1
|
Luo Y, Vermeer M, Linssen MM, de Bie FJ, Pijnacker-Verspuij M, Brouwers C, Claassens J, de Gruijl FR, Hohenstein P, Tensen CP. A novel knockout mouse model to assess the impact of one-copy loss of Hnrnpk in CD4 + T cells in chronically inflamed skin as a prelude to CTCL. Sci Rep 2025; 15:14364. [PMID: 40274949 PMCID: PMC12022257 DOI: 10.1038/s41598-025-98640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs), particularly Mycosis fungoides (MF), frequently exhibit deletions and reduced expression of HNRNPK in CD4 + T cells. To enable in vivo studies, we developed a conditional Hnrnpk knockout mouse that thrives, facilitating the investigation of HNRNPK's role in CTCL onset. We generated mice with a floxed Hnrnpk allele, then crossbred them with Cd4CreERT2 mice to generate Hnrnpk flox Cd4CreERT2 mice, all in BL6 background. PCR confirmed the targeted deletion of Hnrnpk in CD4 + T cells after tamoxifen i.p. injection. Skin allergic reactions were induced with oxazolone, and Cre was activated in skin-infiltrating CD4 + T cells using tamoxifen topically after the first allergic skin reaction. The mice exhibited no immediately obvious phenotype. Flow cytometry and histopathological analysis were conducted on blood and skin samples collected throughout the experiment. Following 20 weeks of sustained allergic reactions, inflammation persisted over 20 weeks after challenges ceased, demonstrating early CTCL characteristics such as chronic skin inflammation, CD3 + CD4 + T cell infiltration, and stable peripheral blood parameters. This mouse model provides experimental access to the complex microenvironment and immune responses involved in early inflammatory stages, providing opportunities for further research into the role of HNRNPK in CTCL and the development of effective therapeutic interventions for this challenging malignancy.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Mice
- Disease Models, Animal
- Mice, Knockout
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Skin/pathology
- Skin/immunology
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Inflammation/pathology
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot M Linssen
- Transgenic Facility Leiden, Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Fenna J de Bie
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Conny Brouwers
- Transgenic Facility Leiden, Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Jill Claassens
- Transgenic Facility Leiden, Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hohenstein
- Transgenic Facility Leiden, Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL, Yokokawa R. Deciphering potential vascularization factors of on-chip co-cultured hiPSC-derived cerebral organoids. LAB ON A CHIP 2024; 24:680-696. [PMID: 38284292 DOI: 10.1039/d3lc00930k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The lack of functional vascular system in stem cell-derived cerebral organoids (COs) limits their utility in modeling developmental processes and disease pathologies. Unlike other organs, brain vascularization is poorly understood, which makes it particularly difficult to mimic in vitro. Although several attempts have been made to vascularize COs, complete vascularization leading to functional capillary network development has only been achieved via transplantation into a mouse brain. Understanding the cues governing neurovascular communication is therefore imperative for establishing an efficient in vitro system for vascularized cerebral organoids that can emulate human brain development. Here, we used a multidisciplinary approach combining microfluidics, organoids, and transcriptomics to identify molecular changes in angiogenic programs that impede the successful in vitro vascularization of human induced pluripotent stem cell (iPSC)-derived COs. First, we established a microfluidic cerebral organoid (CO)-vascular bed (VB) co-culture system and conducted transcriptome analysis on the outermost cell layer of COs cultured on the preformed VB. Results revealed coordinated regulation of multiple pro-angiogenic factors and their downstream targets. The VEGF-HIF1A-AKT network was identified as a central pathway involved in the angiogenic response of cerebral organoids to the preformed VB. Among the 324 regulated genes associated with angiogenesis, six transcripts represented significantly regulated growth factors with the capacity to influence angiogenic activity during co-culture. Subsequent on-chip experiments demonstrated the angiogenic and vasculogenic potential of cysteine-rich angiogenic inducer 61 (CYR61) and hepatoma-derived growth factor (HDGF) as potential enhancers of organoid vascularization. Our study provides the first global analysis of cerebral organoid response to three-dimensional microvasculature for in vitro vascularization.
Collapse
Affiliation(s)
- Maneesha Shaji
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Atsushi Tamada
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Kazuya Fujimoto
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka - 573-1010, Japan.
| | - Stanislav L Karsten
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto - 615-8540, Japan.
| |
Collapse
|
3
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
4
|
Li Y, Wang H, Wan J, Ma Q, Qi Y, Gu Z. The hnRNPK/A1/R/U Complex Regulates Gene Transcription and Translation and is a Favorable Prognostic Biomarker for Human Colorectal Adenocarcinoma. Front Oncol 2022; 12:845931. [PMID: 35875075 PMCID: PMC9301189 DOI: 10.3389/fonc.2022.845931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are emerging as a crucially important protein family in tumors. However, it is unclear which family members are essential for cancer progression, and their diverse expression patterns and prognostic values are rarely reported. In this work, we found that the expression levels of hnRNPs were all upregulated in colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) tissues. Immunohistochemical staining revealed that hnRNPA1, hnRNPA2B1, hnRNPC, hnRNPK, hnRNPR, and hnRNPU are overexpressed in colorectal adenocarcinoma. Additionally, the promoter methylation levels of hnRNPs were significantly elevated or decreased, and multiple genetic alterations of hnRNPs were found in colorectal adenocarcinoma patients. Correlation analysis showed that the expression levels of hnRNPs were positively correlated with each other. Furthermore, we demonstrated that high expressions of hnRNPA1, hnRNPK, hnRNPR, and hnRNPU were associated with better overall survival rates for colorectal adenocarcinoma patients. The co-expression network and functional prediction analysis indicated that hnRNPK/A1/R/U was involved in cellular gene transcription and translation. Moreover, hnRNPK/A1/R/U complex was identified and confirmed by mass spectrometry and co-immunoprecipitation. RNA sequencing analysis revealed that the transcription factor hnRNPK regulated transcription and translation of related genes. Finally, through establishment of stable cell lines in vitro, we verified that hnRNPK was a favorable factor in human colorectal adenocarcinoma which promoted immune cell infiltration and inhibited tumor growth. Our findings illustrate that the hnRNPK/A1/R/U complex is a favorable prognostic biomarker for human colorectal adenocarcinoma. Targeting hnRNPK during transcription and translation could be a promising therapeutic strategy for colorectal adenocarcinoma treatment.
Collapse
Affiliation(s)
- Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Ma
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| |
Collapse
|
5
|
徐 朦, 张 鹏, 张 国. [Exploration of the therapeutic mechanism of Yiqi Jiedu recipe for treatment of primary liver cancer based on network pharmacology and molecular docking]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:805-814. [PMID: 35790430 PMCID: PMC9257351 DOI: 10.12122/j.issn.1673-4254.2022.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the effective components of Yiqi Jiedu recipe and the main biological processes and signal pathways involved in the therapeutic mechanism of the recipe in treatment of primary liver cancer through network pharmacology and molecular docking approaches. METHODS TCMSP, Uniport, Genecards and String databases were searched to obtain the target genes of drugs and disease using Cytoscape 3.8.2 software. GO and KEGG enrichment analyses were performed to identify the common genes in the target genes of the drugs and disease. Using Pubcham, RCSB and Autoduck, the effective components of the drugs were connected with the final core genes. The effects of different concentrations of Yiqi Jiedu recipe on the expressions of the core genes DHX9, HNRNPK, NCL and PABPC1 in HepG2 cells were analyzed with Western blotting and real- time fluorescence quantitative PCR. RESULTS We finally identified 8 core genes from the drug and disease targets, including DDX5, HNRNPK, PABPC1, DHX9, RPS3A, RPS3, RPL13, and NCL. GO analysis showed that these core genes were involved mainly in the biological processes of adrenaline receptor signal communication, movement of cellular or subcellular components, blood particles, adhesion class and iron ion binding. KEGG analysis showed that the Ras signaling pathway had the greatest gene enrichment. The results of molecular docking suggested that the effective components of the recipe were capable of docking with the core genes under natural conditions, and PABPC1 and stigmasterol had the highest binding energy. In HepG2 cells, treatment with 10% medicated serum for 48 h had the strongest effect on the expression of DHX9, HNRNPK, NCL and PABPC1 (P < 0.05). CONCLUSION Yiqi Jiedu recipe is capable of regulating viral expression of primary liver cancer multiple effective components that bind to DHX9, HNRNPK, NCL and PABPC1.
Collapse
Affiliation(s)
- 朦 徐
- 安徽中医药大学研究生院,安徽 合肥 230038Graduate School of Anhui University of Chinese Medicine, Hefei 230038, China
| | - 鹏 张
- 安徽医科大学第一附属医院普外科,安徽 合肥 230022Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - 国梁 张
- 安徽中医药大学第一附属医院,安徽 合肥 230038Department of Infection, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| |
Collapse
|
6
|
Miki Y, Iwabuchi E, Takagi K, Suzuki T, Sasano H, Yaegashi N, Ito K. Co-expression of nuclear heterogeneous nuclear ribonucleic protein K and estrogen receptor α in endometrial cancer. Pathol Res Pract 2022; 231:153795. [DOI: 10.1016/j.prp.2022.153795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
|
7
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
8
|
Huang S, Lu Y, Li S, Zhou T, Wang J, Xia J, Zhang X, Zhou Z. Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. ENVIRONMENTAL TOXICOLOGY 2021; 36:1181-1194. [PMID: 33656234 DOI: 10.1002/tox.23117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fenvalerate (Fen) is an endocrine disruptor, capable of interfering with the activity of estrogen and androgen. Our objective was to explore the molecular mechanisms of Fen on sperm in vivo. Adult male Sprague-Dawley rats were orally exposed to 0, 0.00625, 0.125, 2.5, 30 mg/kg/day Fen for 8 weeks. Sperm morphology, differential proteomics of sperm and testes, bioinformatic analysis, western blotting (WB), and RT-PCR were used to explore the mechanism of Fen on sperm. Data showed that low Fen doses significantly induced sperm malformations. In sperm proteomics, 47 differentially expressed (DE) proteins were enriched in biological processes (BPs) related to energy metabolism, response to estrogen, spermatogenesis; and enriched in cellular components (CCs) relating to energy-metabolism, sperm fibrous sheath and their outer dense fibers. In testicular proteomics, 56 DE proteins were highly associated with mRNA splicing, energy metabolism; and enriched in CCs relating to vesicles, myelin sheath, microtubules, mitochondria. WB showed that the expression of selected proteins was identical to their tendency in 2D gels. Literature indicates that key DE proteins in proteomic profiles (such as Trap1, Hnrnpa2b1, Hnrnpk, Hspa8, and Gapdh) are involved in P53-related processes or morphogenesis or spermatogenesis. Also, P53 mRNA and protein levels were significantly increased by Fen; bioinformatic re-analysis showed that 88.5% DE proteins and P53 formed a complex interacting network, and the key DE proteins were coenriched with P53-related BPs. Results indicate that key DE proteins of proteome underlying sperm malformations of rats exposed to low Fen doses are highly related to P53.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Suying Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Wang
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 2021; 6:78. [PMID: 33623018 PMCID: PMC7902610 DOI: 10.1038/s41392-021-00486-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/31/2023] Open
Abstract
The abnormal regulation of alternative splicing is usually accompanied by the occurrence and development of tumors, which would produce multiple different isoforms and diversify protein expression. The aim of the present study was to conduct a systematic review in order to describe the regulatory mechanisms of alternative splicing, as well as its functions in tumor cells, from proliferation and apoptosis to invasion and metastasis, and from angiogenesis to metabolism. The abnormal splicing events contributed to tumor progression as oncogenic drivers and/or bystander factors. The alterations in splicing factors detected in tumors and other mis-splicing events (i.e., long non-coding and circular RNAs) in tumorigenesis were also included. The findings of recent therapeutic approaches targeting splicing catalysis and splicing regulatory proteins to modulate pathogenically spliced events (including tumor-specific neo-antigens for cancer immunotherapy) were introduced. The emerging RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms were also discussed. However, further studies are still required to address the association between alternative splicing and cancer in more detail.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
González-Borja I, Viúdez A, Goñi S, Santamaria E, Carrasco-García E, Pérez-Sanz J, Hernández-García I, Sala-Elarre P, Arrazubi V, Oyaga-Iriarte E, Zárate R, Arévalo S, Sayar O, Vera R, Fernández-Irigoyen J. Omics Approaches in Pancreatic Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11081052. [PMID: 31349663 PMCID: PMC6721316 DOI: 10.3390/cancers11081052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma, which represents 80% of pancreatic cancers, is mainly diagnosed when treatment with curative intent is not possible. Consequently, the overall five-year survival rate is extremely dismal—around 5% to 7%. In addition, pancreatic cancer is expected to become the second leading cause of cancer-related death by 2030. Therefore, advances in screening, prevention and treatment are urgently needed. Fortunately, a wide range of approaches could help shed light in this area. Beyond the use of cytological or histological samples focusing in diagnosis, a plethora of new approaches are currently being used for a deeper characterization of pancreatic ductal adenocarcinoma, including genetic, epigenetic, and/or proteo-transcriptomic techniques. Accordingly, the development of new analytical technologies using body fluids (blood, bile, urine, etc.) to analyze tumor derived molecules has become a priority in pancreatic ductal adenocarcinoma due to the hard accessibility to tumor samples. These types of technologies will lead us to improve the outcome of pancreatic ductal adenocarcinoma patients.
Collapse
Affiliation(s)
- Iranzu González-Borja
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain.
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Saioa Goñi
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Estefania Carrasco-García
- Grupo de Oncología Celular, Instituto de Investigación Sanitaria Biodonostia, 20014 San Sebastián, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | - Jairo Pérez-Sanz
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernández-García
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Pablo Sala-Elarre
- Medical Oncology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | | | - Ruth Zárate
- OncobionaTras Lab, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA) Irunlarrea 3, 31008 Pamplona, Spain
| | - Sara Arévalo
- Grupo de Oncología Celular, Instituto de Investigación Sanitaria Biodonostia, 20014 San Sebastián, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
| | | | - Ruth Vera
- Medical Oncology Department, Complejo Hospitalario de Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Joaquin Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|