1
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
2
|
Vyas H, Vohra A, Upadhyay K, Thounaojam M, Jadeja R, Dalvi N, Bartoli M, Devkar R. miR34a-5p impedes CLOCK expression in chronodisruptive C57BL/6J mice and potentiates pro-atherogenic manifestations. PLoS One 2023; 18:e0283591. [PMID: 37561715 PMCID: PMC10414636 DOI: 10.1371/journal.pone.0283591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Altered circadian rhythms underlie manifestation of several cardiovascular disorders, however a little is known about the mediating biomolecules. Multiple transcriptional-translational feedback loops control circadian-clockwork wherein; micro RNAs (miRNAs) are known to manifest post transcriptional regulation. This study assesses miR34a-5p as a mediating biomolecule. METHOD 8-10-week-old male C57BL/6J mice (n = 6/group) were subjected to photoperiodic manipulation induced chronodisruption and thoracic aortae were examined for miRNA, gene (qPCR) and protein (Immunoblot) expression studies. Histomorphological changes were assessed for pro-atherogenic manifestations (fibrillar arrangement, collagen/elastin ratio, intima-media thickening). Computational studies for miRNA-mRNA target prediction were done using TargetScan and miRDB. Correlative in vitro studies were done in serum synchronized HUVEC cells. Time point based studies were done at five time points (ZT 0, 6, 12, 18, 24) in 24h. RESULTS Chronodisruption induced hypomethylation in the promoter region of miR34a-5p, in the thoracic aortae, culminating in elevated miRNA titers. In a software-based detection of circadian-clock-associated targets of miR34a-5p, Clock and Sirt1 genes were identified. Moreover, miR34a-5p exhibited antagonist circadian oscillations to that of its target genes CLOCK and SIRT1 in endothelial cells. Luciferase reporter gene assay further showed that miR34a-5p interacts with the 3'UTR of the Clock gene to lower its expression, disturbing the operation of positive arm of circadian clock system. Elevated miR34a-5p and impeded SIRT1 expression in a chronodisruptive aortae exhibited pro-atherogenic changes observed in form of gene expression, increased collagen/elastin ratio, fibrillar derangement and intimal-media thickening. CONCLUSION The study reports for the first time chronodisruption mediated miR34a-5p elevation, its circadian expression and interaction with the 3'UTR of Clock gene to impede its expression. Moreover, elevated miR34a-5p and lowered SIRT1 expression in the chronodisruptive aortae lead off cause-consequence relationship of chronodisruption mediated proatherogenic changes.
Collapse
Affiliation(s)
- Hitarthi Vyas
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Aliasgar Vohra
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil Upadhyay
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Menaka Thounaojam
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States of America
| | - Ravirajsinh Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States of America
| | - Nilay Dalvi
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ranjitsinh Devkar
- Division of Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
4
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
5
|
Ettoumi FE, Zhang R, Belwal T, Javed M, Xu Y, Li L, Weide L, Luo Z. Generation and characterization of nanobubbles in ionic liquid for a green extraction of polyphenols from Carya cathayensis Sarg. Food Chem 2022; 369:130932. [PMID: 34461511 DOI: 10.1016/j.foodchem.2021.130932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Nanobubbles (NBs) generated-nanojets membrane poration have gained enormous attention. In this study, NBs were fabricated as a novel green approach to assist ionic liquid (IL) [C4C1im][BF4] extraction of polyphenols from Carya cathayensis Sarg. husk. NBs were successfully generated with mean size of 85.47 ± 5 nm, zeta potential of +39 ± 2.24 mV, and concentration of 21.15 ± 0.75 × 108 particles/mL (stable for over 48 h in IL solution). Compared to common solutions extract, IL-NBs extract showed significantly higher (p < 0.05) antioxidant activity and polyphenols yields with a total polyphenol, total flavonoid, and total tannins contents of 85.67 ± 2.05 mg GAE/g DW, 42.44 ± 1.17 mg CE/g DW, and 8.2 ± 0.05 mg TAE/g DW, respectively. The SEM results confirmed that NBs' nanojets caused morphological destruction of the husk powder. Overall, IL-NBs solution showed better extraction efficiency of polyphenols than other solutions, giving insight into a new "green" nanotechnology-based extraction method.
Collapse
Affiliation(s)
- Fatima-Ezzahra Ettoumi
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Ruyuan Zhang
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Miral Javed
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Lv Weide
- Hangzhou Vocational & Technical College, Hangzhou 310018, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
6
|
Lv W, Yu M, Yang Q, Kong P, Yan B. Total flavonoids of Rhizoma drynariae ameliorate steroid‑induced avascular necrosis of the femoral head via the PI3K/AKT pathway. Mol Med Rep 2021; 23:345. [PMID: 33760114 PMCID: PMC7974407 DOI: 10.3892/mmr.2021.11984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is a common orthopaedic disease that is difficult to treat. The present study investigated the effects of total flavonoids of Rhizoma drynariae (TFRD) on SANFH and explored its underlying mechanisms. The SANFH rat model was induced by intramuscular injection of lipopolysaccharides and methylprednisolone. Osteoblasts were isolated from the calvariae of neonatal rats and then cultured with dexamethasone (Dex). TFRD was used in vitro and in vivo, respectively. Haematoxylin and eosin staining was used to assess the pathological changes in the femoral head. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling assay and flow cytometry were conducted to detect apoptosis of osteoblasts. The 2,7-dichlorofluorescein-diacetate staining method was used to detect reactive oxygen species (ROS) levels in osteoblasts and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect osteoblast proliferation. The expression of caspase-3, Bax, Bcl-2, VEGF, runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), osteocalcin (OCN), receptor activator of nuclear factor κB ligand (RANKL) and phosphoinositide 3-kinase (PI3K)/AKT pathway related-proteins were detected via western blotting. It was found that TFRD reduced the pathological changes, inhibited apoptosis, increased the expression of VEGF, RUNX2, OPG and OCN, decreased RANKL expression and activated the PI3K/AKT pathway in SANFH rats. TFRD promoted proliferation, inhibited apoptosis and reduced ROS levels by activating the PI3K/AKT pathway in osteoblasts. In conclusion, TFRD protected against SANFH in a rat model. In addition, TFRD protected osteoblasts from Dex-induced damage through the PI3K/AKT pathway. The findings of the present study may contribute to find an effective treatment for the management of SANFH.
Collapse
Affiliation(s)
- Wenxue Lv
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Mingxiu Yu
- Department of Special Inspection, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Qingyi Yang
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Peng Kong
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| | - Bing Yan
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
MicroRNA-34a: the bad guy in age-related vascular diseases. Cell Mol Life Sci 2021; 78:7355-7378. [PMID: 34698884 PMCID: PMC8629897 DOI: 10.1007/s00018-021-03979-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The age-related vasculature alteration is the prominent risk factor for vascular diseases (VD), namely, atherosclerosis, abdominal aortic aneurysm, vascular calcification (VC) and pulmonary arterial hypertension (PAH). The chronic sterile low-grade inflammation state, alias inflammaging, characterizes elderly people and participates in VD development. MicroRNA34-a (miR-34a) is emerging as an important mediator of inflammaging and VD. miR-34a increases with aging in vessels and induces senescence and the acquisition of the senescence-associated secretory phenotype (SASP) in vascular smooth muscle (VSMCs) and endothelial (ECs) cells. Similarly, other VD risk factors, including dyslipidemia, hyperglycemia and hypertension, modify miR-34a expression to promote vascular senescence and inflammation. miR-34a upregulation causes endothelial dysfunction by affecting ECs nitric oxide bioavailability, adhesion molecules expression and inflammatory cells recruitment. miR-34a-induced senescence facilitates VSMCs osteoblastic switch and VC development in hyperphosphatemia conditions. Conversely, atherogenic and hypoxic stimuli downregulate miR-34a levels and promote VSMCs proliferation and migration during atherosclerosis and PAH. MiR34a genetic ablation or miR-34a inhibition by anti-miR-34a molecules in different experimental models of VD reduce vascular inflammation, senescence and apoptosis through sirtuin 1 Notch1, and B-cell lymphoma 2 modulation. Notably, pleiotropic drugs, like statins, liraglutide and metformin, affect miR-34a expression. Finally, human studies report that miR-34a levels associate to atherosclerosis and diabetes and correlate with inflammatory factors during aging. Herein, we comprehensively review the current knowledge about miR-34a-dependent molecular and cellular mechanisms activated by VD risk factors and highlight the diagnostic and therapeutic potential of modulating its expression in order to reduce inflammaging and VD burn and extend healthy lifespan.
Collapse
|
8
|
Lu JJ, Zhou FM, Hu XJ, Fang JJ, Liu CX, Zhu BQ, Ding ZS. Molecular docking simulation and in vitro studies on estrogenic activities of flavonoids from leaves of Carya cathayensis Sarg. Steroids 2020; 163:108726. [PMID: 32889051 DOI: 10.1016/j.steroids.2020.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The main purpose of this study was to evaluate the estrogenic properties of total flavonoids (TFs) and five flavonoid monomers (cardamonin (Car), pinostrobin chalcone (PC), wogonin (Wo), chrysin (Chr) and Pinocembrin (PI)) from leaves of Carya cathayensis Sarg (LCC). TFs from LCC were isolated and determined using HPLC. The 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were performed to assess the effects of flavonoids on cell proliferation and cell cycle, respectively. The molecular docking technique was applied to investigate binding conformations of the monomers from LCC to the estrogen receptor ERα and ERβ. Gene and protein expression patterns were assessed using quantitative real-time PCR (qRT-PCR) and western blot, respectively. The results showed that TFs, Car, PC, Wo and Chr promoted proliferation of MCF-7 cells and cell transition from the G1 to S phase, and inhabitation of MCF-7 cell proliferation was observed after the treatment of PI. Molecular docking studies confirmed ERs as molecular targets for the monomers. TFs, Car, PC, Wo and Chr from LCC promoted gene expression of ERα, ERβ, progesterone receptor (PR) and pS2. Our collective results demonstrated that TFs and monomers from LCC may exert ER agonist activity through competitively bind to ER, inducing ER upregulation and active ER to estrogen response element (ERE)- independent gene regulation. As an abundant natural product, LCC may provide a novel medicinal source for treatment of diseases caused by estrogen deficiency.
Collapse
Affiliation(s)
- Jing-Jing Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fang-Mei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xu-Jiao Hu
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Jing-Jing Fang
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Cai-Xia Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|