1
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Li J, Duong D, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative role of PACT and ADAR1 in preventing aberrant PKR activation by self-derived double-stranded RNA. Nat Commun 2025; 16:3246. [PMID: 40185749 PMCID: PMC11971382 DOI: 10.1038/s41467-025-58412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that PACT-deficient cells hyperactivate PKR in response to different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Gisselle Santiago
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexander Garcia
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Junyi Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Dana Duong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Dheva Setiaputra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA.
- Center for Virus Research, University of California Irvine, Irvine, California, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
2
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Manjunath L, Santiago G, Ortega P, Sanchez A, Oh S, Garcia A, Bournique E, Bouin A, Semler BL, Setiaputra D, Buisson R. Cooperative Role of PACT and ADAR1 in Preventing Aberrant PKR Activation by Self-Derived Double-Stranded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625712. [PMID: 39651230 PMCID: PMC11623655 DOI: 10.1101/2024.11.27.625712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Double-stranded RNAs (dsRNAs) produced during viral infections are recognized by the innate immune sensor protein kinase R (PKR), triggering a host translation shutoff that inhibits viral replication and propagation. Given the harmful effects of uncontrolled PKR activation, cells must tightly regulate PKR to ensure that its activation occurs only in response to viral infections, not endogenous dsRNAs. Here, we use CRISPR-Translate, a FACS-based genome-wide CRISPR-Cas9 knockout screening method that exploits translation levels as a readout and identifies PACT as a key inhibitor of PKR during viral infection. We find that cells deficient for PACT hyperactivate PKR in response to several different RNA viruses, raising the question of why cells need to limit PKR activity. Our results demonstrate that PACT cooperates with ADAR1 to suppress PKR activation from self-dsRNAs in uninfected cells. The simultaneous deletion of PACT and ADAR1 results in synthetic lethality, which can be fully rescued in PKR-deficient cells. We propose that both PACT and ADAR1 act as essential barriers against PKR, creating a threshold of tolerable levels to endogenous dsRNA in cells without activating PKR-mediated translation shutdown and cell death.
Collapse
|
4
|
Burnett SB, Culver AM, Simon TA, Rowson T, Frederick K, Palmer K, Murray SA, Davis SW, Patel RC. Mutation in Prkra results in cerebellar abnormality and reduced eIF2α phosphorylation in a model of DYT-PRKRA. Dis Model Mech 2024; 17:dmm050929. [PMID: 39512178 PMCID: PMC11625895 DOI: 10.1242/dmm.050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Variants in the PRKRA gene, which encodes PACT, cause the early-onset primary dystonia DYT-PRKRA, a movement disorder associated with disruption of coordinated muscle movements. PACT and its murine homolog RAX activate protein kinase R (PKR; also known as EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkralear-5J, exhibit progressive dystonia. In the present study, we investigated the biochemical and developmental consequences of the Prkralear-5J mutation. Our results indicated that the truncated PACT/RAX protein retains its ability to interact with PKR but inhibits PKR activation. Mice homozygous for the mutation showed abnormalities in cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation was noted in the cerebellum and Purkinje neurons of the homozygous Prkralear-5J mice. These findings indicate that PACT/RAX-mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from the Prkralear-5J mutation.
Collapse
Affiliation(s)
- Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Allison M. Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Tricia A. Simon
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor Rowson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kristina Palmer
- Genetic Resource Center, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Stephen A. Murray
- Genetic Resource Center, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
5
|
Burnett SB, Culver AM, Simon TA, Rowson T, Frederick K, Palmer K, Murray SA, Davis SW, Patel RC. A frameshift mutation in the murine Prkra gene causes dystonia and exhibits abnormal cerebellar development and reduced eIF2α phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597421. [PMID: 38895245 PMCID: PMC11185611 DOI: 10.1101/2024.06.04.597421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in Prkra gene, which encodes PACT/RAX cause early onset primary dystonia DYT-PRKRA, a movement disorder that disrupts coordinated muscle movements. PACT/RAX activates protein kinase R (PKR, aka EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkra lear-5J exhibit progressive dystonia. In the present study, we investigate the biochemical and developmental consequences of the Prkra lear-5J mutation. Our results indicate that the truncated PACT/RAX protein retains its ability to interact with PKR, however, it inhibits PKR activation. Furthermore, mice homozygous for the mutation have abnormalities in the cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation is noted in the cerebellums and Purkinje neurons of the homozygous Prkra lear-5J mice. These results indicate that PACT/RAX mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from this mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Kristina Palmer
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | | | | |
Collapse
|
6
|
Wang Z, Liu S, Cheng Z, Xu G, Li F, Bu Q, Zhang L, Song Y, An X. Endoplasmic reticulum stress exacerbates microplastics-induced toxicity in animal cells. Food Res Int 2024; 175:113818. [PMID: 38129015 DOI: 10.1016/j.foodres.2023.113818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Human and animal exposure to microplastics (MPs) contained in food is inevitable because of their widespread existence in the environment. Nevertheless, MPs toxicity studies in ruminants often lack attention. Here, we assessed the cytotoxicity of polystyrene microplastics (PS MPs) on goat mammary epithelial cells (GMECs). Compared to controls, PS MPs treatment significantly reduced cell viability, altered cell morphology and disrupted organelle integrity. Detection of membrane potential and reactive oxygen species (ROS) suggested that PS MPs induced mitochondrial dysfunction and oxidative stress. Further transcriptome analysis also confirmed alterations in these pathways. In addition, several genes related to endoplasmic reticulum (ER) homeostasis were significantly regulated in the transcriptional profile. Subsequent experiments confirmed that PS MPs induce ER stress via the PERK/eIF2α/CHOP pathway, accompanied by intracellular Ca2+ overload. Meanwhile, downstream activation of the Bax/Bcl-2 pathway and caspase cascade released apoptotic signals, which led to apoptosis in GMECs. Interestingly, the addition of PERK inhibitor (ISRIB) attenuated PS MPs-induced ER stress and apoptosis, which suggests that ER stress may exacerbate PS MPs-induced cytotoxicity. This work reveals the impact of MPs on mammalian cytotoxicity, enriches the mechanisms for the toxicity of MPs, and provides insight for further assessment of the risk of MPs in food.
Collapse
Affiliation(s)
- Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zefang Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ganggang Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Bu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Frederick K, Patel RC. Luteolin protects DYT- PRKRA cells from apoptosis by suppressing PKR activation. Front Pharmacol 2023; 14:1118725. [PMID: 36874028 PMCID: PMC9974672 DOI: 10.3389/fphar.2023.1118725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
DYT-PRKRA is a movement disorder caused by mutations in the PRKRA gene, which encodes for PACT, the protein activator of interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR. PACT brings about PKR's catalytic activation by a direct binding in response to stress signals and activated PKR phosphorylates the translation initiation factor eIF2α. Phosphorylation of eIF2α is the central regulatory event that is part of the integrated stress response (ISR), an evolutionarily conserved intracellular signaling network essential for adapting to environmental stresses to maintain healthy cells. A dysregulation of either the level or the duration of eIF2α phosphorylation in response to stress signals causes the normally pro-survival ISR to become pro-apoptotic. Our research has established that the PRKRA mutations reported to cause DYT-PRKRA lead to enhanced PACT-PKR interactions causing a dysregulation of ISR and an increased sensitivity to apoptosis. We have previously identified luteolin, a plant flavonoid, as an inhibitor of the PACT-PKR interaction using high-throughput screening of chemical libraries. Our results presented in this study indicate that luteolin is markedly effective in disrupting the pathological PACT-PKR interactions to protect DYT-PRKRA cells against apoptosis, thus suggesting a therapeutic option for using luteolin to treat DYT-PRKRA and possibly other diseases resulting from enhanced PACT-PKR interactions.
Collapse
Affiliation(s)
- Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
8
|
Vaughn LS, Frederick K, Burnett SB, Sharma N, Bragg DC, Camargos S, Cardoso F, Patel RC. DYT- PRKRA Mutation P222L Enhances PACT's Stimulatory Activity on Type I Interferon Induction. Biomolecules 2022; 12:713. [PMID: 35625640 PMCID: PMC9138762 DOI: 10.3390/biom12050713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
DYT-PRKRA (dystonia 16 or DYT-PRKRA) is caused by mutations in the PRKRA gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT-PRKRA mutations cause enhanced activation of PKR during ISR to sensitize DYT-PRKRA cells to apoptosis. In this study, we evaluate if the most prevalent substitution mutation reported in DYT-PRKRA patients alters PACT's functional role in induction of type I IFNs via the retinoic acid-inducible gene I (RIG-I) signaling. Our results indicate that the P222L mutation augments PACT's ability to induce IFN β in response to dsRNA and the basal expression of IFN β and IFN-stimulated genes (ISGs) is higher in DYT-PRKRA patient cells compared to cells from the unaffected controls. Additionally, IFN β and ISGs are also induced at higher levels in DYT-PRKRA cells in response to dsRNA. These results offer a new avenue for investigations directed towards understanding the underlying molecular pathomechanisms in DYT-PRKRA.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Kenneth Frederick
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Samuel B. Burnett
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - D. Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; (N.S.); (D.C.B.)
| | - Sarah Camargos
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Francisco Cardoso
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.C.); (F.C.)
| | - Rekha C. Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA; (L.S.V.); (K.F.); (S.B.B.)
| |
Collapse
|
9
|
Dong Y, Jiang X, Chen F, Wang D, Zhang Z. Inhibiting the aberrant PACT-p53 axis activation ameliorates spinal cord ischaemia-reperfusion injury in rats. Int Immunopharmacol 2022; 108:108745. [PMID: 35421805 DOI: 10.1016/j.intimp.2022.108745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord ischaemia-reperfusion injury (SCII) induces multiple molecular and cellular changes, resulting in dyskinesia. Recently, it is reported that the p53 network plays a vital role in SCII. However, the roles of the PACT/PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A)-p53 axis in SCII are still unclear. The aim of this study was to elucidate the roles of the PACT-p53 axis in SCII. A Sprague-Dawley rat model of SCII was established by subjecting rats to a 14-min occlusion of the aortic arch. The Tarlov criteria, Western blotting, double immunofluorescence staining, haematoxylin and eosin (HE) staining, and transferase dUTP nick end labelling (TUNEL) assay were performed after SCII. Here, spinal cord ischaemia-reperfusion (SCI) caused hindlimb motor functional deficits as assessed by the Tarlov criteria. The protein expression of PACT was substantially upregulated at 48 h after SCII. Increased PACT fluorescence was mainly localized to neurons. Si-PACT pretreatment improved hindlimb motor function, ameliorated histological changes, and attenuated cell apoptosis after SCII. Si-PACT pretreatment reduced the protein expression of PACT, p53, Caspase-8 and IL-1β and the number of double-labelled PACT and p53. Taken together, inhibiting the aberrant PACT-p53 axis activation by si-PACT pretreatment ameliorates SCI-induced neuroapoptosis and neuroinflammation in rats. Silencing PACT expression is promising new therapeutic strategy for SCII.
Collapse
Affiliation(s)
- Yan Dong
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Xuan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China.
| |
Collapse
|
10
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
11
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
12
|
Blalock WL. Opposing forces fight over the same ground to regulate interferon signaling. Biochem J 2021; 478:1853-1859. [PMID: 34003254 DOI: 10.1042/bcj20210110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
The current SARS-CoV-2 pandemic has spurred new interest in interferon signaling in response to viral pathogens. Much of what we know about the signaling molecules and associated signal transduction induced during the host cellular response to viral pathogens has been gained from research conducted from the 1990's to the present day, but certain intricacies of the mechanisms involved, still remain unclear. In a recent study by Vaughn et al. the authors examine one of the main mechanisms regulating interferon induction following viral infection, the RIG-I/MAVS/IRF3 pathway, and find that similar to PKR both DICER interacting proteins, PACT and TRBP, regulate RIG-I signaling in an opposing manner. More specifically, the reported findings demonstrate, like others, that PACT stimulates RIG-I-mediated signaling in a manner independent of PACT dsRNA-binding ability or phosphorylation at sites known to be important for PACT-dependent PKR activation. In contrast, they show for the first time that TRBP inhibits RIG-I-mediated signaling. RIG-I inhibition by TRBP did not require phosphorylation of sites shown to be important for inhibiting PKR, nor did it involve PACT or PKR, but it did require the dsRNA-binding ability of TRBP. These findings open the door to a complex co-regulation of RIG-I, PKR, MDA5, miRNA processing, and interferon induction.
Collapse
Affiliation(s)
- William L Blalock
- 'Luigi Luca Cavalli-Sforza' Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
13
|
Kuipers DJS, Mandemakers W, Lu CS, Olgiati S, Breedveld GJ, Fevga C, Tadic V, Carecchio M, Osterman B, Sagi-Dain L, Wu-Chou YH, Chen CC, Chang HC, Wu SL, Yeh TH, Weng YH, Elia AE, Panteghini C, Marotta N, Pauly MG, Kühn AA, Volkmann J, Lace B, Meijer IA, Kandaswamy K, Quadri M, Garavaglia B, Lohmann K, Bauer P, Mencacci NE, Lubbe SJ, Klein C, Bertoli-Avella AM, Bonifati V. EIF2AK2 Missense Variants Associated with Early Onset Generalized Dystonia. Ann Neurol 2020; 89:485-497. [PMID: 33236446 PMCID: PMC7986743 DOI: 10.1002/ana.25973] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Objective The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. Methods Methods consisted of genome‐wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. Results We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR‐mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon‐inducible double‐stranded RNA‐dependent protein kinase activator A), the product of another gene causing monogenic dystonia. Interpretation We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485–497
Collapse
Affiliation(s)
- Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vera Tadic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Miryam Carecchio
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.,Department of Neuroscience, University of Padua, Padua, Italy
| | - Bradley Osterman
- Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yah-Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiung C Chen
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chen Chang
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department Neurology, Changhua Christian Hospital, Chunghua, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsin Weng
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Antonio E Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Marotta
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität of Berlin and Humboldt, Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Baiba Lace
- Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | - Inge A Meijer
- Department of Neurosciences and Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | | | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol Dis 2020; 146:105135. [PMID: 33049316 DOI: 10.1016/j.nbd.2020.105135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Dystonia 16 (DYT16) is caused by mutations in PACT, the protein activator of interferon-induced double-stranded RNA-activated protein kinase (PKR). PKR regulates the integrated stress response (ISR) via phosphorylation of the translation initiation factor eIF2α. This post-translational modification attenuates general protein synthesis while concomitantly triggering enhanced translation of a few specific transcripts leading either to recovery and homeostasis or cellular apoptosis depending on the intensity and duration of stress signals. PKR plays a regulatory role in determining the cellular response to viral infections, oxidative stress, endoplasmic reticulum (ER) stress, and growth factor deprivation. In the absence of stress, both PACT and PKR are bound by their inhibitor transactivation RNA-binding protein (TRBP) thereby keeping PKR inactive. Under conditions of cellular stress these inhibitory interactions dissociate facilitating PACT-PACT interactions critical for PKR activation. While both PACT-TRBP and PKR-TRBP interactions are pro-survival, PACT-PACT and PACT-PKR interactions are pro-apoptotic. In this study we evaluate if five DYT16 substitution mutations alter PKR activation and ISR. Our results indicate that the mutant DYT16 proteins show stronger PACT-PACT interactions and enhanced PKR activation. In DYT16 patient derived lymphoblasts the enhanced PACT-PKR interactions and heightened PKR activation leads to a dysregulation of ISR and increased apoptosis. More importantly, this enhanced sensitivity to ER stress can be rescued by luteolin, which disrupts PACT-PKR interactions. Our results not only demonstrate the impact of DYT16 mutations on regulation of ISR and DYT16 etiology but indicate that therapeutic interventions could be possible after a further evaluation of such strategies.
Collapse
|
15
|
Ortega-García MB, Mesa A, Moya EL, Rueda B, Lopez-Ordoño G, García JÁ, Conde V, Redondo-Cerezo E, Lopez-Hidalgo JL, Jiménez G, Peran M, Martínez-González LJ, del Val C, Zwir I, Marchal JA, García MÁ. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers (Basel) 2020; 12:379. [PMID: 32045987 PMCID: PMC7072376 DOI: 10.3390/cancers12020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer treatment has advanced over the past decade. The drug 5-fluorouracil is still used with a wide percentage of patients who do not respond. Therefore, a challenge is the identification of predictive biomarkers. The protein kinase R (PKR also called EIF2AK2) and its regulator, the non-coding pre-mir-nc886, have multiple effects on cells in response to numerous types of stress, including chemotherapy. In this work, we performed an ambispective study with 197 metastatic colon cancer patients with unresectable metastases to determine the relative expression levels of both nc886 and PKR by qPCR, as well as the location of PKR by immunohistochemistry in tumour samples and healthy tissues (plasma and colon epithelium). As primary end point, the expression levels were related to the objective response to first-line chemotherapy following the response evaluation criteria in solid tumours (RECIST) and, as the second end point, with survival at 18 and 36 months. Hierarchical agglomerative clustering was performed to accommodate the heterogeneity and complexity of oncological patients' data. High expression levels of nc886 were related to the response to treatment and allowed to identify clusters of patients. Although the PKR mRNA expression was not associated with chemotherapy response, the absence of PKR location in the nucleolus was correlated with first-line chemotherapy response. Moreover, a relationship between survival and the expression of both PKR and nc886 in healthy tissues was found. Therefore, this work evaluated the best way to analyse the potential biomarkers PKR and nc886 in order to establish clusters of patients depending on the cancer outcomes using algorithms for complex and heterogeneous data.
Collapse
Affiliation(s)
- María Belén Ortega-García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Alberto Mesa
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Elisa L.J. Moya
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Beatriz Rueda
- Department of Pathology, San Cecilio University Hospital, 18016 Granada, Spain
| | | | - Javier Ángel García
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Verónica Conde
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Eduardo Redondo-Cerezo
- Department of Gastroenterology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | | | - Gema Jiménez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Macarena Peran
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaen, Spain
| | - Luis J. Martínez-González
- GENYO: Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18007 Granada, Spain
| | - Coral del Val
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Igor Zwir
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - María Ángel García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology III, University of Granada, 18016 Granada, Spain
| |
Collapse
|