1
|
Sergiev P, Averina O, Golubeva J, Vyssokikh M, Dontsova O. Mitoregulin, a tiny protein at the crossroads of mitochondrial functioning, stress, and disease. Front Cell Dev Biol 2025; 13:1545359. [PMID: 40109364 PMCID: PMC11920140 DOI: 10.3389/fcell.2025.1545359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Mitoregulin (Mtln) is a small mitochondrial protein that was only recently identified. Despite this, a substantial number of studies on its function have already been published. Although sometimes contradictory, these studies have revealed the localization of Mtln, its protein and lipid partners, and its role in lipid homeostasis, energy metabolism, oxidative stress, and other aspects of mitochondrial functioning. Moreover, research using knockout and transgenic mouse models has revealed the important role of Mtln in mammalian physiology. Metabolic changes, along with muscle, kidney, and fat-related phenotypes, have been linked to Mtln dysfunction. In this review, we summarize a comprehensive set of published data on Mtln. While controversies remain, we seek to offer a unified view of its functions, spanning molecular mechanisms to organism-level effects.
Collapse
Affiliation(s)
- Petr Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Julia Golubeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | - Mikhail Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Olga Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Wang D, Zhang Y, Ren D, Meng C, Yang L. Bioinformatics analysis illustrates the functions of miR-377-5p in cervical cancer. Biotechnol Genet Eng Rev 2024; 40:4238-4249. [PMID: 37144663 DOI: 10.1080/02648725.2023.2208453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Cervical cancer (CC) is a frequent disease in women whose development is related with miRNA disorder. MiR-377-5p plays a negative role in the development of some tumors, while few studies have revealed its role in CC. In this study, the functions of miR-377-5p in CC were investigated by bioinformatics. Briefly, the expression and survival curve of miR-377-5p in CC was analyzed with the Cancer Genome Atlas (TCGA) database, and the abundance of miR-377-5p in clinical samples and CC cell lines were measured by qRT-PCR. Moreover, the MicroRNA Data Integration Portal (miRDIP) database was used to predict targets of miR-377-5p, and the Database for Annotation Visualization and Integrated Discovery (David) was used for enrichment analysis of the functions of the miR-377-5p. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to screen the hub targets of miR-377-5p. Moreover, the Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the abundance of the genes in CC. Results showed that decreased miR-377-5p was found in the CC tissues and cell lines, and low miR-377-5p was connected with poor prognosis of patients. Besides, the targets of miR-377-5p were enriched in the PI3K/AKT, MAPK and RAS signaling pathways. Moreover, CDC42, FLT1, TPM3 and CAV1 were screened as hub nodes in the targets of miR-377-5p, and increased CDC42, FLT1, TPM3 and CAV1 also indicated the poor survival rates of the patients in the long term. In conclusion, this study suggests that miR-377-5p downregulation is a biomarker event for CC progression.
Collapse
Affiliation(s)
- Dongjie Wang
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunan, China
| | - Yifeng Zhang
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunan, China
| | - Dongyan Ren
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunan, China
| | - Chunmei Meng
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunan, China
| | - Liufeng Yang
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Gynaecology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunan, China
| |
Collapse
|
3
|
Wang BY, Gao Q, Sun Y, Qiu XB. Biochemical targets of the micropeptides encoded by lncRNAs. Noncoding RNA Res 2024; 9:964-969. [PMID: 38764490 PMCID: PMC11098672 DOI: 10.1016/j.ncrna.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides, which play important roles in regulating various cellular activities by the action of the RNA itself. However, about 40% of lncRNAs in human cells are potentially translated into micropeptides (also referred to as microproteins) usually shorter than 100 amino acids. Thus, these lncRNAs may function by both RNAs directly and their encoded micropeptides. The micropeptides encoded by lncRNAs may regulate transcription, translation, protein phosphorylation or degradation, or subcellular membrane functions. This review attempts to summarize the biochemical targets of the micropeptides-encoded by lncRNAs, which function by both RNAs and micropeptides, and discuss their associations with various diseases and their potentials as drug targets.
Collapse
Affiliation(s)
- Bi-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Qi Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| |
Collapse
|
4
|
Sriharikrishnaa S, John FE, Bairy M, Shetty S, Suresh PS, Kabekkodu SP. A comprehensive review on the functional role of miRNA clusters in cervical cancer. Epigenomics 2024; 16:493-511. [PMID: 38511231 DOI: 10.2217/epi-2023-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cervical cancer (CC) poses a significant health threat in women globally. MicroRNA clusters (MCs), comprising multiple miRNA-encoding genes, are pivotal in gene regulation. Various factors, including circular RNA and DNA methylation, govern MC expression. Dysregulated MC expression correlates strongly with CC development via promoting the acquisition of cancer hallmarks. Certain MCs show promise for diagnosis, prognosis and therapy selection due to their distinct expression patterns in normal, premalignant and tumor tissues. This review explains the regulation and biological functions of MCs and highlights the clinical relevance of abnormal MC expression in CC.
Collapse
Affiliation(s)
- Srinath Sriharikrishnaa
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Femi E John
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Medha Bairy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sachin Shetty
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Shama P Kabekkodu
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
5
|
Wang Y, Chen X, Yang Y. CircRNA-regulated glucose metabolism in ovarian cancer: an emerging landscape for therapeutic intervention. Clin Transl Oncol 2024; 26:584-596. [PMID: 37578652 DOI: 10.1007/s12094-023-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) has the highest mortality rate among female reproductive system tumours, with limited efficacy of traditional treatments and 5-year survival rates that rarely exceed 40%. Circular RNA (circRNA) is a stable endogenous circular RNA that typically regulates protein expression by binding to downstream miRNA. It has been demonstrated that circRNAs play an important role in the proliferation, migration, and glucose metabolism (such as the Warburg effect) of OC and can regulate the expression of glucose metabolism-related proteins such as GLUT1 and HK2, promoting anaerobic glycolysis of cancer cells, increasing glucose uptake and ATP production, and affecting energy supply and biosynthetic substances to support tumour growth and invasion. This review summarises the formation and characteristics of circRNAs and focuses on their role in regulating glucose metabolism in OC cells and their potential therapeutic value, providing insights for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Yaolong Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, Gansu, China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
7
|
Daneshpour M, Ghadimi-Daresajini A. Overview of miR-106a Regulatory Roles: from Cancer to Aging. Bioengineering (Basel) 2023; 10:892. [PMID: 37627777 PMCID: PMC10451182 DOI: 10.3390/bioengineering10080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) comprise a class of non-coding RNA with extensive regulatory functions within cells. MiR-106a is recognized for its super-regulatory roles in vital processes. Hence, the analysis of its expression in association with diseases has attracted considerable attention for molecular diagnosis and drug development. Numerous studies have investigated miR-106 target genes and shown that this miRNA regulates the expression of some critical cell cycle and apoptosis factors, suggesting miR-106a as an ideal diagnostic and prognostic biomarker with therapeutic potential. Furthermore, the reported correlation between miR-106a expression level and cancer drug resistance has demonstrated the complexity of its functions within different tissues. In this study, we have conducted a comprehensive review on the expression levels of miR-106a in various cancers and other diseases, emphasizing its target genes. The promising findings surrounding miR-106a suggest its potential as a valuable biomolecule. However, further validation assessments and overcoming existing limitations are crucial steps before its clinical implementation can be realized.
Collapse
Affiliation(s)
- Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Ali Ghadimi-Daresajini
- Department of Medical Biotechnology, School of Allied Medicine, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| |
Collapse
|
8
|
Liu YQ, Liu C, Bai Y, Gao J. LncRNA AATBC indicates development and facilitates cell growth and metastasis of cervical cancer as a sponge of miR-1245b-5p. Kaohsiung J Med Sci 2023; 39:115-123. [PMID: 36420764 DOI: 10.1002/kjm2.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
With the increasing incidence and mortality rate, cervical cancer has been considered one of the most frequent malignant tumors in females. Exploration of tumor progression-related biomarkers could facilitate the identification of novel and targeted therapy strategies. To assess the significance of lncRNA AATBC (AATBC) and its potential regulatory mechanism in cervical cancer, and to identify a potential biomarker, this study enrolled 123 patients with cervical cancer. Paired tissue samples were collected. The expression levels of AATBC and miR-1245b-5p were analyzed by RT-qPCR and their significance in the development and prognosis of cervical cancer was evaluated using chi-square and Cox analyses. In vitro, the regulatory effect of AATBC on the cellular processes of cervical cancer was estimated by CCK8 and Transwell assay. The interaction between ATTBC and miR-1245b-5p was assessed by luciferase reporter assay. Significant upregulation of AATBC and reduced miR-1245b-5p level in cervical cancer were observed, which showed a negative correlation between their expression levels. Close relationships of AATBC and miR-1245b-5p with the FIGO stage and lymph node metastasis were revealed. AATBC showed a significant prognostic value and miR-1245b-5p was found to mediate the tumor inhibitory effect of AATBC knockdown, which is speculated to be the underlying molecular mechanism of AATBC in cervical cancer development. Upregulation of AATBC indicted the malignant development and adverse prognosis of cervical cancer. AATBC served as a tumor promoter of cervical cancer by modulating miR-1245b-5p.
Collapse
Affiliation(s)
- Ying-Qiao Liu
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yang Bai
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Liu Y, Liu H, Sheng B, Pan S, Wang ZW, Zhu X. The functions of lncRNAs in the HPV-negative cervical cancer compared with HPV-positive cervical cancer. Apoptosis 2022; 27:685-696. [PMID: 35980559 DOI: 10.1007/s10495-022-01761-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common female malignancies. Human papillomaviruses (HPV) are the main causative agents of virtually all cervical carcinomas. Nevertheless, emerging evidence has demonstrated that a small proportion of cervical cancer patients are HPV negative. Long noncoding RNAs (lncRNAs) have been identified to play a crucial role in cervical cancer development. Here, this review describes the incidence and development of HPV-negative cervical cancer. Moreover, HPV-negative cervical cancers are more likely diagnosed at non-squamous type, older ages, more advanced stage and metastases, and associated with poorer prognosis as compared to HPV-positive cervical cancer. Furthermore, the significant role and functions of lncRNAs underlying HPV-negative cervical cancer is clarified.
Collapse
Affiliation(s)
- Yi Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Sheng
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Wei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
11
|
Wang H, Wang D, Wei Q, Li C, Li C, Yang J. Long non-coding RNAs PGM5-AS1 upregulates Decorin (DCN) to inhibit cervical cancer progression by sponging miR-4284. Bioengineered 2022; 13:9872-9884. [PMID: 35420507 PMCID: PMC9161867 DOI: 10.1080/21655979.2022.2062088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely studied and play crucial roles in cervical cancer (CC) progression. Here, we investigated the function and mechanism of lncRNA PGM5-AS1 action in CC cells. Using real-time quantitative polymerase chain reaction or western blotting, PGM5-AS1 and decorin (DCN) were downregulated in CC tissues and cells, whereas miR-4284 was upregulated. Luciferase assay, RNA pull-down assay, and western blotting showed that PGM5-AS1 could sponge miR-4284 to upregulate DCN expression in CC cells. Additionally, cell functional experiments showed that PGM5-AS1 overexpression led to decreased proliferation, migration, and invasion of CC cells. However, the inhibitory effect of PGM5-AS1 overexpression on CC cells was partly relieved by DCN knockdown because of the targeting interaction between PGM5-AS1, miR-4284, and DCN. In summary, this study identified that PGM5-AS1 negatively regulates CC cell malignancy by targeting miR-4284/DCN.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiong Wei
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chun Li
- Department of Obstetrics and Gynecology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyan Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
NAP1L1 promotes tumor proliferation through HDGF/C-JUN signaling in ovarian cancer. BMC Cancer 2022; 22:339. [PMID: 35351053 PMCID: PMC8962469 DOI: 10.1186/s12885-022-09356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Nucleosome assembly protein 1-like 1 (NAP1L1) is highly expressed in various types of cancer and plays an important role in carcinogenesis, but its specific role in tumor development and progression remains largely unknown. In this study, we suggest the potential of NAP1L1 as a prognostic biomarker and therapeutic target for the treatment of ovarian cancer (OC). Methods In our study, a tissue microarray (TMA) slide containing specimens from 149 patients with OC and 11 normal ovarian tissues underwent immunohistochemistry (IHC) to analyze the correlation between NAP1L1 expression and clinicopathological features. Loss-of- function experiments were performed by transfecting siRNA and following lentiviral gene transduction into SKOV3 and OVCAR3 cells. Cell proliferation and the cell cycle were assessed by the Cell Counting Kit-8, EDU assay, flow cytometry, colony formation assay, and Western blot analysis. In addition, co-immunoprecipitation (Co-IP) and immunofluorescence assays were performed to confirm the relationship between NAP1L1 and its potential targets in SKOV3/OVCAR3 cells. Results High expression of NAP1L1 was closely related to poor clinical outcomes in OC patients. After knocking down NAP1L1 by siRNA or shRNA, both SKOV3 and OVCAR3 cells showed inhibition of cell proliferation, blocking of the G1/S phase, and increased apoptosis in vitro. Mechanism analysis indicated that NAP1L1 interacted with hepatoma-derived growth factor (HDGF) and they were co-localized in the cytoplasm. Furthermore, HDGF can interact with jun proto-oncogene (C-JUN), an oncogenic transformation factor that induces the expression of cyclin D1 (CCND1). Overexpressed HDGF in NAP1L1 knockdown OC cells not only increased the expression of C-JUN and CCND1, but it also reversed the suppressive effects of si-NAP1L1 on cell proliferation. Conclusions Our data demonstrated that NAP1L1 could act as a prognostic biomarker in OC and can interact with HDGF to mediate the proliferation of OC, and this process of triggered proliferation may contribute to the activation of HDGF/C-JUN signaling in OC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09356-z.
Collapse
|
13
|
Fang Y, Yang Q. Specificity protein 1-induced serine peptidase inhibitor, Kunitz Type 1 antisense RNA1 regulates colorectal cancer cell proliferation, migration, invasion and apoptosis through targeting heparin binding growth factor via sponging microRNA-214. Bioengineered 2022; 13:3309-3322. [PMID: 35068341 PMCID: PMC8973735 DOI: 10.1080/21655979.2022.2026859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ying Fang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| | - Qianqian Yang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| |
Collapse
|
14
|
Liu Y, Li X, Zhang Y, Tang Y, Fang W, Liu X, Liu Z. NAP1L1 targeting suppresses the proliferation of nasopharyngeal carcinoma. Biomed Pharmacother 2021; 143:112096. [PMID: 34563951 DOI: 10.1016/j.biopha.2021.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Nucleosome assembly protein 1-like 1 (NAP1L1) is significantly involved in the development of various cancers. However, its role in the molecular mechanism of nasopharyngeal carcinoma (NPC) remains undetermined. In this study, we detected the upregulated expression of NAP1L1 mRNA and protein levels by quantitative polymerase chain reaction and Western blot analysis in NPC cell lines. Results of the immunohistochemistry analysis of NPC tissue biopsies showed that upregulated NAP1L1 protein expression promoted NPC progression and negatively correlated with poor prognosis in NPC patients. Suppression of NAP1L1 expression by small interfering RNA (siRNA) or small hairpin RNA (shRNA) methods significantly decreased cell proliferation in vivo and in vitro. Mechanism analysis revealed that the regulation of cell growth was enriched by Gene Set Enrichment Analysis based on RNA sequencing data. Cell cycle-induced genes CCND1 and E2F1 were downregulated in NAP1L1 knockdown NPC cells. Reduced NAP1L1 suppressed the recruitment of hepatoma-derived growth factor (HDGF) and decreased its expression. Knockdown of HDGF reduced the expression of c-JUN, a key oncogenic transcription factor that can induce the expression of cyclin D1 (CCND1), reducing cell cycle progression and suppressing cell growth in NPC. Transfecting HDGF or c-JUN could reverse the growth-suppressive effects in NAP1L1-downregulated NPC cells. The data obtained in this study suggest that NAP1L1 acts as a potential oncogene by activating HDGF/c-JUN/CCND1 signaling in NPC.
Collapse
Affiliation(s)
- YaHui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - XiaoNing Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - YeWei Zhang
- Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Yao Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - WeiYi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| | - Xiong Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China.
| |
Collapse
|
15
|
Tanaka C, Kobori T, Tameishi M, Urashima Y, Ito T, Obata T. Ezrin Modulates the Cell Surface Expression of Programmed Cell Death Ligand-1 in Human Cervical Adenocarcinoma Cells. Molecules 2021; 26:5648. [PMID: 34577118 PMCID: PMC8469114 DOI: 10.3390/molecules26185648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer cells employ programmed cell death ligand-1 (PD-L1), an immune checkpoint protein that binds to programmed cell death-1 (PD-1) and is highly expressed in various cancers, including cervical carcinoma, to abolish T-cell-mediated immunosurveillance. Despite a key role of PD-L1 in various cancer cell types, the regulatory mechanism for PD-L1 expression is largely unknown. Understanding this mechanism could provide a novel strategy for cervical cancer therapy. Here, we investigated the influence of ezrin/radixin/moesin (ERM) family scaffold proteins, crosslinking the actin cytoskeleton and certain plasma membrane proteins, on the expression of PD-L1 in HeLa cells. Our results showed that all proteins were expressed at mRNA and protein levels and that all ERM proteins were highly colocalized with PD-L1 in the plasma membrane. Interestingly, immunoprecipitation assay results demonstrated that PD-L1 interacted with ERM as well as actin cytoskeleton proteins. Furthermore, gene silencing of ezrin, but not radixin and moesin, remarkably decreased the protein expression of PD-L1 without affecting its mRNA expression. In conclusion, ezrin may function as a scaffold protein for PD-L1; regulate PD-L1 protein expression, possibly via post-translational modification in HeLa cells; and serve as a potential therapeutic target for cervical cancer, improving the current immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; (C.T.); (M.T.); (Y.U.)
| |
Collapse
|
16
|
Yang Y, Xia L, Wu Y, Zhou H, Chen X, Li H, Xu M, Qi Z, Wang Z, Sun H, Cheng X. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun (Lond) 2021; 41:511-527. [PMID: 33939321 PMCID: PMC8211352 DOI: 10.1002/cac2.12157] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Although programmed cell death‐ligand 1 (PD‐L1) plays a well‐known function in immune checkpoint response by interacting with programmed cell death‐1 (PD‐1), the cell‐intrinsic role of PD‐L1 in tumors is still unclear. Here, we explored the molecular regulatory mechanism of PD‐L1 in the progression and metastasis of ovarian cancer. Methods Immunohistochemistry of benign tissues and ovarian cancer samples was performed, followed by migration, invasion, and angiogenesis assays in PD‐L1‐knockdown ovarian cancer cells. Immunoprecipitation, mass spectrometry, and chromatin immunoprecipitation were conducted along with zebrafish and mouse experiments to explore the specific functions and mechanisms of PD‐L1 in ovarian cancer. Results Our results showed that PD‐L1 induced angiogenesis, which further promoted cell migration and invasion in vitro and in vivo of ovarian cancer. Mechanistically, PD‐L1 was identified to directly interact with vascular endothelial growth factor receptor‐2 (VEGFR2) and then activated the FAK/AKT pathway, which further induced angiogenesis and tumor progression, leading to poor prognosis of ovarian cancer patients. Meanwhile, PD‐L1 was found to be regulated by the oncogenic transcription factor c‐JUN at the transcriptional level, which enhanced the expression of PD‐L1 in ovarian cancer. Furthermore, we demonstrated that PD‐L1 inhibitor durvalumab, combined with the antiangiogenic drug, apatinib, could enhance the effect of anti‐angiogenesis and the inhibition of cell migration and invasion. Conclusion Our results demonstrated that PD‐L1 promoted the angiogenesis and metastasis of ovarian cancer by participating in the c‐JUN/VEGFR2 signaling axis, suggesting that the combination of PD‐L1 inhibitor and antiangiogenic drugs may be considered as a potential therapeutic approach for ovarian cancer patients.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Lingfang Xia
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yong Wu
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Hongyu Zhou
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Xin Chen
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Haoran Li
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Midie Xu
- Department of Pathology and Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zihao Qi
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Ziliang Wang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China.,Clinical Research Unit of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200071, P. R. China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Xi Cheng
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
17
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Comprehensive Understanding of the Anticancer Mechanisms of FDY2004 Against Cervical Cancer Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herbal drugs are continuously being developed and used as effective therapeutics for various cancers, such as cervical cancer (CC); however, their mechanisms of action at a systemic level have not been explored fully. To study such mechanisms, we conducted a network pharmacological investigation of the anti-CC mechanisms of FDY2004, an herbal drug consisting of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma. We found that FDY2004 inhibited the viability of human CC cells. By performing pharmacokinetic evaluation and network analysis of the phytochemical components of FDY2004, we identified 29 bioactive components and their 116 CC-associated pharmacological targets. Gene ontology enrichment analysis showed that the modulation of cellular functions, such as apoptosis, growth, proliferation, and survival, might be mediated through the FDY2004 targets. The therapeutic targets were also key components of CC-associated oncogenic and tumor-suppressive pathways, including PI3K-Akt, human papillomavirus infection, IL-17, MAPK, TNF, focal adhesion, and viral carcinogenesis pathways. In conclusion, our data present a comprehensive insight for the mechanisms of the anti-CC properties of FDY2004.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
18
|
Xing J, Liu H, Jiang W, Wang L. LncRNA-Encoded Peptide: Functions and Predicting Methods. Front Oncol 2021; 10:622294. [PMID: 33520729 PMCID: PMC7842084 DOI: 10.3389/fonc.2020.622294] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) was originally defined as the representative of the non-coding RNAs and unable to encode. However, recent reports suggest that some lncRNAs actually contain open reading frames that encode peptides. These coding products play important roles in the pathogenesis of many diseases. Here, we summarize the regulatory pathways of mammalian lncRNA-encoded peptides in influencing muscle function, mRNA stability, gene expression, and so on. We also address the promoting and inhibiting functions of the peptides in different cancers and other diseases. Then we introduce the computational predicting methods and data resources to predict the coding ability of lncRNA. The intention of this review is to provide references for further coding research and contribute to reveal the potential prospects for targeted tumor therapy.
Collapse
Affiliation(s)
- Jiani Xing
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, China
| | - Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lihong Wang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Nanjing, China
| |
Collapse
|
19
|
Lin C, Xu X, Yang Q, Liang L, Qiao S. Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int 2020; 20:336. [PMID: 32714095 PMCID: PMC7376874 DOI: 10.1186/s12935-020-01420-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating data suggested that circular RNAs (circRNAs) played important roles in the development of human cancer. However, the potential mechanism of circRNAs in ovarian cancer remains unclear. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the levels of circRNA itchy E3 ubiquitin protein ligase (circ-ITCH), microRNA-106a (miR-106a) and E-cadherin (CDH1). Cell Counting Kit-8 (CCK-8) and Transwell assay were carried out to measure cell proliferation and invasion. Glucose consumption, lactate production, and ATP level were assessed by the glucose, lactate, and ATP assay kits, respectively. Cell apoptosis was detected by Flow cytometry. The binding sites were predicted by StarBase v.2.0 or microT-CDS and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assays. CDH1 protein level was determined by western blot. The functional role of circ-ITCH was measured by xenograft tumor model in vivo. Results Circ-ITCH was down-regulated in ovarian cancer and positively correlated with 5-year overall survival of patients with ovarian cancer. RNase R digestion assay confirmed that circ-ITCH was more stable than its linear mRNA form. Moreover, circ-ITCH was mainly distributed in the cytoplasm of ovarian cancer cells.Functionally, circ-ITCH overexpression hindered proliferation, invasion, glycolysis and promoted apoptosis of ovarian cancer cells. Besides, circ-ITCH overexpression inhibited ovarian cancer cell progression by targeting miR-106a. Additionally, CDH1 was a target of miR-106a, and the protein level of CDH1 was negatively regulated by miR-106a. Similarly, CDH1 knockdown recovered the inhibition effects of miR-106a inhibitor or circ-ITCH overexpression on the progression of ovarian cancer cells. Importantly, circ-ITCH up-regulated the protein level of CDH1 by sponging miR-106a in ovarian cancer cells. Circ-ITCH overexpression suppressed the growth of ovarian cancer cells in vivo. Conclusion Circ-ITCH suppressed proliferation, invasion, glycolysis, and promoted apoptosis of ovarian cancer cells by modulating the miR-106a/CDH1 axis.
Collapse
Affiliation(s)
- Chunli Lin
- Department of Oncology, Shangqiu First People's Hospital, No. 292, South Kaixuan Road, Shangqiu, 476100 Henan China
| | - Xiaofeng Xu
- Department of Obsterics, Zhengzhou Yihe Hospital, Zhengzhou, Henan China
| | - Qiumin Yang
- Department of Oncology, Shangqiu First People's Hospital, No. 292, South Kaixuan Road, Shangqiu, 476100 Henan China
| | - Lu Liang
- Department of Oncology, Shangqiu First People's Hospital, No. 292, South Kaixuan Road, Shangqiu, 476100 Henan China
| | - Shulin Qiao
- Department of Oncology, Shangqiu First People's Hospital, No. 292, South Kaixuan Road, Shangqiu, 476100 Henan China
| |
Collapse
|
20
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Hashemi F, Samarghandian S, Najafi M. MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sci 2020; 256:117973. [PMID: 32569779 DOI: 10.1016/j.lfs.2020.117973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
The resistance of cancer cells into chemotherapy has restricted the efficiency of anti-tumor drugs. Oxaliplatin (OX) being an anti-tumor agent/drug is extensively used in the treatment of various cancer diseases. However, its frequent application has led to chemoresistance. As a consequence, studies have focused in finding underlying molecular pathways involved in OX resistance. MicroRNAs (miRs) are short endogenous non-coding RNAs that are able to regulate vital biological mechanisms such as cell proliferation and cell growth. The abnormal expression of miRs occurs in pathological events, particularly cancer. In the present review, we describe the involvement of miRs in OX resistance and sensitivity. The miRs are able to induce the oncogene factors and mechanisms, resulting in stimulation OX chemoresistance. Also, onco-suppressor miRs can enhance the sensitivity of cancer cells into OX chemotherapy and trigger apoptosis and cell cycle arrest, leading to reduced viability and progression of cancer cells. MiRs can also enhance the efficacy of OX chemotherapy. It is worth mentioning that miRs affect various down-stream targets in OX resistance/sensitivity such as STAT3, TGF-β, ATG4B, FOXO1, LATS2, NF-κB and so on. By identification of these miRs and their upstream and down-stream mediators, further studies can focus on targeting them to sensitize cancer cells into OX chemotherapy and induce apoptotic cell death.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | | | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|