1
|
Shi C, Zhang Q, Li Y, Zhao J, Wang C, Zhang Y. Polyethylene glycol loxenatide protects diabetic kidneys by inhibiting GRP78/PERK/eIF2α pathway, and improves cardiac injury by suppressing TLR4/NF-κB inflammatory pathway. BMC Cardiovasc Disord 2024; 24:704. [PMID: 39695387 DOI: 10.1186/s12872-024-04427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cardiovascular and renal complications of type 2 diabetes are the main causes of death in diabetic patients. Clinical studies have found that polyethylene glycol loxenatide (PEG-Loxe), a GLP-1 analog widely used to treat type 2 diabetes, boosts renal and cardiac functions in diabetic patients. However, its mechanism of action remains to be elucidated. METHODS Using injury models of HK-2 human renal proximal tubular epithelial cells and H9C2 rat myocardial cells, as well as db/db mouse models of type 2 diabetes, this study assessed the protective effects of PEG-Loxe on T2DM mice kidneys and hearts and revealed their mechanisms of action. RESULTS PEG-Loxe treatment significantly reduced the contents of serum creatinine, urea nitrogen, and 24 h urine protein, alleviated glomerular injury and inflammatory reaction, markedly elevated cardiac left ventricular ejection fraction (LVEF) and fractional shortening (LVFS) levels, diminished pathological injuries in cardiac tissues, and improved renal and cardiac functions in db/db mice. In addition, PEG-Loxe considerably decreased the GRP78 mRNA and protein expressions of GRP78, p-eIF2α, ATF4, and CHOP in the kidneys of T2DM mice, inhibited GRP78/PERK/eIF2α pathway-related proteins in HK-2 cells cultured in high glucose concentrations, subdued renal endoplasmic reticulum stress, and eased renal injury in T2DM mice. PEG-Loxe also obstructed the TLR4/NF-κB inflammatory pathway and myocardial apoptosis and mitigated cardiac trauma in T2DM by reducing TLR4, MyD88, and p-NF-κBp65 protein expressions in cardiac tissues. The H9C2 cell experiment further confirmed PEG-Loxe's ability to protect the cardiovascular system of T2DM patients by inhibiting the TLR4/NF-κB inflammatory pathway and lessening LDH and CK-MB levels. CONCLUSION We showed that PEG-Loxe could decrease renal stress response and improve renal injury in T2DM by inhibiting endoplasmic reticulum stress via the GRP78/PERK/eIF2α pathway. Additionally, PEG-Loxe could hinder the TLR4/NF-κB inflammatory pathway and myocardial apoptosis and boost cardiac function, thus exerting protective effects on the cardiovascular system in T2DM.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yufeng Li
- Preclinical Development Department, Shanghai Hansoh Biomedical Co., Ltd., Shanghai, 201203, China
| | - Junjun Zhao
- Pharmaceutical Research Institute, Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, 222069, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
2
|
Chen Z, Tang X, Li W, Li T, Huang J, Jiang Y, Qiu J, Huang Z, Tan R, Ji X, Lv L, Yang Z, Chen H. HIST1H2BK predicts neoadjuvant-chemotherapy response and mediates 5-fluorouracil resistance of gastric cancer cells. Transl Oncol 2024; 46:102017. [PMID: 38852277 PMCID: PMC11193040 DOI: 10.1016/j.tranon.2024.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) is routinely used to treat patients with advanced gastric cancer (AGC). However, the identification of reliable markers to determine which AGC patients would benefit from NACT remains challenging. METHODS A systematic screening of plasma proteins between NACT-sensitive and NACT-resistant AGC patients was performed by a mass spectrometer (n = 6). The effect of the most differential plasma protein was validated in two independent cohorts with AGC patients undergoing NACT (ELISA cohort: n = 155; Validated cohort: n = 203). The expression of this candidate was examined in a cohort of AGC tissues using immunohistochemistry (n = 34). The mechanism of this candidate on 5-Fluorouracil (5-FU) resistance was explored by cell-biology experiments in vitro and vivo. RESULTS A series of differential plasma proteins between NACT-sensitive and NACT-resistant AGC patients was identified. Among them, plasma HIST1H2BK was validated as a significant biomarker for predicting NACT response and prognosis. Moreover, HIST1H2BK was over-expression in NACT-resistant tissues compared to NACT-sensitive tissues in AGC. Mechanistically, HIST1H2BK inhibited 5-FU-induced apoptosis by upregulating A2M transcription and then activating LRP/PI3K/Akt pathway, thereby promoting 5-FU resistance in GC cells. Intriguingly, HIST1H2BK-overexpressing 5-FU-resistant GC cells propagated resistance to 5-FU-sensitive GC cells through the secretion of HIST1H2BK. CONCLUSION This study highlights significant differences in plasma protein profiles between NACT-resistant and NACT-sensitive AGC patients. Plasma HIST1H2BK emerged as an effective biomarker for achieving more accurate NACT in AGC. The mechanism of intracellular and secreted HIST1H2BK on 5-FU resistance provided a novel insight into chemoresistance in AGC.
Collapse
Affiliation(s)
- Zijian Chen
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaocheng Tang
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weiyao Li
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tuoyang Li
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jintuan Huang
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yingming Jiang
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jun Qiu
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhenze Huang
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Rongchang Tan
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiang Ji
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li Lv
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zuli Yang
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | - Hao Chen
- Department of General Surgery (Department of Gastrointestinal Surgery section 2), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
3
|
Seillier C, Lesec L, Hélie P, Marie C, Vivien D, Docagne F, Le Mauff B, Toutirais O. Tissue-plasminogen activator effects on the phenotype of splenic myeloid cells in acute inflammation. J Inflamm (Lond) 2024; 21:4. [PMID: 38355547 PMCID: PMC10865617 DOI: 10.1186/s12950-024-00375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.
Collapse
Affiliation(s)
- Célia Seillier
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Léonie Lesec
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Pauline Hélie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present address: Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Charlotte Marie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- UAR 3408-US50 / Centre Universitaire de Ressources Biologiques (CURB), GIP Cyceron, Caen, France
| | - Denis Vivien
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present Address: INSERM, Département de L'information Scientifique Et de La Communication (DISC), 75654, Paris Cedex 13, France
| | - Brigitte Le Mauff
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Olivier Toutirais
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France.
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
4
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|