1
|
Di Marco F, Cufaro MC, Damiani V, Dufrusine B, Pizzinato E, Di Ferdinando F, Sala G, Lattanzio R, Dainese E, Federici L, Ponsaerts P, De Laurenzi V, Cicalini I, Pieragostino D. Proteomic meta-analysis unveils new frontiers for biomarkers research in pancreatic carcinoma. Oncogenesis 2025; 14:3. [PMID: 39956821 PMCID: PMC11830788 DOI: 10.1038/s41389-025-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
Pancreatic carcinoma (PC) is the sixth leading cause of cancer death in both sexes in 2022, responsible for almost 5% of all cancer deaths worldwide; it is characterized by a poor prognosis since most patients present with an unresectable and metastatic tumor. To date, the decreasing trend in mortality rates related to the most common cancers has contributed to making pancreatic cancer a serious public health problem. In the last few years, scientific research has led to many advances in diagnostic approaches, perioperative management, radiotherapy techniques, and systemic therapies for advanced disease, but only with modest incremental progress in PC patient outcomes. Most of the causes of this high mortality are, unfortunately, late diagnosis and an important therapeutic resistance; for this reason, the most recent high-throughput proteomics technologies focus on the identification of novel biomarkers and molecular profiling to generate new insights in the study of PC, to improve diagnosis and prognosis and to monitor the therapies progress. In this work, we present and discuss the integration of results from different revised studies on protein biomarkers in a global proteomic meta-analysis to understand which path to pursue scientific research. In particular, cancer signaling, inflammatory response, and cell migration and signaling have emerged as the main pathways described in PC, as well as scavenging of free radicals and metabolic alteration concurrently highlighted new research insights on this disease. Interestingly, from the study of upstream regulators, some were found to be shared by collecting data relating to both biological fluid and tissue biomarkers, side by side: specifically, TNF, LPS, p38-MAPK, AGT, miR-323-5p, and miR-34a-5p. By integrating many biological components with their interactions and environmental relationships, it's possible to achieve an in-depth description of the pathological condition in PC and define correlations between concomitant symptoms and tumor genesis and progression. In conclusion, our work may represent a strategy to combine the results from different studies on various biological samples in a more comprehensive way.
Collapse
Affiliation(s)
- Federica Di Marco
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Concetta Cufaro
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Verena Damiani
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Dufrusine
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Erika Pizzinato
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Telematic University of "Leonardo Da Vinci", Torrevecchia Teatina, Chieti, Italy
| | - Fabio Di Ferdinando
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Federici
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerpen, Belgium
| | - Vincenzo De Laurenzi
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Damiana Pieragostino
- Centre for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Basile A, Giudice V, Mettivier L, Falco A, Cammarota AL, D'Ardia A, Selleri C, De Marco M, De Maio N, Turco MC, Marzullo L, Rosati A. Tuning the B-CLL microenvironment: evidence for BAG3 protein- mediated regulation of stromal fibroblasts activity. Cell Death Discov 2024; 10:383. [PMID: 39198407 PMCID: PMC11358476 DOI: 10.1038/s41420-024-02153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The Bcl2-associated athanogene-3 (BAG3) protein, a critical regulator of cellular survival, has been identified as a potential therapeutic target in various malignancies. This study investigates the role of BAG3 within stromal fibroblasts and its interaction with B-cell chronic lymphocytic leukemia (B-CLL) cells. Previous research demonstrated that BAG3 maintains the active state of pancreatic stellate cells (PSCs) and aids pancreatic ductal adenocarcinoma (PDAC) spread via cytokine release. To explore BAG3's role in bone marrow-derived stromal fibroblasts, BAG3 was silenced in HS-5 cells using siRNA. In co-culture experiments with PBMCs from B-CLL patients, BAG3 silencing in HS-5 cells increased apoptosis and decreased phosphorylation of BTK, AKT, and ERK in B-CLL cells, thus disrupting their pro-survival key signaling pathways. The observation of fibroblast-activated protein (FAP) positive cells in infiltrated bone marrow specimens co-expressing BAG3 further support the involvement of the protein in fibroblast-mediated tumor survival. Additionally, BAG3 appears to support B-CLL survival by modulating cytokine networks, including IL-10 and CXCL12, which are essential for leukemic cell survival and proliferation. A robust correlation between BAG3 expression and the levels of CXCL12 and IL-10 was observed in both co-cultures and patient specimens. These findings point out the need for a more in-depth comprehension of the intricate network of interactions within the tumor microenvironment and provide valuable insights for the selection of new potential therapeutic targets in the medical treatment of CLL.
Collapse
Affiliation(s)
- Anna Basile
- Department of Sanitary Hygiene and Evaluative Medicine U.O.C. Clinical and Microbiological Pathology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Laura Mettivier
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Angela D'Ardia
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Margot De Marco
- Department of Sanitary Hygiene and Evaluative Medicine U.O.C. Clinical and Microbiological Pathology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
- FIBROSYS s.r.l. Academic Spin-off, University of Salerno, Baronissi, Italy
| | - Nicola De Maio
- FIBROSYS s.r.l. Academic Spin-off, University of Salerno, Baronissi, Italy
| | - Maria Caterina Turco
- Department of Sanitary Hygiene and Evaluative Medicine U.O.C. Clinical and Microbiological Pathology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
- FIBROSYS s.r.l. Academic Spin-off, University of Salerno, Baronissi, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy
- FIBROSYS s.r.l. Academic Spin-off, University of Salerno, Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, Italy.
- FIBROSYS s.r.l. Academic Spin-off, University of Salerno, Baronissi, Italy.
| |
Collapse
|
3
|
Amodei L, Ruggieri AG, Potenza F, Viele M, Dufrusine B, Franciotti R, Pietrangelo L, Ardini M, Stuppia L, Federici L, De Laurenzi V, Sallese M. Sil1-deficient fibroblasts generate an aberrant extracellular matrix leading to tendon disorganisation in Marinesco-Sjögren syndrome. J Transl Med 2024; 22:787. [PMID: 39180052 PMCID: PMC11342654 DOI: 10.1186/s12967-024-05582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins. The expression of non-functional Sil1 leads to the accumulation of unfolded proteins in the ER and this triggers the unfolded protein response (UPR). A dysfunctional UPR could be a key element in the pathogenesis of MSS, although our knowledge of the molecular pathology of MSS is still incomplete. METHODS RNA-Seq transcriptomics was analysed using the String database and the Ingenuity Pathway Analysis platform. Fluorescence confocal microscopy was used to study the remodelling of the extracellular matrix (ECM). Transmission electron microscopy (TEM) was used to reveal the morphology of the ECM in vitro and in mouse tendon. RESULTS Our transcriptomic analysis, performed on patient-derived fibroblasts, revealed 664 differentially expressed (DE) transcripts. Enrichment analysis of DE genes confirmed that the patient fibroblasts have a membrane trafficking issue. Furthermore, this analysis indicated that the extracellular space/ECM and the cell adhesion machinery, which together account for around 300 transcripts, could be affected in MSS. Functional assays showed that patient fibroblasts have a reduced capacity of ECM remodelling, reduced motility, and slower spreading during adhesion to Petri dishes. TEM micrographs of negative-stained ECM samples from these fibroblasts show differences of filaments in terms of morphology and size. Finally, structural analysis of the myotendinous junction of the soleus muscle and surrounding regions of the Achilles tendon revealed a disorganization of collagen fibres in the mouse model of MSS (woozy). CONCLUSIONS ECM alterations can affect the proper functioning of several organs, including those damaged in MSS such as the central nervous system, skeletal muscle, bone and lens. On this basis, we propose that aberrant ECM is a key pathological feature of MSS and may help explain most of its clinical manifestations.
Collapse
Affiliation(s)
- Laura Amodei
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Anna Giulia Ruggieri
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Francesca Potenza
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Marianna Viele
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, 64100, Italy
| | | | | | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), Chieti, Italy.
| |
Collapse
|
4
|
Pattoo TS, Khanday FA. Corelating the molecular structure of BAG3 to its oncogenic role. Cell Biol Int 2024; 48:1080-1096. [PMID: 38924608 DOI: 10.1002/cbin.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BAG3 is a multifaceted protein characterised by having WW domain, PXXP motif and BAG domain. This protein gets upregulated during malignant transformation of cells and has been associated with poorer survival of patients. Procancerous activity of BAG domain of BAG3 is well documented. BAG domain interacts with ATPase domain of Hsp-70 preventing protein delivery to proteasome. This impediment results in enhanced cell survival, proliferation, resistance to apoptosis and chemoresistance. Besides BAG domain other two domains/motifs of BAG3 are under research vigilance to explore its further oncogenic role. This review summarises the role of different structural determinants of BAG3 in elevating oncogenesis. Based on the already existing findings, more interacting partners of BAG3 are anticipated. The anticipated partners of BAG3 can shed a wealth of information into the mechanistic insights of its proproliferative role. Proper insights into the mechanistic details adopted by BAG3 to curtail/elaborate activity of anticipated interacting partners can serve as a potent target for development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
5
|
Martin TG, Sherer LA, Kirk JA. BAG3 localizes to mitochondria in cardiac fibroblasts and regulates mitophagy. Am J Physiol Heart Circ Physiol 2024; 326:H1124-H1130. [PMID: 38488519 PMCID: PMC11381031 DOI: 10.1152/ajpheart.00736.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
The co-chaperone Bcl2-associated athanogene 3 (BAG3) is a central node in protein quality control in the heart. In humans and animal models, decreased BAG3 expression is associated with cardiac dysfunction and dilated cardiomyopathy. Although previous studies focused on BAG3 in cardiomyocytes, cardiac fibroblasts are also critical drivers of pathologic remodeling. Yet, the role of BAG3 in cardiac fibroblasts is almost completely unexplored. Here, we show that BAG3 is expressed in primary rat neonatal cardiac fibroblasts and preferentially localizes to mitochondria. Knockdown of BAG3 reduces mitophagy and enhances fibroblast activation, which is associated with fibrotic remodeling. Heat shock protein 70 (Hsp70) is a critical binding partner for BAG3 and inhibiting this interaction in fibroblasts using the drug JG-98 decreased autophagy, decreased mitofusin-2 expression, and disrupted mitochondrial morphology. Together, these data indicate that BAG3 is expressed in cardiac fibroblasts, where it facilitates mitophagy and promotes fibroblast quiescence. This suggests that depressed BAG3 levels in heart failure may exacerbate fibrotic pathology, thus contributing to myocardial dysfunction through sarcomere-independent pathways.NEW & NOTEWORTHY We report BAG3's localization to mitochondria and its role in mitophagy for the first time in primary ventricular cardiac fibroblasts. We have also collected the first evidence showing that loss of BAG3 increases cardiac fibroblast activation into myofibroblasts, which are major drivers of cardiac fibrosis and pathological remodeling during heart disease.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois, United States
| | - Laura A Sherer
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois, United States
| |
Collapse
|
6
|
Wang ZM, Zhang L, Ren DH, Zhang CY, Zheng HC. Bioinformatics analysis of the clinicopathological and prognostic significance of BAG3 mRNA in gynecological cancers. J OBSTET GYNAECOL 2023; 43:2228899. [PMID: 37377218 DOI: 10.1080/01443615.2023.2228899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BAG3 is a co-chaperone BAG family protein that plays important roles in protein homeostasis, cell survival, cell motility, and tumour metastasis. This study aimed to clarify the clinicopathological and prognostic implications of BAG3 mRNA expression in tumours. We performed bioinformatics analysis on BAG3 mRNA expression using TCGA, XIANTAO, UALCAN, and Kaplan-Meier plotter databases. BAG3 mRNA expression was downregulated in breast and endometrial cancers and positively correlated with favourable PAM50 subtyping in breast cancer,clinical stage and short overall survival in ovarian cancer and negatively correlated with T stage, clinical stage, and histological grade in cervical and endometrial cancers. The top BAG3-related pathways included ligand-receptor interactions and activity, DNA packaging and nucleosomes, hormonal responses, membrane regions, microdomains and rafts, and endosomes in breast cancer; ligand-receptor interactions, transmembrane transporters and channels, cell adhesion, and keratinisation in cervical cancer; ligand-receptor interactions, anion transmembrane transporters, lipoproteins, keratinisation, cell adhesion, and protein processing in endometrial cancer; metabolism of porphyrin, chlorophyll, pentose, uronic acid, ascorbate, and alternate and cell adhesion in ovarian cancer. BAG3 expression could represent a potential marker for carcinogenesis, histogenesis, aggressive behaviours, and prognosis in gynecological cancers.IMPACT STATEMENTWhat is already known on this subject? BAG3 regulates cell activity, autophagy, and resistance to apoptosis through multiple domains and plays an important role in tumour development. BAG3 positively regulates tumour cell invasion and migration in cervical and ovarian cancers.What do the results of this study add? BAG3 expression is closely associated with histogenesis, clinicopathology, and prognosis in gynecological cancers and is involved in signalling pathways associated with the control of cell proliferation, migration, invasion, and drug resistance in tumours.What are the implications of these findings for clinical practice and/or further research? Abnormal BAG3 expression can be employed as a possible marker of tumour development, invasion, and prognosis, providing new ideas for treating cancer.
Collapse
Affiliation(s)
- Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Dong-Hui Ren
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Cammarota AL, Falco A, Basile A, Molino C, Chetta M, D’Angelo G, Marzullo L, De Marco M, Turco MC, Rosati A. Pancreatic Cancer-Secreted Proteins: Targeting Their Functions in Tumor Microenvironment. Cancers (Basel) 2023; 15:4825. [PMID: 37835519 PMCID: PMC10571538 DOI: 10.3390/cancers15194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a ravaging disease with a poor prognosis, requiring a more detailed understanding of its biology to foster the development of effective therapies. The unsatisfactory results of treatments targeting cell proliferation and its related mechanisms suggest a shift in focus towards the inflammatory tumor microenvironment (TME). Here, we discuss the role of cancer-secreted proteins in the complex TME tumor-stroma crosstalk, shedding lights on druggable molecular targets for the development of innovative, safer and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
| | - Carlo Molino
- General Surgery Unit, A.O.R.N. Cardarelli, 80131 Naples, Italy;
| | - Massimiliano Chetta
- Medical and Laboratory Genetics Unit, A.O.R.N., Cardarelli, 80131 Naples, Italy;
| | - Gianni D’Angelo
- Department of Computer Science, University of Salerno, 84084 Fisciano, Italy;
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.L.C.); (A.F.); (A.B.); (L.M.); (M.C.T.)
- FIBROSYS s.r.l., University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
8
|
Benavente S. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:291-313. [PMID: 37457128 PMCID: PMC10344731 DOI: 10.20517/cdr.2022.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Despite intensive efforts and refined techniques, overall survival in HPV-negative head and neck cancer remains poor. Robust immune priming is required to elicit a strong and durable antitumor immune response in immunologically cold and excluded tumors like HPV-negative head and neck cancer. This review highlights how the tumor microenvironment could be affected by different immune and stromal cell types, weighs the need to integrate metabolic regulation of the tumor microenvironment into cancer treatment strategies and summarizes the emerging clinical applicability of personalized immunotherapeutic strategies in HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Sergi Benavente
- Correspondence to: Dr. Sergi Benavente, Department of Radiation Oncology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119, Barcelona 08035, Spain. E-mail:
| |
Collapse
|
9
|
GLI1 interaction with p300 modulates SDF1 expression in cancer-associated fibroblasts to promote pancreatic cancer cells migration. Biochem J 2023; 480:225-241. [PMID: 36734208 DOI: 10.1042/bcj20220521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.
Collapse
|
10
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
11
|
Liu Q, Liu J, Huang X. Unraveling the mystery: How bad is BAG3 in hematological malignancies? Biochim Biophys Acta Rev Cancer 2022; 1877:188781. [PMID: 35985611 DOI: 10.1016/j.bbcan.2022.188781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
BAG3, also known as BIS and CAIR-1, interacts with Hsp70 via its BAG domain and with other molecules through its WW domain, PXXP repeats and IPV motifs. BAG3 can participate in major cellular pathways including apoptosis, autophagy, cytoskeleton structure, and motility by regulating the expression, location, and activity of its chaperone proteins. As a multifunctional protein, BAG3 is highly expressed in skeletal muscle, cardiomyocytes and multiple tumors, and its intracellular expression can be stimulated by stress. The functions and mechanisms of BAG3 in hematological malignancies have recently been a topic of interest. BAG3 has been confirmed to be involved in the development and chemoresistance of hematological malignancies and to act as a prognostic indicator. Modulation of BAG3 and its corresponding proteins has thus emerged as a promising therapeutic and experimental target. In this review, we consider the characteristics of BAG3 in hematological malignancies as a reference for further clinical and fundamental investigations.
Collapse
Affiliation(s)
- Qinghan Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinde Liu
- Department of Respiratory, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xinyue Huang
- The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|