstract
Gremlin-1 (GREM1), one of the antagonists of bone morphogenetic proteins (BMPs), has recently been reported to be overexpressed in a variety of cancers including breast cancer. GREM1 is involved in tumor promotion, but little is known about its role in the glycolysis of cancer cells. In this study, we investigated the role of GREM1 in glycolysis of breast cancer cells and its underlying molecular mechanisms. We first observed that glucose uptake and lactate production were increased in GREM1-overexpressing breast cancer cells. GREM1 increased the expression of hexokinase-2 (HK2), which catalyzes the phosphorylation of glucose, the first step in glycolysis. In addition, GREM1 activated STAT3 transcription factor through the ROS-Akt signaling pathway. The ROS-Akt-STAT3 axis activated by GREM1 was involved in promoting glucose uptake by increasing the expression of HK2 in breast cancer cells. Therefore, our study suggested a new mechanism by which GREM1 is involved in breast cancer promotion by increasing glycolysis in breast cancer cells.
Collapse
Affiliation(s)
- Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Nam Ji Sung
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
19
|
Elek Z, Rónai Z, Keszler G, Harsányi L, Kontsek E, Herold Z, Herold M, Somogyi A, Bánlaki Z. Correlation between Expression Profiles of Key Signaling Genes in Colorectal Cancer Samples from Type 2 Diabetic and Non-Diabetic Patients. Life (Basel) 2020; 10:216. [PMID: 32971867 PMCID: PMC7555724 DOI: 10.3390/life10090216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
Several lines of epidemiological and biochemical evidence support the association of type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC). T2DM has been shown to impinge on the transcriptome of colon tumor cells, promoting their proliferation and invasion. In order to gain insight into diabetes-specific modulation of colon cancer signaling, we analyzed gene expression patterns of more than five hundred genes encoding signaling proteins on TaqMan OpenArray panels from colonoscopic colorectal tumor samples of type 2 diabetic and non-diabetic patients. In total, 48 transcripts were found to be differentially expressed in tumors of T2DM patients as compared to healthy colon samples. Enrichment analysis with the g:GOSt (Gene Ontology Statistics) functional profiling tool revealed that the underlying genes can be classified into five signaling pathways (in decreasing order of significance: Wnt (wingless-type)/β-catenin; Hippo; TNF (tumor necrosis factor); PI3K/Akt (phosphoinositide-3 kinase/protein kinase B), and platelet activation), implying that targeted downregulation of these signaling cascades might help combat CRC in diabetic patients. Transcript levels of some of the differentially expressed genes were also measured from surgically removed diabetic and non-diabetic CRC specimens by individual qPCR (quantitative real-time PCR) assays using the adjacent normal tissue mRNA levels as an internal control. The most significantly altered genes in diabetic tumor samples were largely different from those in non-diabetic ones, implying that T2DM profoundly alters the expression of signaling genes and presumably the biological characteristics of CRC.
Collapse
Affiliation(s)
- Zsuzsanna Elek
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.E.); (Z.R.); (Z.B.)
| | - Zsolt Rónai
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.E.); (Z.R.); (Z.B.)
| | - Gergely Keszler
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.E.); (Z.R.); (Z.B.)
| | - László Harsányi
- 1st Department of Surgery, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary;
| | - Endre Kontsek
- 2nd Department of Pathology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary;
| | - Zoltán Herold
- Department of Internal Medicine and Hematology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.H.); (M.H.); (A.S.)
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.H.); (M.H.); (A.S.)
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.H.); (M.H.); (A.S.)
| | - Zsófia Bánlaki
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary; (Z.E.); (Z.R.); (Z.B.)
| |
Collapse
|
20
|
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137:115455. [PMID: 32473315 DOI: 10.1016/j.bone.2020.115455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional secreted cytokines that act in a highly context-dependent manner. BMP action extends beyond the induction of cartilage and bone formation, to encompass pivotal roles in controlling tissue and organ homeostasis during development and adulthood. BMPs signal via plasma membrane type I and type II serine/threonine kinase receptors and intracellular SMAD transcriptional effectors. Exquisite temporospatial control of BMP/SMAD signalling and crosstalk with other cellular cues is achieved by a series of positive and negative regulators at each step in the BMP/SMAD pathway. The interaction of BMP ligand with its receptors is carefully controlled by a diverse set of secreted antagonists that bind BMPs and block their interaction with their cognate BMP receptors. Perturbations in this BMP/BMP antagonist balance are implicated in a range of developmental disorders and diseases, including cancer. Here, we provide an overview of the structure and function of secreted BMP antagonists, and summarize recent novel insights into their role in cancer progression and bone metastasis. Gremlin1 (GREM1) is a highly studied BMP antagonist, and we will focus on this molecule in particular and its role in cancer. The therapeutic potential of pharmacological inhibitors for secreted BMP antagonists for cancer and other human diseases will also be discussed.
Collapse
Affiliation(s)
- Grace M Todd
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, Meng J, Chi H, Duan L, Liu X. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc 2020; 9:e016586. [PMID: 32750294 PMCID: PMC7792280 DOI: 10.1161/jaha.120.016586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Heterozygous mutation in BMP (bone morphogenetic protein) receptor 2 is rare, but BMP cascade suppression is common in congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH); however, the underling mechanism of BMP cascade suppression independent of BMP receptor 2 mutation is unknown. Methods and Results Pulmonary hypertensive status observed in CHD-PAH was surgically reproduced in rats. Gremlin-1 expression was increased, but BMP cascade was suppressed, in lungs from CHD-PAH patients and shunted rats, whereas shunt correction retarded these trends in rats. Immunostaining demonstrated increased gremlin-1 was mainly in the endothelium and media of remodeled pulmonary arteries. However, mechanical stretch time- and amplitude-dependently stimulated gremlin-1 secretion and suppressed BMP cascade in distal pulmonary arterial smooth muscle cells from healthy rats. Under static condition, gremlin-1 significantly promoted the proliferation and inhibited the apoptosis of distal pulmonary arterial smooth muscle cells from healthy rats via BMP cascade. Furthermore, plasma gremlin-1 closely correlated with hemodynamic parameters in CHD-PAH patients and shunted rats. Conclusions Serving as an endogenous antagonist of BMP cascade, the increase of gremlin-1 in CHD-PAH may present a reasonable mechanism explanation for BMP cascade suppression independent of BMP receptor 2 mutation.
Collapse
Affiliation(s)
- Liukun Meng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xiao Teng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yao Liu
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Chao Yang
- Department of Organ Transplantation and Thoracic Surgery The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Shengwei Wang
- Department of Cardiovascular Surgery Center Beijing Anzhen HospitalCapital Medical UniversityBeijing Institute of Heart, Lung and Blood Vascular Diseases Beijing China
| | - Wen Yuan
- Medical Research Center Beijing Chao-Yang HospitalCapital Medical University Beijing China
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension Research Beijing Chao-Yang HospitalCapital Medical University Beijing China
| | - Lihua Duan
- Department of Rheumatology and Immunology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang Jiangxi China
| | - Xiaoyan Liu
- Medical Research Center Beijing Chao-Yang HospitalCapital Medical University Beijing China.,Heart Center and Beijing Key Laboratory of Hypertension Research Beijing Chao-Yang HospitalCapital Medical University Beijing China
| |
Collapse
|
22
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
23
|
Wu Z, Liu R, Miao X, Li D, Zou Q, Yuan Y, Yang Z. Prognostic and clinicopathological significance of Hapto and Gremlin1 expression in extrahepatic cholangiocarcinoma. J Cancer 2020; 11:199-207. [PMID: 31892986 PMCID: PMC6930392 DOI: 10.7150/jca.36886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Some studies have demonstrated that Hapto and Gremlin1 play an important biological role in many neoplasms. However, the role of Hapto and Gremlin1 in extrahepatic cholangiocarcinoma (ECC) remains to be revealed. Thus, this study investigated the prognostic and clinicopathological significance of Hapto and Gremlin1 expression in ECC. Methods: We examined Hapto and Gremlin1 expression in 100 ECC, 30 peritumoral tissues, 10 adenoma and 15 normal biliary tract tissues using EnVision immunohistochemistry. The relationship between Hapto and Gremlin 1 expression and clinicopathological parameters was evaluated using the χ2 test or Fisher's exact test. The overall survival of patients was analyzed using Kaplan-Meier univariate survival analysis and log-rank tests. Results: Hapto and Gremlin1 proteins were overexpressed in ECC compared to peritumoral tissues, adenoma, and normal biliary tract (P<0.05 or P<0.01). The positive rate of Hapto and Gremlin1 expression was significantly higher in cases with poor differentiation, lymph node metastasis, invasion of surrounding tissues and organs, a tumor-node-metastasis (TNM) stage of III or IV and no resection. Kaplan-Meier survival analysis showed that ECC patients with positive Hapto and/or Gremlin1 expression survived significantly shorter than patients with negative Hapto and/or Gremlin1 expression. Cox multivariate analysis revealed that positive Hapto and Gremlin1 expression were independent poor prognostic factors in ECC patients. Conclusion: The present study indicated that positive Hapto and/or Gremlin1 expression are closely associated with the pathogenesis, clinical, pathological and biological behaviors, and poor prognosis in ECC.
Collapse
Affiliation(s)
- Zhengchun Wu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rushi Liu
- School of Medicine. Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Fang X, Liu X, Weng C, Wu Y, Li B, Mao H, Guan M, Lu L, Liu G. Construction and Validation of a Protein Prognostic Model for Lung Squamous Cell Carcinoma. Int J Med Sci 2020; 17:2718-2727. [PMID: 33162799 PMCID: PMC7645351 DOI: 10.7150/ijms.47224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Lung squamous cell carcinoma (LUSCC), as the major type of lung cancer, has high morbidity and mortality rates. The prognostic markers for LUSCC are much fewer than lung adenocarcinoma. Besides, protein biomarkers have advantages of economy, accuracy and stability. The aim of this study was to construct a protein prognostic model for LUSCC. The protein expression data of LUSCC were downloaded from The Cancer Protein Atlas (TCPA) database. Clinical data of LUSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 237 proteins were identified from 325 cases of LUSCC patients based on the TCPA and TCGA database. According to Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, a prognostic prediction model was established which was consisted of 6 proteins (CHK1_pS345, CHK2, IRS1, PAXILLIN, BRCA2 and BRAF_pS445). After calculating the risk values of each patient according to the coefficient of each protein in the risk model, the LUSCC patients were divided into high risk group and low risk group. The survival analysis demonstrated that there was significant difference between these two groups (p= 4.877e-05). The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.699, which suggesting that the prognostic risk model could effectively predict the survival of LUSCC patients. Univariate and multivariate analysis indicated that this prognostic model could be used as independent prognosis factors for LUSCC patients. Proteins co-expression analysis showed that there were 21 proteins co-expressed with the proteins in the risk model. In conclusion, our study constructed a protein prognostic model, which could effectively predict the prognosis of LUSCC patients.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| |
Collapse
|
25
|
Ling XH, Fu H, Chen ZY, Lu JM, Zhuo YJ, Chen JH, Zhong WD, Jia Z. miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncol Rep 2019; 42:991-1004. [PMID: 31322225 PMCID: PMC6667922 DOI: 10.3892/or.2019.7231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Previous researchers have demonstrated that microRNA-505 (miR-505) is negatively correlated with progression in various malignancies. However, the detailed function and molecular mechanisms of miR-505 have yet to be completely elucidated in prostate cancer (PCa). The present study initially identified the potential role of miR-505 in PCa using in vitro experiments, and demonstrated that restoration of miR-505 inhibited proliferation, invasion and migration, yet induced cell cycle arrest and promoted apoptosis in PCa cells. The present study also demonstrated that the expression of neuron-glial-related cell adhesion molecule (NRCAM) was markedly upregulated in PCa cells when compared with benign prostate epithelium. A luciferase reporter assay demonstrated that miR-505 directly targeted NRCAM in PCa cells. In addition, NRCAM stimulation antagonized the inhibitory effects of miR-505 on the proliferation, migration, and invasion of PCa cells. Furthermore, lower levels of miR-505 and higher levels of NRCAM may serve as a predictor of worse biochemical recurrence-free survival or disease-free survival in patients with PCa. In conclusion, the present study revealed the inhibitory effects of miR-505 on PCa tumorigenesis, which potentially occur by targeting NRCAM. The combined analysis of NRCAM and miR-505 may predict disease progression in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Xiao-Hui Ling
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Fu
- Department of Urology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jia-Hong Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
26
|
PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:96. [PMID: 31043858 PMCID: PMC6460850 DOI: 10.1186/s12935-019-0800-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background The homeodomain transcription factor, PITX2 is associated with tumorigenesis of multiple cancers. In this research, we aimed to study the expression, function and mechanism of PITX2 in lung adenocarcinoma (LUAD). Methods The TCGA dataset was used to analyze the expression and clinical significance of PITX2 in LUAD. The expression of PITX2 in tumor samples and LUAD cell lines was examined by quantitative real-time PCR (qRT-PCR) and western blotting. Small interfering RNAs (siRNAs) were constructed to knockdown PITX2 and to determine the physiological function of PITX2 in vitro. Xenograft model was used to confirm the role of PITX2 in vivo. Results PITX2 was overexpressed in LUAD and patients with high level of PITX2 had a worse overall survival and an advanced clinical stage. Knockdown of PITX2 inhibited cell proliferation, migration and invasion of LUAD cells. Further study revealed that the oncogenic role of PITX2 was dependent on activating Wnt/β-catenin signaling pathway, especially by transcriptionally regulating the Wnt gene family member, WNT3A. Lastly, we identified miR-140-5p as a negative mediator of PITX2 by binding its 3′UTR and ectopic expression of miR-140-5p inhibited progression of LUAD cells via suppressing the expression of PITX2. Conclusions Up-regulation of PITX2 acts as an oncogene in LUAD by activating Wnt/β-catenin signaling pathway, suggesting that PITX2 may serve as a novel diagnostic and prognostic biomarker in LUAD. Electronic supplementary material The online version of this article (10.1186/s12935-019-0800-7) contains supplementary material, which is available to authorized users.
Collapse
|