1
|
Bai J, Yang G, Yu Q, Chi Q, Zeng X, Qi W. SATB1 in cancer progression and metastasis: mechanisms and therapeutic potential. Front Oncol 2025; 15:1535929. [PMID: 40071088 PMCID: PMC11893431 DOI: 10.3389/fonc.2025.1535929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a major global health challenge, with prostate cancer, lung cancer, colorectal cancer, and breast cancer accounting for nearly half of all diagnoses. Despite advancements in cancer treatment, metastasis to distant organs continues to be the leading cause of cancer-related mortality. The progression of cancer involves the alteration of numerous genes, with dynamic changes in chromatin organization and histone modifications playing a critical role in regulating cancer-associated genes. Special AT-rich sequence-binding protein 1 (SATB1), a critical chromatin organizer, plays a pivotal role in cancer progression by regulating gene expression, chromatin remodeling, and cell signaling pathways. SATB1 binds to AT-rich DNA sequences, acting as a scaffold for chromatin-modifying enzymes and transcription factors, thus coordinating the regulation of extensive gene networks. Its overexpression has been implicated in a wide range of cancers and is associated with poor prognosis, aggressive tumor phenotypes, and enhanced epithelial-mesenchymal transition (EMT). Moreover, SATB1's activity is modulated by microRNAs (miRNAs) and post-translational modifications, further contributing to its complex regulatory functions. Given its crucial involvement in cancer progression and metastasis, SATB1 has emerged as a promising target for novel therapeutic strategies. This review delves into the molecular mechanisms of SATB1 in cancer and explores potential therapeutic approaches for targeting this key regulator in cancer treatment.
Collapse
Affiliation(s)
- Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Gege Yang
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qi Yu
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qianya Chi
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Lu Y, Yang B, Shen A, Yu K, Ma M, Li Y, Wang H. LncRNA UCA1 promotes vasculogenic mimicry by targeting miR-1-3p in gastric cancer. Carcinogenesis 2024; 45:658-672. [PMID: 38742453 DOI: 10.1093/carcin/bgae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/10/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
Long noncoding RNA urothelial carcinoma-associated 1 (UCA1) has been implicated in several tumors. UCA1 promotes cell proliferation, migration, and invasion of gastric cancer (GC) cells, but the molecular mechanism has not been fully elucidated. This study revealed the oncogenic effects of UCA1 on cell growth and invasion. Furthermore, UCA1 expression was significantly correlated with the overall survival of GC patients, and the clinicopathological indicators, including tumor size, depth of invasion, lymph node metastasis, and TNM stage. Additionally, miR-1-3p was identified as a downstream target of UCA1, which was negatively regulated by UCA1. MiR-1-3p inhibited cell proliferation and vasculogenic mimicry (VM), and induced cell apoptosis by upregulating BAX, BAD, and tumor suppressor TP53 expression levels. Moreover, miR-1-3p almost completely reversed the oncogenic effect caused by UCA1, including cell growth, migration, and VM formation. This study also confirmed that UCA1 promoted tumor growth in vivo. In this study, we also revealed the correlation between UCA1 and VM formation, which is potentially crucial for tumor metastasis. Meanwhile, its downstream target miR-1-3p inhibited VM formation in GC cells. In summary, these findings indicate that the UCA1/miR-1-3p axis is a potential target for GC treatment.
Collapse
Affiliation(s)
- Yida Lu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Bo Yang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Aolin Shen
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Kexun Yu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - MengDi Ma
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| | - Huizhen Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, China
| |
Collapse
|
3
|
Huldani H, Alshahrani SH, Almajidi YQ, Romero-Parra RM, Hjazi A, Alsaab HO, Oudaha KH, Hussien BM, Ahmed M, Fard SRH. miR-495-3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023; 248:154610. [PMID: 37307621 DOI: 10.1016/j.prp.2023.154610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Noncoding RNAs are a type of cellular RNA not having the ability to translate into proteins. As an important type of ncRNA with a length of about 22 nucleotides (nt), microRNAs were revealed to contribute to regulating the various cellular functions via regulating the protein translation of target genes. Among them, available studies proposed that miR-495-3p is a pivotal player in cancer pathogenesis. These studies showed that the expression level of miR-495-3p decreased in various cancer cells, suggesting its tumor suppressor role in cancer pathogenesis. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are the important regulators of miR-495-3p via sponging it, leading to increased expression levels of its target genes. Moreover, miR-495-3p was shown to have a promising potential to be a prognostic and diagnostic biomarker in cancer. MiR-495-3p also could affect the resistance of cancer cells to chemotherapy agents. Here, we discussed the molecular mechanisms of miR-495-3p in various cancer including breast cancer. In addition, we discussed the miR-495-3p potential as a prognostic and diagnostic biomarker as well as its activity in cancer chemotherapy. Finally, we discussed the current limitations regarding the use of microRNAs in clinics and the future prospects of microRNAs.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | - Yasir Qasim Almajidi
- Department of pharmacy (pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Xu J, Song J, Chen X, Huang Y, You T, Zhu C, Shen X, Zhao Y. Genomic instability-related twelve-microRNA signatures for predicting the prognosis of gastric cancer. Comput Biol Med 2023; 155:106598. [PMID: 36764156 DOI: 10.1016/j.compbiomed.2023.106598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) ranks fifth among all malignant tumors globally, especially in East Asia, and has attracted extensive attention and research. MicroRNA (miRNA) modulation during genomic instability (GI) may be associated with the development and metastasis of malignant tumors. We aimed to identify GI-related miRNA signatures for the prediction of GC prognosis. We constructed a GI-related miRNA signature (GIMiSig) scheme based on The Cancer Genome Atlas (TCGA) training set (n = 389), which was later verified based on the TCGA test set (n = 194). GI-related miRNAs were identified by analyzing somatic mutation profiles and miRNA expression. A GI-related miRNA-gene co-expression network was also constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed to reveal possible biological pathways associated with GI-related miRNAs. The correlation of the GIMiSig with clinical factors of the TCGA dataset was analyzed. MiRNA mimics and inhibitors were used to evaluate the biological functions of miR-100-5p and miR-145-3p in GC cell lines AGS and MKN-45. This study identified a GI-related 12-miRNA signature for the prediction of GC prognosis. GIMiSig scores, similar to tumor stages, showed significant correlations with overall survival (OS, p < 0.05). GIMiSig showed high accuracy in predicting GC prognosis. MiR-100-5p and miR-145-3p promoted cell growth, invasion, and migration but inhibited apoptosis in GC cells. We report a reliable GI-related 12-miRNA signature for predicting GC prognosis. Furthermore, miR-100-5p and miR-145-3p may promote GC cell growth, invasion, and migration.
Collapse
Affiliation(s)
- Jingxuan Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingpeng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao You
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ce Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yaping Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Xiao T, Jie Z, Zou J, Fu L. Overexpression of SATB1 correlates with epithelial-mesenchymal transition and lymphatic metastasis in gastric cancer. Ann Diagn Pathol 2023; 62:152074. [PMID: 36495733 DOI: 10.1016/j.anndiagpath.2022.152074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor with a high mortality rate, and lymphatic metastasis is the main mode of GC metastasis. The nuclear transcriptional regulatory protein SATB1 has been confirmed to be closely related to GC metastasis, but the mechanism has not been elucidated. METHODS Epithelial-mesenchymal transition (EMT) is known as the pivotal process of GC metastasis. To evaluate the relationship between SATB1 and EMT in GC metastasis, the immunohistochemical method was used to detect the expression of SATB1, E-cadherin, N-cadherin, Vimentin protein in 52 paraffin-embedded specimens of gastric cancer, and analyze the relationship between their expression and pathological parameters. RESULTS Abnormal positive expression of SATB1 protein in paraffin-embedded tumor tissues was positively correlated with local invasion, lymph node metastasis, and TNM staging in gastric cancer. There was a statistically significant difference in the expression of SATB1 between the early stage of gastric cancer (stage I) and the advanced stage (stageII, III, IV). Moreover, SATB1 expression was positively correlated to N-cadherin and Vimentin but negatively to E-cadherin from Stages I to IV. CONCLUSION The GC patients with overexpression of SATB1 tended to have advanced stage and lymph node metastasis. SATB1 was positively correlated with EMT in Gastric Cancer.
Collapse
Affiliation(s)
- Tao Xiao
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, China; Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Zhigang Jie
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Lei Fu
- Department of Stomatology, First Hospital of Nanchang City, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
6
|
Luo J, Yuan J, Yang Y, Jiang Y, Yan J, Tong Q. Special AT-rich sequence binding protein 1 promotes multidrug resistance in gastric cancer by regulation of Ezrin to alter subcellular localization of ATP-binding cassette transporters. Cancer Sci 2022; 114:1353-1364. [PMID: 36522839 PMCID: PMC10067392 DOI: 10.1111/cas.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance is a primary factor in the poor response to chemotherapy and subsequent death in gastric cancer patients. However, the molecular mechanisms involved remain unclear. In this study, the high expression of special AT-rich sequence binding protein 1 (SATB1) in gastric cancer was found to be associated with reduced sensitivity to various chemotherapy drugs. Our results demonstrate that SATB1 can promote chemotherapy resistance in gastric cancer in vitro and in vivo. SATB1 exerts its effect by enhancing the activity of multiple ATP-binding cassette (ABC) transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) in gastric cancer cell lines. We also found that SATB1 affects ABC transporters by altering the subcellular localization of the ABC transporter rather than its expression. Subsequently, we confirmed that Ezrin binds to various ABC transporters and affects their subcellular localization. In addition, we found that SATB1 can also bind to the Ezrin promoter and regulate its expression. In the present study, we elucidate the mechanism of SATB1-mediated multidrug resistance in gastric cancer, providing a basis for SATB1 as a potential target for reversal of resistance.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Sweef O, Yang C, Wang Z. The Oncogenic and Tumor Suppressive Long Non-Coding RNA-microRNA-Messenger RNA Regulatory Axes Identified by Analyzing Multiple Platform Omics Data from Cr(VI)-Transformed Cells and Their Implications in Lung Cancer. Biomedicines 2022; 10:2334. [PMID: 36289596 PMCID: PMC9598927 DOI: 10.3390/biomedicines10102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure to hexavalent chromium (Cr(VI)) causes lung cancer in humans, however, the underlying mechanism has not been well understood. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are commonly studied non-coding RNAs. miRNAs function mainly through interaction with the 3'-untranslated regions of messenger RNAs (mRNAs) to down-regulate gene expression. LncRNAs have been shown to function as competing endogenous RNAs (ceRNAs) to sponge miRNAs and regulate gene expression. It is now well accepted that lncRNAs and miRNAs could function as oncogenes or tumor suppressors. Dysregulations of lncRNAs and miRNAs have been shown to play important roles in cancer initiation, progression, and prognosis. To explore the mechanism of Cr(VI) lung carcinogenesis, we performed lncRNA, mRNA, and miRNA microarray analysis using total RNAs from our previously established chronic Cr(VI) exposure malignantly transformed and passage-matched control human bronchial epithelial BEAS-2B cells. Based on the differentially expressed lncRNAs, miRNAs, and mRNAs between the control (BEAS-2B-Control) and Cr(VI)-transformed (BEAS-Cr(VI)) cells and by using the lncRNA-miRNA interaction and miRNA target prediction algorithms, we identified three oncogenic (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and three tumor suppressive (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) lncRNA-miRNA-mRNA regulatory axes. Moreover, the relevance of these three oncogenic and three tumor suppressive lncRNA-miRNA-mRNA regulatory axes in lung cancer was explored by analyzing publicly available human lung cancer omics datasets. It was found that the identified three oncogenic lncRNA-miRNA-mRNA regulatory axes (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and the three tumor suppressive lncRNA-miRNA-mRNA regulatory axes (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) have significant diagnostic and prognosis prediction values in human lung cancer. In addition, our recent studies showed that Cr(VI)-transformed cells display cancer stem cell (CSC)-like properties. Further bioinformatics analysis identified the oncogenic lncRNA-miRNA-mRNA regulatory axes as the potential regulators of cancer stemness. In summary, our comprehensive analysis of multiple platform omics datasets obtained from Cr(VI)-transformed human bronchial epithelial cells identified several oncogenic and tumor suppressive lncRNA-miRNA-mRNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis and lung cancer in general.
Collapse
Affiliation(s)
| | | | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
8
|
Abedi Kichi Z, Soltani M, Rezaei M, Shirvani-Farsani Z, Rojhannezhad M. The Emerging role of EMT-related lncRNAs in therapy resistance and their application as biomarkers. Curr Med Chem 2022; 29:4574-4601. [PMID: 35352644 DOI: 10.2174/0929867329666220329203032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/09/2022]
Abstract
Cancer is the world's second largest cause of death. The most common cancer treatments are surgery, radiation therapy, and chemotherapy. Drug resistance, epithelial-to-mesenchymal transition (EMT), and metastasis are all pressing issues in cancer therapy today. Increasing evidence showed that drug-resistant and EMT are co-related with each other. Indeed, drug-resistant cancer cells possess enhanced EMT and invasive ability. Recent researches have demonstrated lncRNAs (long noncoding RNAs) are noncoding transcripts, which play an important role in the regulation of EMT, metastasis, and drug resistance in different cancers. However, the relationships among lncRNAs, EMT, and drug resistance are still unclear. These effects could be exerted via several signaling pathways such as TGF-β, PI3K-AKT, and Wnt/β-catenin. Identifying the crucial regulatory roles of lncRNAs in these pathways and processes leads to the development of novel targeted therapies. We review the key aspects of lncRNAs associated with EMT and therapy resistance. We focus on the crosstalk between lncRNAs and molecular signaling pathways affecting EMT and drug resistance. Moreover, each of the mentioned lncRNAs could be used as a potential diagnostic, prognostic, and therapeutic biomarker for cancer. Although, there are still many challenges to investigate lncRNAs for clinical applications.
Collapse
Affiliation(s)
- Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany
| | - Mona Soltani
- Department of Plant Production & Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Mina Rezaei
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of life Sciences and Technology, Shahid Beheshti University, Tehran, IR Iran
| | - Mahbubeh Rojhannezhad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
9
|
Changes in the Expression of Long Non-Coding RNA SDMGC and Its Target Gene, TRIM16, in Patients with Gastric Cancer. J Gastrointest Cancer 2022; 54:44-50. [PMID: 34978663 DOI: 10.1007/s12029-021-00791-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Gastric cancer (GC) has been identified worldwide as one of the most common cancer types with a high mortality rate. LncRNA SDMGC has been recognized as an oncogene with regulatory effects on its target gene, TRIM16, which is believed to play a tumor-suppressing role in various cancers. Both these genes are involved in GC development, tumorigenesis, invasion, and metastasis. The current study is aimed to investigate the association of SDMGC and TRIM16 with GC susceptibility and GC patients' clinicopathological characteristics. METHODS A total of 100 GC tissues and their corresponding adjacent non-tumor tissues were sampled. Total RNA was then isolated to measure SDMGC and TRIM16 expression levels using quantitative reverse transcriptase (qRT)-PCR. Statistical analyses including the Mann-Whitney U test and correlation tests were carried out using R v4.5. GraphPad Prism was also used to plot the receiver operating curve (ROC). RESULTS The results demonstrated the significant overexpression of lncRNAs SDMGC and downregulation of TRIM16 in GC tissues as compared to their corresponding marginal normal tissue samples (P = 0.005 and P = 0.009, respectively). No association with clinicopathological variables was observed for either SDMGC or TRIM16. Moreover, the results demonstrated a small positive correlation between SDMGC and TRIM16. Evaluation of the diagnostic value of SDMGC and TRIM16 showed poor biomarker potency for these genes. CONCLUSION In conclusion, the results indicated an increase in the expression of SDMGC and a decline in the expression pattern of TRIM16 among the Iranian population. The results indicated a key tumor-accelerative function of SDMGC and a pivotal tumor-suppressing role of TRIM16 in GC patients.
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs of 17-22 nucleotides in length with a critical function in posttranscriptional gene regulation. These master regulators are themselves subject to regulation both transcriptionally and posttranscriptionally. Recently, miRNA function has been shown to be modulated by exogenous RNA molecules that function as miRNA sponges. Interestingly, endogenous transcripts such as transcribed pseudogenes, long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and mRNAs may serve as natural miRNA sponges. These transcripts, which bind to miRNAs and competitively sequester them away from their targets, are naturally existing endogenous miRNA sponges, called competing endogenous RNAs (ceRNAs). Here we present a historical background of miRNAs, exogenous and endogenous miRNA sponges as well as some examples of endogenous miRNA sponges involved in regulatory mechanisms associated with various diseases, developmental stages, and other cellular processes.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
11
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
12
|
Liu SJ, Li ZQ, Wang XY, Liu F, Xiao ZM, Zhang DC. lncRNA UCA1 induced by SP1 and SP3 forms a positive feedback loop to facilitate malignant phenotypes of colorectal cancer via targeting miR-495. Life Sci 2021; 277:119569. [PMID: 33961855 DOI: 10.1016/j.lfs.2021.119569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022]
Abstract
AIMS Long noncoding RNA (LncRNA) urothelial cancer associated 1 (UCA1) was dysregulated in colorectal cancers (CRC) and promoted tumor progression of CRC. The aims of this study are to further investigate the underlying mechanism. MAIN METHODS Short hairpin RNAs (shRNAs) were applied for gene knockdown. microRNA mimic and pcDNA-UCA1 plasmids were transfected for miR-495 and UCA1 overexpression, respectively. MTT was applied to determine cell viability and sensitivity of 5-fluorouracil (FU). Transwell assays were performed to evaluate cell migration/invasion. Angiogenesis was evaluated by tube formation. Western blotting and quantitative PCR were utilized for protein and mRNA detection, respectively. The interaction of UCA1, miR-495 and SP1/SP3 were explored by dual-luciferase assay. RNA pulldown was adopted to determine the UCA1/miR-495 interaction. KEY FINDINGS UCA1 was significantly upregulated in CRC tissues. UCA1 enhanced cell proliferation, migration/invasion, angiogenesis, epithelial-mesenchymal transition, and resistance to 5-FU in CRC cell lines. MiR-495 was inversely correlated to the expression of UCA1. The results indicated that UCA1 sponged miR-495, leading to the disinhibition of SP1/SP3 expression. SP1/SP3 induced the expression of DNA methyltransferases and, in turn, contributed to UCA1 mediated tumor-promoting actions. Reduction of SP1/SP3 exerted anti-cancer effects, which can be reversed by forced expression of UCA1. SIGNIFICANCE UCA1-miR-495-SP1/SP3 axis is dysregulated in CRC and contributed to malignant phenotypes of CRC. UCA1-SP1/SP3 may form a positive feedback loop in CRC.
Collapse
Affiliation(s)
- Shao-Jun Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China
| | - Zhao-Qi Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China
| | - Zhi-Ming Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China
| | - De-Cai Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410013, Hunan Province, PR China.
| |
Collapse
|
13
|
Yang A, Liu X, Liu P, Feng Y, Liu H, Gao S, Huo L, Han X, Wang J, Kong W. LncRNA UCA1 promotes development of gastric cancer via the miR-145/MYO6 axis. Cell Mol Biol Lett 2021; 26:33. [PMID: 34238213 PMCID: PMC8268585 DOI: 10.1186/s11658-021-00275-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- An Yang
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Xin Liu
- Affiliated Hospital of Hebei University of Engineering, Handan, 056002, Hebei Province, China
| | - Ping Liu
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Yunzhang Feng
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Hongbo Liu
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Shen Gao
- Handan First Hospital, Handan, 056002, Hebei Province, China
| | - Limin Huo
- Handan First Hospital, Handan, 056002, Hebei Province, China
| | - Xinyan Han
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Jurong Wang
- Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Wei Kong
- Handan Central Hospital, Handan, 056001, Hebei Province, China.
| |
Collapse
|
14
|
Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel) 2021; 12:genes12071036. [PMID: 34356052 PMCID: PMC8305186 DOI: 10.3390/genes12071036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although ignored in the past, with the recent deepening of research, significant progress has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes, miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy. Considerable progress has been made in understanding the molecular mechanism and treatment of GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription. The study of the involvement of ceRNA in GC could improve our understanding of GC and lead to the identification of potential effective therapeutic targets. The research strategy for ceRNA is mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each sample through microarray or sequencing technology, predict the ceRNA regulatory network, and, finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC, and briefly introduce the role of ncRNAs in the GC’s ceRNA network.
Collapse
Affiliation(s)
- Junhong Ye
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
| | - Jifu Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China;
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China;
- Correspondence: ; Tel.: +86-23-6825-0885
| |
Collapse
|
15
|
Ramli S, Sim MS, Guad RM, Gopinath SCB, Subramaniyan V, Fuloria S, Fuloria NK, Choy KW, Rana S, Wu YS. Long Noncoding RNA UCA1 in Gastrointestinal Cancers: Molecular Regulatory Roles and Patterns, Mechanisms, and Interactions. JOURNAL OF ONCOLOGY 2021; 2021:5519720. [PMID: 33936199 PMCID: PMC8055404 DOI: 10.1155/2021/5519720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rhanye M. Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Subash C. B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Neeraj K. Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Sungai Buloh 47000, Selangor, Malaysia
| | - Sohel Rana
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore-7400, Bangladesh
| | - Yuan Seng Wu
- Department of Biochemistry, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| |
Collapse
|
16
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Chen F, Liu L, Wang S. Long non-coding RNA NORAD exhaustion represses prostate cancer progression through inhibiting TRIP13 expression via competitively binding to miR-495-3p. Cancer Cell Int 2020; 20:323. [PMID: 32694945 PMCID: PMC7368683 DOI: 10.1186/s12935-020-01371-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Prostate cancer (PCa) is a malignant heterogeneous tumor that threatens men's health. Long non-coding RNA activated by DNA damage (NORAD) and microRNA-495-3p (miR-495-3p) have been revealed to be concerned with the tumorigenesis and progression of diverse cancers. Nevertheless, the regulatory mechanism between NORAD and miR-495-3p in PCa is unclear. Methods The expression of NORAD, miR-495-3p, and thyroid hormone receptor interactor 13 (TRIP13) mRNA was detected with quantitative real-time polymerase chain reaction (qRT-PCR). The levels of Bcl-2, Bax, Cleaved-casp-3, TRIP13, cyclin D1, and PCNA were detected through western blot analysis. The proliferation, apoptosis, migration, and invasion of PCa cells were assessed through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), flow cytometry, or transwell assays. The relationship between NORAD or TRIP13 and miR-495-3p was confirmed via dual-luciferase reporter, RIP, or RNA pull-down assays. Results NORAD and TRIP13 were upregulated while miR-495-3p was downregulated in PCa tissues and cells. Both NORAD silencing and miR-495-3p upregulation accelerated cell apoptosis and curbed cell proliferation, migration, and invasion in PCa cells. Also, NORAD silencing repressed tumor growth in vivo. Notably, NORAD modulated TRIP13 expression by competitively binding to miR-495-3p. Furthermore, miR-495-3p repression reversed NORAD knockdown-mediated effects on the malignant behaviors of PCa cells. Moreover, TRIP13 enhancement overturned the effects of miR-495-3p overexpression on the proliferation, apoptosis, migration, and invasion of PCa cells. Conclusion NORAD depletion inhibited PCa advancement via the miR-495-3p/ TRIP13 axis, which provided a potential tactic for PCa treatment.
Collapse
Affiliation(s)
- Fengling Chen
- Department of Urology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Ling Liu
- Department of Surgery, Huaihe Hospital, Henan University, No. 115, Ximen Street, Longting District, Kaifeng, 475000 Henan China
| | - Shuya Wang
- Department of Surgery, Huaihe Hospital, Henan University, No. 115, Ximen Street, Longting District, Kaifeng, 475000 Henan China
| |
Collapse
|
18
|
Duan Q, Xu M, Wu M, Zhang X, Gan M, Jiang H. Long noncoding RNA UCA1 promotes cell growth, migration, and invasion by targeting miR-143-3p in oral squamous cell carcinoma. Cancer Med 2020; 9:3115-3129. [PMID: 32130788 PMCID: PMC7196043 DOI: 10.1002/cam4.2808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The long noncoding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) is dysregulated in many types of tumors; however, its role in oral squamous cell carcinoma (OSCC) remains unclear. This study aims to determine the effect of lncRNA UCA1 on OSCC. METHODS Fifty-six paired OSCC and adjacent nontumorous tissues were collected and the levels of UCA1, miR-143-3p, and MYO6 in the tissues were evaluated by qRT-PCR. In in vitro experiments, cell viability, migration, and invasion were measured by, respectively, performing CCK-8, wound healing, and transwell assays. The target relationships among UCA1, miR-143-3p, and MYO6 were verified by dual-luciferase assay. Western blot and immunohistochemistry were carried out to determine the protein levels. Xenograft mouse model was established to explore the effects of UCA1 in vivo. RESULTS Levels of UCA1 and MYO6 were increased significantly in OSCC, while the level of miR-143-3p was decreased compared with the adjacent nontumorous tissues. UCA1 promoted OSCC cell growth, migration, and invasion both in vitro and in vivo, while miR-143-3p reversed the progression. MYO6 was validated as a target for miR-143-3p, and MYO6 overexpression reversed the effects of miR-143-3p mimic on OSCC cells. CONCLUSION LncRNA UCA1 contributes to the proliferation and metastasis of OSCC cells by targeting miR-143-3p and upregulating its downstream gene MYO6. UCA1 could serve as a promising novel target therapy for treatment of OSCC.
Collapse
Affiliation(s)
- Qingyun Duan
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
- Department of Oral and Maxillofacial SurgeryAffiliated Hangzhou First People's HospitalMedical College of Zhejiang UniversityHangzhouZhejiangChina
| | - Mei Xu
- Department of OphtalmologyHangzhou Jianggan District People's HospitalHangzhouZhejiangChina
| | - Meng Wu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Huaian No.1 People's Hospital of Nanjing Medical UniversityHuaianJiangsuChina
| | - Xiong Zhang
- Department of Oral and Maxillofacial SurgeryAffiliated Hangzhou First People's HospitalMedical College of Zhejiang UniversityHangzhouZhejiangChina
| | - Min Gan
- Department of Oral and Maxillofacial SurgeryAffiliated Hangzhou First People's HospitalMedical College of Zhejiang UniversityHangzhouZhejiangChina
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsuChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
19
|
Chen C, Wang X, Liu T, Tang X, Liu Y, Liu T, Zhu J. Overexpression of long non-coding RNA RP11-363E7.4 inhibits proliferation and invasion in gastric cancer. Cell Biochem Funct 2020; 38:921-931. [PMID: 32141108 PMCID: PMC7586934 DOI: 10.1002/cbf.3514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
LncRNA RP11‐363E7.4 has been shown to be downregulated in gastric cancer (GC), while the effect of lncRNA RP11‐363E7.4 on GC and its potential molecular mechanisms is unclear. The purpose of this study was to explore the functional role and underlying molecular mechanisms of lncRNA RP11‐363E7.4 involved in GC progress.To address the question, quantitative real‐time PCR assay was performed to confirm lncRNA RP11‐363E7.4 expression levels in GC tissues and cell lines. Cell proliferation, apoptosis, migration and invasion were estimated using Cell Counting Kit‐8, colony formation, scratch wound healing and Transwell assays. Potential molecular mechanisms were evaluated using western blot assay. The results showed that lncRNA RP11‐363E7.4 was significantly downregulated in GC cell lines and 82 paired tissues. The correlation between expression and clinicopathological features indicated that low expression of lncRNA RP11‐363E7.4 was associated with T stage (P = .010). Functional experiments showed that overexpression of lncRNA RP11‐363E7.4 prevented proliferation, migration, and invasion and induced apoptosis of GC cells. Western blot assay revealed that lncRNA RP11‐363E7.4 functioned via the p53, Bax/Bcl‐2, β‐catenin pathway. In summary, this study revealed that lncRNA RP11‐363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. Significance of the study:LncRNA RP11‐363E7.4 has been shown to be downregulated in GC, while the effect of lncRNA RP11‐363E7.4 on GC and its potential molecular mechanism is unclear. We revealed that lncRNA RP11‐363E7.4 functioned as a tumour suppressor by inhibiting proliferation, migration, and invasion and inducing apoptosis of GC cells. LncRNA RP11‐363E7.4 might become an attractive diagnostic and prognostic biomarker of GC and a promising target for GC treatment.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Wang
- Department of Oncology Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohuan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tong Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiaming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Zhao X, Zhong Q, Cheng X, Wang S, Wu R, Leng X, Shao L. miR-449c-5p availability is antagonized by circ-NOTCH1 for MYC-induced NOTCH1 upregulation as well as tumor metastasis and stemness in gastric cancer. J Cell Biochem 2020; 121:4052-4063. [PMID: 31943342 DOI: 10.1002/jcb.29575] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC), identified as the most common gastrointestinal malignancy, is one of the primary causes of cancer-related mortality in the world. Although surgery and chemotherapy for GC treatment have been improved, the 5-year overall survival rate is still unsatisfactory. Circ-NOTCH1 is a novel circular RNA derived from its host gene NOTCH1, and has not been studied in any cancers. Here we explored the potential role and mediatory mechanism of circ-NOTCH1 in GC. In this study, circ-NOTCH1 exhibited increased expression in GC tissues and cells. Suppression of circ-NOTCH1 inhibited cell migration, invasion, tumor spheroids number, and side population ratio. Circ-NOTCH1 also promoted GC growth and metastasis in vivo. Additionally, it was found that circ-NOTCH1 could bind to miR-449c-5p. Circ-NOTCH1 promoted metastasis and stemness in GC through sponging miR-449c-5p. Subsequently, MYC was identified as a downstream gene of miR-449c-5p. MYC could bind to the promoter of NOTCH1 to regulate GC progression. Furthermore, rescue assays demonstrated that NOTCH1 knockdown reversed the effects of overexpression of MYC in metastasis and stemness in AGS cells/sh-circNOTCH1. Above findings explained that circ-NOTCH1 promoted metastasis and stemness in GC by targeting miR-449c-5p/MYC/NOTCH1 axis, suggesting the possibility of circ-NOTCH1 as a therapeutic marker for GC.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- The Fourth General Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Qinggui Zhong
- Urological Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Xueyan Cheng
- Surgical Outpatient Clinic, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Shang Wang
- The Fourth General Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Ruiqing Wu
- The Fourth General Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Xinling Leng
- The Fourth General Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Lei Shao
- The Fourth General Surgery Department, Jiaozuo People's Hospital, Jiaozuo, Henan, China
| |
Collapse
|
21
|
UCA1 long non-coding RNA: An update on its roles in malignant behavior of cancers. Biomed Pharmacother 2019; 120:109459. [PMID: 31585301 DOI: 10.1016/j.biopha.2019.109459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
The lncRNA urothelial carcinoma-associated 1 (UCA1) is a 1.4 kb long transcript which has been firstly recognized in human bladder cancer cell line. Subsequent studies revealed its over-expression in a wide array of human cancer cell lines and patients' samples. In addition to conferring malignant phenotype to cells, it enhances resistance to conventional anti-cancer drugs. Moreover, transcript levels of this lncRNA have been regarded as diagnostic markers in several cancer types including gastric, bladder and liver cancers. The underlying mechanism of its participation in carcinogenesis has been identified in some cancer types. Sponging tumor suppressor miRNAs, interacting with cancer-promoting signaling pathways and enhancing cell cycle progression are among these mechanisms. Although few studies have shown anti-carcinogenic properties for this lncRNA, the bulk of evidence supports its oncogenic roles. In the current study, we have reviewed the current literature on the role of UCA1 in the carcinogenic process based on the results of in vitro studies, investigations in animal models and assessment of UCA1 expression in clinical samples.
Collapse
|
22
|
Xuan W, Yu H, Zhang X, Song D. Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett 2019; 593:1901-1914. [PMID: 31166011 DOI: 10.1002/1873-3468.13470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a major subset of highly conserved non-coding RNAs (ncRNAs) that consist of at least 200 nucleotides and have limited protein-coding potential. Cumulative data have shown that lncRNAs are deregulated in many types of cancer and may control pathophysiological processes of cancer at various levels, including transcription, post-transcription and translation. Recently, lncRNAs have been demonstrated to interact with microRNAs (miRNAs), another major subset of ncRNAs, which regulate physiological and pathological processes by inhibiting target mRNA translation or promoting mRNA degradation. The lncRNA urothelial carcinoma-associated 1 (UCA1) has recently gained much attention as it is overexpressed in many types of cancer and is involved in carcinogenesis. Here, we review the crosstalk between UCA1 and miRNAs during the pathogenesis of cancer, with a focus on cancer-cell proliferation, invasion, drug resistance, and metabolism.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hongyu Yu
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|