1
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
2
|
Yu Y, Pang D, Huang J, Li C, Cui Y, Shang H. Downregulation of Lnc-ABCA12-3 modulates UBQLN1 expression and protein homeostasis pathways in amyotrophic lateral sclerosis. Sci Rep 2024; 14:21383. [PMID: 39271939 PMCID: PMC11399266 DOI: 10.1038/s41598-024-72666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration. Dysregulation of long non-coding RNAs (lncRNAs) has been implicated in ALS pathogenesis but their roles remain unclear. Previous studies found lnc-ABCA12-3 was downregulated in ALS patients. We aim to characterize the expression and function of lnc-ABCA12-3 in ALS and explore its mechanisms of action. Lnc-ABCA12-3 expression was analyzed in PBMCs from ALS patients and correlated with clinical outcomes. Effect of modulating lnc-ABCA12-3 expression was assessed in cell models using assays of apoptosis, protein homeostasis and pathway analysis. RNA pull-down and interaction studies were performed to identify lnc-ABCA12-3 binding partners. Lnc-ABCA12-3 was downregulated in ALS patients, correlating with faster progression and shorter survival. Overexpression of lnc-ABAC12-3 conferred protection against oxidative stress-induced apoptosis, while knockdown lnc-ABCA12-3 enhanced cell death. Lnc-ABCA12-3 maintained protein quality control pathways, including ubiquitination, autophagy and stress granule formation, by regulating the ubiquitin shuttle protein UBQLN1. This study identified lnc-ABCA12-3 as a novel regulatory lncRNA implicated in ALS pathogenesis by modulating cellular survival and stress responses through interactions with UBQLN1, influencing disease progression. Lnc-ABCA12-3 may influence ALS through regulating protein homeostasis pathways.
Collapse
Affiliation(s)
- Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, China.
| |
Collapse
|
3
|
Hao MJ, Cheng ZY, Gao Y, Xin L, Yu CT, Wang TL, Li ZS, Wang LW. Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring. Scand J Gastroenterol 2024; 59:698-709. [PMID: 38466190 DOI: 10.1080/00365521.2024.2310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common malignant tumour of the gastrointestinal tract. Early detection and access to appropriate treatment are crucial for the long-term survival of patients. However, limited diagnostic and monitoring methods are available for identifying early stage ESCC. Endoscopic screening and surgical resection are commonly used to diagnose and treat early ESCC. However, these methods have disadvantages, such as high recurrence, lethality, and mortality rates. Therefore, methods to improve early diagnosis of ESCC and reduce its mortality rate are urgently required. In 1961, Gary et al. proposed a novel liquid biopsy approach for clinical diagnosis. This involved examining exosomes, circulating tumour cells, circulating free DNA, and circulating free RNA in body fluids. The ability of liquid biopsy to obtain samples repeatedly, wide detection range, and fast detection speed make it a feasible option for non-invasive tumour detection. In clinical practice, liquid biopsy technology has gained popularity for early screening, diagnosis, treatment efficacy monitoring, and prognosis assessment. Thus, this is a highly promising examination method. However, there have been no comprehensive reviews on the four factors of liquid biopsy in the context of ESCC. This review aimed to analyse the progress of liquid biopsy research for ESCC, including its classification, components, and potential future applications.
Collapse
Affiliation(s)
- Mei-Juan Hao
- University of Shanghai for Science and Technology, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anaesthesia and Surgery, Guiyang Fourth People's Hospital, Guiyang, China
| | - Zhi-Yuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chu-Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ting-Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Luo-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol 2024; 326:C1212-C1225. [PMID: 38372136 DOI: 10.1152/ajpcell.00633.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.
Collapse
Affiliation(s)
- Jessica H Longstreth
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Lu X, Zhang D. RPL34-Divergent Transcript, a Novel Long NonCoding Ribonucleic Acid, Promotes Migration by Activating Epithelial-Mesenchymal Transition in Glioma. World Neurosurg 2023; 179:e582-e592. [PMID: 37689361 DOI: 10.1016/j.wneu.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Glioma is one of the leading causes of death in patients with intracranial tumours. RPL34 divergent transcript (RPL34-DT) is a long non-coding ribonucleic acid that is significantly upregulated in glioma tissues. However, the role of RPL34-DT in glioma behavior remains to be elucidated. Therefore, in this study, we focused on the effect of RPL34-DT on the epithelial-mesenchymal transition in gliomas. METHODS Real-time quantitative reverse transcription polymerase chain reaction was used to detect the levels of RPL34-DT in glioma tissue and cell lines. We further used the LN229 and U251 glioma cell lines to assess the role of RPL34-DT. Wound healing and invasion assays were performed to determine the role of RPL34-DT in migration. Changes in protein levels were assessed by western blotting. RESULTS We found that RPL34-DT was upregulated in glioma tissues and glioma cell lines. Knockdown of RPL34-AS1 blocked migration of glioma cell. This effect occurred through a decrease of epithelial-mesenchymal transition and β-catenin. CONCLUSIONS This study suggests that RPL34-DT affects cell migration in glioma and therefore may serve as a valuable therapeutic target in patients with glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
6
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
7
|
Zhao L, Yu L, Wang X, He J, Zhu X, Zhang R, Yang A. Mechanisms of function and clinical potential of exosomes in esophageal squamous cell carcinoma. Cancer Lett 2023; 553:215993. [PMID: 36328162 DOI: 10.1016/j.canlet.2022.215993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal and widespread malignancies in China. Exosomes, a subset of tiny extracellular vesicles manufactured by all cells and present in all body fluids, contribute to intercellular communication and have become a focus of the search for new therapeutic strategies for cancer. A number of global analyses of exosome-mediated functions and regulatory mechanism in malignant diseases have recently been reported. There is extensive evidence that exosomes can be used as diagnostic and prognostic markers for cancer. However, our understanding of their clinical value and mechanisms of action in ESCC is still limited and has not been systematically reviewed. Here, we review current research specifically focused on the functions and mechanisms of action of ESCC tumor-derived exosomes and non-ESCC-derived exosomes in ESCC progression and describe opportunities and challenges in the clinical translation of exosomes.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lili Yu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiangpeng Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jangtao He
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China; The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Ma J, Luo Y, Liu Y, Chen C, Chen A, Liang L, Wang W, Song Y. Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:61-73. [PMID: 36575934 PMCID: PMC9806635 DOI: 10.4196/kjpp.2023.27.1.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 12/29/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.
Collapse
Affiliation(s)
- Junliang Ma
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China,Correspondence Junliang Ma, E-mail:
| | - Yijun Luo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yingjie Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zuinyi Medical University, Zunyi, Guizhou 563003, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Anping Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lubiao Liang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410031, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| |
Collapse
|
9
|
Pan J, Zang Y. LINC00667 Promotes Progression of Esophageal Cancer Cells by Regulating miR-200b-3p/SLC2A3 Axis. Dig Dis Sci 2022; 67:2936-2947. [PMID: 34313922 DOI: 10.1007/s10620-021-07145-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recently, more and more evidence indicated that the long non-coding RNA was strictly related to the occurrence and progression of human cancers, including esophageal cancer (EC). We observed that LINC00667 was increased in EC, but the function of LINC00667 was unclear. Therefore, the function and potential molecular mechanism of LINC00667 in the progression of EC need to be further studied. METHODS Quantitative real-time PCR was used to investigate the levels of LINC00667, miR-200b-3p, and SLC2A3. The levels of protein involved in cell cycle, cell apoptosis, epithelial-mesenchymal transition, as well as SLC2A3 were quantitatived by western blot. The role of LINC00667 in the proliferative, migratory and invasive capabilities of EC cells were measured by cell counting kit-8 assay, EdU assay, flow cytometry assay, wound healing assay and transwell assay, respectively. Interaction between LINC00667 and miR-200b-3p or miR-200b-3p and SLC2A3 were confirmed using a luciferase reporter assay. RESULTS In this work, we found that LINC00667 expression was up-regulated in EC cell lines, and LINC00667 knockdown inhibited cell proliferation, migration, and invasion in EC cells. In addition, it showed that LINC00667 functioned as competitive endogenous RNA for miR-200b-3p by the DIANA-LncBase database. Moreover, we used targetscan online software to predict SLC2A3 as a target gene of miR-200b-3p. Subsequently, rescue experiments confirmed that knocking out SLC2A3 could reverse the inhibitory effect of miR-200b-3p on EC cells transfected with sh-LINC00667. CONCLUSION Herein, we revealed the novel mechanism of LINC00667 on regulating metastasis-related gene by sponge regulatory axis during EC metastasis. Our results demonstrated that LINC00667 plays a critical role in metastatic EC by mediating sponge regulatory axis miR-200b-3p/SLC2A3. To explore function of LINC00667/miR-200b-3p/SLC2A3 axis may provide an informative biomarker of malignancy and a highly selective anti-EC therapeutic target.
Collapse
Affiliation(s)
- Jindun Pan
- Department of Gastroenterology, Taishan Hospital, Taian, Shandong Province, China.
| | - Yunhong Zang
- Department of Gastroenterology, Taishan Hospital, Taian, Shandong Province, China
| |
Collapse
|
10
|
LNCRNA XIST Inhibits miR-377-3p to Hinder Th17 Cell Differentiation through Upregulating ETS1. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6545834. [PMID: 35747716 PMCID: PMC9213139 DOI: 10.1155/2022/6545834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Background Th17 cell differentiation is involved in the development and progression of many diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Present study mainly focused on the role of LINC-XIST in Th17 cell differentiation. Methods The naïve CD4+ T cells were isolated from human whole blood. Cells were cultured under Th17 cell-polarizing condition for 6 days. The expression of LINC-XIST and miR-153-3p was measured by qPCR. The relationship between LINC-XIST, miR-153-3p, and ETS1 was predicted by TargetScan website and authenticated by luciferase reporter assay. ELISA assays were conducted to evaluate the IL-17 concentration. Western blot was utilized to measure the protein expression of ETS1. Th17 cell frequency was examined by flow cytometry. Results The expression of XIST markedly decreased and miR-153-3p expression markedly increased with Th17 cell differentiation. The mRNA expression of IL-17, IL-17 concentration, and Th17 cell frequency were observably decreased in overexpressed LINC-XIST group. Luciferase reporter assay authenticated that miR-153-5p was directly regulated by LINC-XIST. miR-153-3p inhibitor observably decreased IL-17 concentration, mRNA expression of IL-17, and Th17 cell frequency while si-XIST reversed this impact. ETS1 was confirmed to be regulated by miR-153-5p via luciferase reporter assay. In addition, ETS1 markedly decreased IL-17 mRNA expression, IL-17 concentration, and Th17 cell frequency while miR-153-5p mimic reversed this impact. Conclusion LNCRNA XIST inhibited miR-377-3p to hinder Th17 cell differentiation through upregulating ETS1.
Collapse
|
11
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
12
|
Chen S, Tu Y, Yuan H, Shi Z, Guo Y, Gong W, Tu S. Regulatory functions of miR‑200b‑3p in tumor development (Review). Oncol Rep 2022; 47:96. [PMID: 35322861 PMCID: PMC8968761 DOI: 10.3892/or.2022.8307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs/miRs), non‑coding single‑stranded RNAs of length 18‑24 nucleotides, can modulate gene expression through post‑transcriptional control. As such, they can influence tumor proliferation, apoptosis, invasion, metastasis as well as chemotherapy resistance by regulating certain downstream genes. In this context, miR‑200b‑3p, one particular member of the miR‑200 family, possesses the ability to suppress tumor progression. However, many studies have suggested that, in certain cases, this miRNA may also promote the development of some tumors due to differences in the microenvironments and molecular backgrounds of different cancers. This review summarizes previous studies on the involvement of miR‑200b‑3p in tumors, including the underlying mechanism.
Collapse
Affiliation(s)
- Sheng Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hang Yuan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Yang Guo
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wenjing Gong
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Shiliang Tu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
Tuo Z, Zhang A, Ma L, Zhou Z. Long noncoding RNA RP11-909N17.2 presages a poor prognosis of non-small cell lung cancer. Cancer Biomark 2021; 34:211-219. [PMID: 34957995 DOI: 10.3233/cbm-203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) were detected extraordinarily expressed in various tumors and could combine with microRNAs (miRNAs) to play important role in tumor cells. This study is to explore the role of lncRNA RP11-909N17.2 in NSCLC and discuss in what way it functions in NSCLC. METHODS 120 NSCLC patients were enlisted in this study. Expression levels of lncRNA RP11-909N17.2 and miR-767-3p were detected and the correlation between lncRNA RP11-909N17.2 expression and the clinical data characteristics was analyzed. Prognosis potential of lncRNA RP11-909N17.2 was inferred with Kaplan-Meier and multivariate Cox regression assays. Biological functions of NSCLC cells were accessed by cell counting Kit-8, transwell migration and invasion assay. Mechanism of RP11-909N17.2 action on NSCLC cells was investigated by luciferase activity assay with wide-type or mutation. RESULTS LncRNA RP11-909N17.2 has an ascendant expression while miR-767-3p has descended one in NSCLC tissue specimens and cells. Over-expression of lncRNA RP11-909N17.2 can shorten the overall survival period of NSCLC patients when compared with low expression. Knockdown of lncRNA RP11-909N17.2 suppressed biology function of NSCLC cell including proliferation, migration, and invasion. CONCLUSION LncRNA RP11-909N17.2 can be developed into a prognostic index for NSCLC. LncRNA RP11-909N17.2 plays a promoting role in NSCLC cells possibly by binding miR-767-3p as a sponge.
Collapse
Affiliation(s)
- Zhongzhen Tuo
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Ailian Zhang
- Department of Blood Transfusion, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Lujuan Ma
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Zehua Zhou
- Department of Laboratory, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
14
|
Yang Y, Zhang G, Li J, Gong R, Wang Y, Qin Y, Ping Q, Hu L. Long noncoding RNA NORAD acts as a ceRNA mediates gemcitabine resistance in bladder cancer by sponging miR-155-5p to regulate WEE1 expression. Pathol Res Pract 2021; 228:153676. [PMID: 34753061 DOI: 10.1016/j.prp.2021.153676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increasing evidences have proved that long noncoding RNAs (lncRNAs) regulate the occurrence of bladder cancer (BC) and participate in various pathophysiology processes. However, little is unknown about the role of lncRNAs in drug resistance of BC cells. In this study, we explored the role of non-coding RNA activated by DNA damage (NORAD) in the gemcitabine (GEM) resistant of BC cells and explored its potential mechanism. METHODS Real-time quantitative PCR (RT-qPCR) was used to detect the expression of NORAD and miR-155-5p of BC cells. Cell counting kit-8 (CCK-8) and Western blot were used to detect cell inhibition rate and the expression of WEE1 G2 checkpoint kinase (WEE1), P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). Flow cytometry detected cell cycle and apoptosis. Dual luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to confirm the targeting relationship between miR-155-5p, NORAD and WEE1. The xenograft model was used to observe the function of NORAD in vivo. immunohistochemistry (IHC) assay was used to detect the expression of WEE1, caspase-3 and Ki67 in tumor tissues. RESULTS NORAD highly expressed in GEM-resistant BC cell lines. Knockdown of NORAD significantly inhibited the proliferation of T24/GEM cells, the expression of drug-resistant proteins P-gp and MRP1, inhibit the G0/G1 phase of cells, and induce cell apoptosis. Knockdown of NORAD reversed the promotion effect of miR-155-5p on WEE1 expression and promoted the sensitivity of T24/GEM cells to GEM. In vivo, knockdown of NORAD inhibited the tumor growth, and enhanced the GEM-sensitivity in mice. CONCLUSION These data highlight the potential of NORAD acts as a therapeutic target for BC GEM resistance. It revealed the vital roles of NORAD/miR-155-5p/WEE1 axis in GEM resistant BC cells, providing a novel therapeutic strategy for BC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China
| | - Guoying Zhang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Rd, Kunming, Yunnan 650000, China
| | - Jian Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China
| | - Rui Gong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China
| | - Yingbao Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China
| | - Yang Qin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Rd, Kunming, Yunnan 650000, China
| | - Qinrong Ping
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China
| | - Libing Hu
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, 245 East Renming Rd, Kunming, Yunnan 650000, China.
| |
Collapse
|
15
|
Xie W, Sun H, Li X, Lin F, Wang Z, Wang X. Ovarian cancer: epigenetics, drug resistance, and progression. Cancer Cell Int 2021; 21:434. [PMID: 34404407 PMCID: PMC8369623 DOI: 10.1186/s12935-021-02136-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 03/05/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. OC is associated with the activation of oncogenes, the inactivation of tumor suppressor genes, and the activation of abnormal cell signaling pathways. Moreover, epigenetic processes have been found to play an important role in OC tumorigenesis. Epigenetic processes do not change DNA sequences but regulate gene expression through DNA methylation, histone modification, and non-coding RNA. This review comprehensively considers the importance of epigenetics in OC, with a focus on microRNA and long non-coding RNA. These types of RNA are promising molecular markers and therapeutic targets that may support precision medicine in OC. DNA methylation inhibitors and histone deacetylase inhibitors may be useful for such targeting, with a possible novel approach combining these two therapies. Currently, the clinical application of such epigenetic approaches is limited by multiple obstacles, including the heterogeneity of OC, insufficient sample sizes in reported studies, and non-optimized methods for detecting potential tumor markers. Nonetheless, the application of epigenetic approaches to OC patient diagnosis, treatment, and prognosis is a promising area for future clinical investigation.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feikai Lin
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China
| | - Ziliang Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, 1665 Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
16
|
Wu X, Fan Y, Liu Y, Shen B, Lu H, Ma H. Long Non-Coding RNA CCAT2 Promotes the Development of Esophageal Squamous Cell Carcinoma by Inhibiting miR-200b to Upregulate the IGF2BP2/TK1 Axis. Front Oncol 2021; 11:680642. [PMID: 34386421 PMCID: PMC8353391 DOI: 10.3389/fonc.2021.680642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 01/14/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.
Collapse
Affiliation(s)
- Xiaodan Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yupeng Liu
- Department of Thoracic Surgery, Nantong Tumor Hospital, Nantong, China
| | - Biao Shen
- Department of Thoracic Surgery, Nantong Tumor Hospital, Nantong, China
| | - Haimin Lu
- Department of Thoracic Surgery, Nantong Tumor Hospital, Nantong, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Gu S, Qian L, Liu Y, Miao J, Shen H, Zhang S, Mao G. Upregulation of long non-coding RNA MYU promotes proliferation, migration and invasion of esophageal squamous cell carcinoma cells. Exp Ther Med 2021; 21:644. [PMID: 33968175 PMCID: PMC8097213 DOI: 10.3892/etm.2021.10076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumour type of the digestive system. Long non-coding RNA (lncRNA) c-Myc upregulated (MYU), also known as VPS9 domain-containing 1 antisense 1, was recently discovered. However, the expression of lncRNA MYU in ESCC and its role in tumour progression have remained elusive. In the present study, the expression of lncRNA MYU, Ki-67 and the epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin in ESCC tissues was detected by reverse transcription-quantitative PCR. The expression of Ki-67, E-cadherin and Vimentin in ESCC tissues was also detected by immunohistochemistry. A small interfering RNA plasmid was employed to establish a TE-2 cell line with knockdown on lncRNA MYU. The results indicated that the expression of lncRNA MYU was higher in ESCC tissues than in normal adjacent tissues and that upregulation of lncRNA MYU was a potential biomarker for poor prognosis. The results also suggested that the expression levels of lncRNA MYU were correlated with the histological grade, lymph node metastasis and TNM stage (P<0.05). Silencing of lncRNA MYU expression inhibited the proliferation, migration and invasion, while the expression of lncRNA MYU increased as cell proliferation increased. In addition, the mRNA expression of Vimentin and Ki-67 was decreased in TE-2 cells after lncRNA MYU was knocked down, while E-cadherin mRNA expression was elevated. In conclusion, the present results indicated that lncRNA MYU may regulate the proliferation, migration and invasion of ESCC cells, and may serve as a prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Shudong Gu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiefei Miao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hong Shen
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
18
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Zhao J, Liu D, Yang H, Yu S, He H. Long noncoding RNAs in head and neck squamous cell carcinoma: biological functions and mechanisms. Mol Biol Rep 2020; 47:8075-8090. [PMID: 32914266 DOI: 10.1007/s11033-020-05777-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the primary malignant tumor of the oral cavity, larynx, nasopharynx, esophagus and tongue. Although several novel therapeutic methods for HNSCC have been developed, the final therapeutic effect on the patient is still not satisfactory. Thus, it is imperative that scientists identify novel distinguishable markers with specific molecular characteristics that can be used in therapeutic and prognostic evaluation. Previous reports have shown that long noncoding RNAs (lncRNAs) are important regulators of gene expression in many cancers, including head and neck squamous cell carcinomas. Translational studies of lncRNAs in HNSCC are urgently required before their application as a treatment can be realized. We aimed to address the most relevant findings on lncRNAs as biomarkers or treatment targets in head and neck squamous cell carcinoma and to summarize their discovered pathways and mechanisms of action to reveal the possible future applications of these novel biomarkers in clinical translational research.
Collapse
Affiliation(s)
- Jiayu Zhao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Daming Liu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Hao Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086, Heilongjiang, China.
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
20
|
LncRNA EIF3J-AS1 enhanced esophageal cancer invasion via regulating AKT1 expression through sponging miR-373-3p. Sci Rep 2020; 10:13969. [PMID: 32811869 PMCID: PMC7434778 DOI: 10.1038/s41598-020-70886-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Esophageal cancer (ECa) remains a major cause of mortality across the globe. The expression of EIF3J-AS1 is altered in a plethora of tumors, but its role in ECa development and progression are undefined. Here, we show that EIF3J-AS1 is up-regulated in ECa and that its expression correlates with advanced TNM stage (P = 0.014), invasion depth (P = 0.001), positive lymph node metastasis (P < 0.001) and poor survival (OS: P = 0.0059; DFS: P = 0.0037) in ECa. Functional experiments showed that knockdown EIF3J-AS1 inhibited ECa growth and metastasis through in vitro and in vivo experiments. Regarding the mechanism, EIF3J-AS1/miR-373-3p/AKT1 established the ceRNA network involved in the modulation of cell progression of ECa cells. Overall, EIF3J-AS1 may exhibit an oncogenic function in ECa via acting as a sponge for miR-373-3p to up-regulate AKT1 mRNA level, and may serve as a potential therapeutic target and a prognostic biomarker for ECa patients.
Collapse
|
21
|
Gao J, Zhang Z, Su H, Zong L, Li Y. Long Noncoding RNA FGD5-AS1 Acts as a Competing Endogenous RNA on microRNA-383 to Enhance the Malignant Characteristics of Esophageal Squamous Cell Carcinoma by Increasing SP1 Expression. Cancer Manag Res 2020; 12:2265-2278. [PMID: 32273764 PMCID: PMC7105361 DOI: 10.2147/cmar.s236576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have identified the important roles of a long noncoding RNA called FGD5 antisense RNA 1 (FGD5-AS1) in several types of human cancer. Nonetheless, to our knowledge, the expression and functions of FGD5-AS1 in esophageal squamous cell carcinoma (ESCC) have not been clarified. In this study, we aimed to determine the expression status of long noncoding RNA FGD5-AS1 in ESCC, determine its participation in ESCC progression, and uncover the underlying mechanisms. Methods ESCC tissue samples and paired normal adjacent tissues were collected to quantify FGD5-AS1 expression by reverse-transcription quantitative PCR. The effects of FGD5-AS1 on ESCC cell proliferation, apoptosis, migration, and invasion in vitro as well as tumor growth in vivo were studied using a Cell Counting Kit-8 assay, flow cytometry, Transwell migration and invasion assays, and an in vivo tumor xenograft experiment. Results FGD5-AS1 was found to be aberrantly upregulated in both ESCC tumors and cell lines compared to the control groups. Increased FGD5-AS1 expression manifested a close association with tumor size, TNM stage, and lymph node metastasis in patients with ESCC. Overall survival of patients with ESCC was shorter in the FGD5-AS1 high-expression group than in the FGD5-AS1 low-expression group. An FGD5-AS1 knockdown markedly attenuated ESCC cell proliferation, migration, and invasion and promoted apoptosis in vitro as well as slowed tumor growth in vivo. Mechanism investigation revealed that FGD5-AS1 can increase SP1 expression by sponging microRNA-383 (miR-383), thus functioning as a competing endogenous RNA. An miR-383 knockdown and recovery of SP1 expression attenuated the inhibition of the malignant characteristics of ESCC cells by the FGD5-AS1 knockdown. Conclusion Thus, FGD5-AS1 enhances the aggressive phenotype of ESCC cells in vitro and in vivo via the miR-383–SP1 axis, which may represent a novel target for ESCC therapy.
Collapse
Affiliation(s)
- Jia Gao
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ziteng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Hong Su
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Yan Li
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| |
Collapse
|
22
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|