1
|
Zhang X, de Silva P. Computational framework for discovery of degradation mechanisms of organic flow battery electrolytes. Chem Sci 2025:d4sc07640k. [PMID: 40225182 PMCID: PMC11986837 DOI: 10.1039/d4sc07640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/06/2025] [Indexed: 04/15/2025] Open
Abstract
The stability of organic redox-active molecules is a key challenge for the long-term viability of organic redox flow batteries (ORFBs). Electrolyte degradation leads to capacity fade, reducing the efficiency and lifespan of ORFBs. To systematically investigate degradation mechanisms, we present a computational framework that automates the exploration of degradation pathways. The approach integrates local reactivity descriptors to generate reactive complexes and employs a single-ended process search to discover elementary reaction steps, including transition states and intermediates. The resulting reaction network is iteratively refined with heuristics and human-guided validation. The framework is applied to study the degradation mechanisms of quinone- and quinoxaline-based electrolytes under acidic and basic aqueous conditions. The predicted reaction pathways and degradation products align with experimental observations, highlighting key degradation modes such as Michael addition, disproportionation, dimerization, and electrochemical transformation. The framework provides a valuable tool for in silico screening of stable electrolyte candidates and guiding the molecular design of next-generation ORFBs.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej 301 2800 Kongens Lyngby Denmark
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej 301 2800 Kongens Lyngby Denmark
| |
Collapse
|
2
|
Lee K, Lee J, Park S, Kim WY. Facilitating Transition State Search with Minimal Conformational Sampling Using Reaction Graph. J Chem Theory Comput 2025; 21:2487-2500. [PMID: 39998320 DOI: 10.1021/acs.jctc.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Elucidating transition states (TSs) is crucial for understanding chemical reactions. The reliability of traditional TS search approaches depends on input conformations that require significant effort to prepare. Previous automated methods for generating input reaction conformations typically involve extensive exploration of a large conformational space. Such exhaustive search can be complicated by the rapid growth of the conformational space, especially for reactions involving many rotatable bonds, multiple reacting molecules, and numerous bond formations and dissociations. To address this problem, we propose a new approach that generates reaction conformations for TS searches with minimal reliance on sampling. This method constructs a pseudo-TS structure based on a reaction graph containing bond formation and dissociation information and modifies it to produce reactant and product conformations. Tested on three different benchmarks, our method consistently generated suitable conformations without necessitating extensive sampling, demonstrating its potential to significantly improve the applicability of automated TS searches. This approach offers a valuable tool for a broad range of applications such as reaction mechanism analysis and network exploration.
Collapse
Affiliation(s)
- Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinwon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Shinyoung Park
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Woulfe M, Savoie BM. Chemical Reaction Networks from Scratch with Reaction Prediction and Kinetics-Guided Exploration. J Chem Theory Comput 2025; 21:1276-1291. [PMID: 39883589 DOI: 10.1021/acs.jctc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Algorithmic reaction explorations based on transition state searches can now routinely predict relatively short reaction sequences involving small molecules. However, applying these algorithms to deeper chemical reaction network (CRN) exploration still requires the development of more efficient and accurate exploration policies. Here, an exploration algorithm, which we name yet another kinetic strategy (YAKS), is demonstrated that uses microkinetic simulations of the nascent network to achieve cost-effective, deep network exploration. Key features of the algorithm are the automatic incorporation of bimolecular reactions between network intermediates, compatibility with short-lived but kinetically important species, and incorporation of rate uncertainty into the exploration policy. In validation case studies of glucose pyrolysis, the algorithm rediscovers reaction pathways previously discovered by heuristic exploration policies and elucidates new reaction pathways for experimentally obtained products. The resulting CRN is the first to connect all major experimental pyrolysis products to glucose. Additional case studies are presented that investigate the role of reaction rules, rate uncertainty, and bimolecular reactions. These case studies show that naïve exponential growth estimates can vastly overestimate the actual number of kinetically relevant pathways in the physical reaction networks. In light of this, further improvements in exploration policies and reaction prediction algorithms make it feasible that CRNs might soon be routinely predictable in some contexts.
Collapse
Affiliation(s)
- Michael Woulfe
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M Savoie
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Xie XT, Yang ZX, Chen D, Shi YF, Kang PL, Ma S, Li YF, Shang C, Liu ZP. LASP to the Future of Atomic Simulation: Intelligence and Automation. PRECISION CHEMISTRY 2024; 2:612-627. [PMID: 39734761 PMCID: PMC11672538 DOI: 10.1021/prechem.4c00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/31/2024]
Abstract
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems. The latest version of LASP (LASP 3.7) features the global many-body function corrected neural network (G-MBNN) to improve the PES accuracy with low cost, which achieves a linear scaling efficiency for large-scale atomic simulations. The key functionalities of LASP are updated to incorporate (i) the ASOP and ML-interface methods for finding complex surface and interface structures under grand canonic conditions; (ii) the ML-TS and MMLPS methods to identify the lowest energy reaction pathway. With these powerful functionalities, LASP now serves as an intelligent data generator to create computational databases for end users. We exemplify the recent LASP database construction in zeolite and the metal-ligand properties for a new catalyst design.
Collapse
Affiliation(s)
- Xin-Tian Xie
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zheng-Xin Yang
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dongxiao Chen
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yun-Fei Shi
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Pei-Lin Kang
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Sicong Ma
- State
Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye-Fei Li
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative
Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory
of Molecular Catalysis and Innovative Materials, Key Laboratory of
Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- State
Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Li XT, Mi S, Xu Y, Li BW, Zhu T, Zhang JZH. Discovery of New Synthetic Routes of Amino Acids in Prebiotic Chemistry. JACS AU 2024; 4:4757-4768. [PMID: 39735912 PMCID: PMC11672127 DOI: 10.1021/jacsau.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions. By employing RTIP pathway sampling to explore the reactivity of primitive molecules, we identified several low-energy reaction mechanisms, such as two-hydrogen-transfer hydrogenation and HCOOH-catalyzed hydration and amination. This led to the construction of a comprehensive reaction network, illustrating the synthesis pathways for glycine, serine, and alanine. Further thermodynamic analysis highlights the pivotal role of formaldimine as a key precursor in amino acid synthesis, owing to its more favorable reactivity in coupling reactions compared to the traditionally recognized hydrogen cyanide. Our study demonstrates that the RTIP methodology, coupled with a divide-and-conquer strategy, provides new insights into the simulation of complex reaction processes, offering promising applications for advancing organic design and synthesis.
Collapse
Affiliation(s)
- Xiao-Tian Li
- Faculty
of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Sixuan Mi
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuzhi Xu
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Bo-Wen Li
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Shanghai
Innovation Institute, Shanghai 200003, China
| | - John Z. H. Zhang
- Faculty
of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- Shanghai
Engineering Research Center of Molecular Therapeutics and New Drug
Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
6
|
Joung JF, Fong MH, Roh J, Tu Z, Bradshaw J, Coley CW. Reproducing Reaction Mechanisms with Machine-Learning Models Trained on a Large-Scale Mechanistic Dataset. Angew Chem Int Ed Engl 2024; 63:e202411296. [PMID: 38995205 DOI: 10.1002/anie.202411296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/13/2024]
Abstract
Mechanistic understanding of organic reactions can facilitate reaction development, impurity prediction, and in principle, reaction discovery. While several machine learning models have sought to address the task of predicting reaction products, their extension to predicting reaction mechanisms has been impeded by the lack of a corresponding mechanistic dataset. In this study, we construct such a dataset by imputing intermediates between experimentally reported reactants and products using expert reaction templates and train several machine learning models on the resulting dataset of 5,184,184 elementary steps. We explore the performance and capabilities of these models, focusing on their ability to predict reaction pathways and recapitulate the roles of catalysts and reagents. Additionally, we demonstrate the potential of mechanistic models in predicting impurities, often overlooked by conventional models. We conclude by evaluating the generalizability of mechanistic models to new reaction types, revealing challenges related to dataset diversity, consecutive predictions, and violations of atom conservation.
Collapse
Affiliation(s)
- Joonyoung F Joung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Mun Hong Fong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Jihye Roh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Zhengkai Tu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - John Bradshaw
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
7
|
Stuyver T. TS-tools: Rapid and automated localization of transition states based on a textual reaction SMILES input. J Comput Chem 2024; 45:2308-2317. [PMID: 38850166 DOI: 10.1002/jcc.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/10/2024]
Abstract
Here, TS-tools is presented, a Python package facilitating the automated localization of transition states (TS) based on a textual reaction SMILES input. TS searches can either be performed at xTB or DFT level of theory, with the former yielding guesses at marginal computational cost, and the latter directly yielding accurate structures at greater expense. On a benchmarking dataset of mono- and bimolecular reactions, TS-tools reaches an excellent success rate of 95% already at xTB level of theory. For tri- and multimolecular reaction pathways - which are typically not benchmarked when developing new automated TS search approaches, yet are relevant for various types of reactivity, cf. solvent- and autocatalysis and enzymatic reactivity - TS-tools retains its ability to identify TS geometries, though a DFT treatment becomes essential in many cases. Throughout the presented applications, a particular emphasis is placed on solvation-induced mechanistic changes, another issue that received limited attention in the automated TS search literature so far.
Collapse
Affiliation(s)
- Thijs Stuyver
- Ecole Nationale Supérieure de Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France
| |
Collapse
|
8
|
Petrus E, Buils J, Garay-Ruiz D, Segado-Centellas M, Bo C. POMSimulator: An open-source tool for predicting the aqueous speciation and self-assembly mechanisms of polyoxometalates. J Comput Chem 2024; 45:2242-2250. [PMID: 38826122 DOI: 10.1002/jcc.27389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/04/2024]
Abstract
Elucidating the speciation (in terms of concentration versus pH) and understanding the formation mechanisms of polyoxometalates remains a significant challenge, both in experimental and computational domains. POMSimulator is a new methodology that tackles this problem from a purely computational perspective. The methodology uses results from quantum mechanics based methods to automatically set up the chemical reaction network, and to build speciation models. As a result, it becomes possible to predict speciation and phase diagrams, as well as to derive new insights into the formation mechanisms of large molecular clusters. In this work we present the main features of the first open-source version of the software. Since the first report [Chem. Sci. 2020, 11, 8448-8456], POMSimulator has undergone several improvements to keep up with the growing challenges that were tackled. After four years of research, we recognize that the source code is sufficiently stable to share a polished and user-friendly version. The Python code, manual, examples, and install instructions can be found at https://github.com/petrusen/pomsimulator.
Collapse
Affiliation(s)
- Enric Petrus
- Department of Environmental Chemistry, EAWAG: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jordi Buils
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
9
|
Mozumi R, Fukaya K, Ito H, Komatsu T, Urabe D. Synthesis of Macrolactone Core of ent-Formosalide A via Regioselective Ether Cyclization. J Org Chem 2024. [PMID: 38712873 DOI: 10.1021/acs.joc.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Formosalide A is a cytotoxic macrolide isolated from the dinoflagellate Prorocentrum sp, whose structure is characterized by functionalized 5- and 6-membered ether rings embedded in the macrolactone and an all cis-tetraene side chain. Here, we report the synthesis of the macrolactone core of ent-formosalide A. Our approach is highlighted by the Au-mediated 6-exo-dig cyclization for the synthesis of the 6-membered ether ring, which proceeded in a highly regioselective manner. Control experiments demonstrated that the acyclic protecting group of the C9,C10-diol was crucial for the desired 6-exo-dig cyclization. Theoretical studies were performed focusing on structural component analysis, which suggested that the C8-C9-C10-C11 dihedral angle induced by the protecting group controlled the regioselectivity. An additional 6 steps including Shiina macrolactone formation from the 6-membered ether ring completed the synthesis of the macrolactone core of ent-formosalide A.
Collapse
Affiliation(s)
- Risa Mozumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hina Ito
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tomomi Komatsu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
10
|
Vadaddi SM, Zhao Q, Savoie BM. Graph to Activation Energy Models Easily Reach Irreducible Errors but Show Limited Transferability. J Phys Chem A 2024; 128:2543-2555. [PMID: 38517281 DOI: 10.1021/acs.jpca.3c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Activation energy characterization of competing reactions is a costly but crucial step for understanding the kinetic relevance of distinct reaction pathways, product yields, and myriad other properties of reacting systems. The standard methodology for activation energy characterization has historically been a transition state search using the highest level of theory that can be afforded. However, recently, several groups have popularized the idea of predicting activation energies directly based on nothing more than the reactant and product graphs, a sufficiently complex neural network, and a broad enough data set. Here, we have revisited this task using the recently developed Reaction Graph Depth 1 (RGD1) transition state data set and several newly developed graph attention architectures. All of these new architectures achieve similar state-of-the-art results of ∼4 kcal/mol mean absolute error on withheld testing sets of reactions but poor performance on external testing sets composed of reactions with differing mechanisms, reaction molecularity, or reactant size distribution. Limited transferability is also shown to be shared by other contemporary graph to activation energy architectures through a series of case studies. We conclude that an array of standard graph architectures can already achieve results comparable to the irreducible error of available reaction data sets but that out-of-distribution performance remains poor.
Collapse
Affiliation(s)
- Sai Mahit Vadaddi
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Qiyuan Zhao
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
11
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
- Oleksii Zhelavskyi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seren Parikh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yin-Jia Jhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard J. Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824
| | - Paul M. Zimmerman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
McFarlane NR, Harvey JN. Exploration of biochemical reactivity with a QM/MM growing string method. Phys Chem Chem Phys 2024; 26:5999-6007. [PMID: 38293892 DOI: 10.1039/d3cp05772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In this work, we have implemented the single-ended growing string method using a hybrid internal/Cartesian coordinate scheme within our in-house QM/MM package, QoMMMa, representing the first implementation of the growing string method in the QM/MM framework. The goal of the implementation was to facilitate generation of QM/MM reaction pathways with minimal user input, and also to improve the quality of the pathways generated as compared to the widely used adiabatic mapping approach. We have validated the algorithm against a reaction which has been studied extensively in previous computational investigations - the Claisen rearrangement catalysed by chorismate mutase. The nature of the transition state and the height of the barrier was predicted well using our algorithm, where more than 88% of the pathways generated were deemed to be of production quality. Directly compared to using adiabatic mapping, we found that while our QM/MM single-ended growing string method is slightly less efficient, it readily produces reaction pathways with fewer discontinuites and thus minimises the need for involved remapping of unsatisfactory energy profiles.
Collapse
Affiliation(s)
- Neil R McFarlane
- Department of Chemistry, KU Leuven, B-3001 Leuven, Celestijnenlaan 200f, 2404, Belgium.
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, B-3001 Leuven, Celestijnenlaan 200f, 2404, Belgium.
| |
Collapse
|
13
|
Rasmussen MH, Seumer J, Jensen JH. Toward De Novo Catalyst Discovery: Fast Identification of New Catalyst Candidates for Alcohol-Mediated Morita-Baylis-Hillman Reactions. Angew Chem Int Ed Engl 2023; 62:e202310580. [PMID: 37830522 DOI: 10.1002/anie.202310580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Recently we have demonstrated how a genetic algorithm (GA) starting from random tertiary amines can be used to discover a new and efficient catalyst for the alcohol-mediated Morita-Baylis-Hillman (MBH) reaction. In particular, the discovered catalyst was shown experimentally to be eight times more active than DABCO, commonly used to catalyze the MBH reaction. This represents a breakthrough in using generative models for catalyst optimization. However, the GA procedure, and hence discovery, relied on two important pieces of information; 1) the knowledge that tertiary amines catalyze the reaction and 2) the mechanism and reaction profile for the catalyzed reaction, in particular the transition state structure of the rate-determining step. Thus, truly de novo catalyst discovery must include these steps. Here we present such a method for discovering catalyst candidates for a specific reaction while simultaneously proposing a mechanism for the catalyzed reaction. We show that tertiary amines and phosphines are potential catalysts for the MBH reaction by screening 11 molecular templates representing common functional groups. The method relies on an automated reaction discovery workflow using meta-dynamics calculations. Combining this method for catalyst candidate discovery with our GA-based catalyst optimization method results in an algorithm for truly de novo catalyst discovery.
Collapse
Affiliation(s)
- Maria H Rasmussen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Julius Seumer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
14
|
Zhang Y, Xu C, Lan Z. Automated Exploration of Reaction Networks and Mechanisms Based on Metadynamics Nanoreactor Simulations. J Chem Theory Comput 2023. [PMID: 38031422 DOI: 10.1021/acs.jctc.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We developed an automated approach to construct a complex reaction network and explore the reaction mechanisms for numerous reactant molecules by integrating several theoretical approaches. Nanoreactor-type molecular dynamics was used to generate possible chemical reactions, in which the metadynamics was used to overcome the reaction barriers, and the semiempirical GFN2-xTB method was used to reduce the computational cost. Reaction events were identified from trajectories using the hidden Markov model based on the evolution of the molecular connectivity. This provided the starting points for further transition-state searches at the electronic structure levels of density functional theory to obtain the reaction mechanism. Finally, the entire reaction network containing multiple pathways was built. The feasibility and efficiency of the automated construction of the reaction network were investigated using the HCHO and NH3 biomolecular reaction and the reaction network for a multispecies system comprising dozens of HCN and H2O molecules. The results indicated that the proposed approach provides a valuable and effective tool for the automated exploration of the reaction networks.
Collapse
Affiliation(s)
- Yutai Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Chang AM, Meisner J, Xu R, Martínez TJ. Efficient Acceleration of Reaction Discovery in the Ab Initio Nanoreactor: Phenyl Radical Oxidation Chemistry. J Phys Chem A 2023; 127:9580-9589. [PMID: 37934692 DOI: 10.1021/acs.jpca.3c05484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Over the years, many computational strategies have been employed to elucidate reaction networks. One of these methods is accelerated molecular dynamics, which can circumvent the expense required in dynamics to find all reactants and products (local minima) and transition states (first-order saddle points) on a potential energy surface (PES) by using fictitious forces that promote reaction events. The ab initio nanoreactor uses these accelerating forces to study large chemical reaction networks from first-principles quantum mechanics. In the initial nanoreactor studies, this acceleration was done through a piston periodic compression potential, which pushes molecules together to induce entropically unfavorable bimolecular reactions. However, the piston is not effective for discovering intramolecular and dissociative reactions, such as those integral to the decomposition channels of phenyl radical oxidation. In fact, the choice of accelerating forces dictates not only the rate of reaction discovery but also the types of reactions discovered; thus, it is critical to understand the biases and efficacies of these forces. In this study, we examine forces using metadynamics, attractive potentials, and local thermostats for accelerating reaction discovery. For each force, we construct a separate phenyl radical combustion reaction network using solely that force in discovery trajectories. We elucidate the enthalpic and entropic trends of each accelerating force and highlight their efficiency in reaction discovery. Comparing the nanoreactor-constructed reaction networks with literature renditions of the phenyl radical combustion PES shows that a combination of accelerating forces is best suited for reaction discovery.
Collapse
Affiliation(s)
- Alexander M Chang
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jan Meisner
- Department of Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Rui Xu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
16
|
Li G, Li Z, Gao L, Chen S, Wang G, Li S. Combined molecular dynamics and coordinate driving method for automatically searching complicated reaction pathways. Phys Chem Chem Phys 2023; 25:23696-23707. [PMID: 37610711 DOI: 10.1039/d3cp02443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combined molecular dynamics and coordinate driving (MD/CD) method is updated and generalized in this work to broaden its applications in automatically searching reaction pathways for complicated reactions. In this updated version, MD simulations are performed with the GFN's family of methods to systematically sample conformers for almost any systems with atomic numbers Z ≤ 86. The improved CD procedure is greatly accelerated by applying a pre-screening stage at the semiempirical GFN2-xTB level. An automatic module based on the Marcus theory and its improved version (the Wolynes theory) is designed to include single electron transfer (SET) processes into reaction pathways. The capabilities of this method are demonstrated by exploring the most possible reaction pathways of three experimentally reported reactions: the organophosphine-catalyzed trans phosphinoboration, the Fe(II) complex-mediated C(sp2)-H borylation reaction, and the SET-triggered deaminative radical cross-coupling reaction. Comprehensive reaction networks are obtained for all three reactions with reasonable computational costs. Detailed mechanisms for these reactions can account for the reported experimental facts.
Collapse
Affiliation(s)
- Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shengda Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
17
|
Petrus E, Garay-Ruiz D, Reiher M, Bo C. Multi-Time-Scale Simulation of Complex Reactive Mixtures: How Do Polyoxometalates Form? J Am Chem Soc 2023; 145:18920-18930. [PMID: 37496164 DOI: 10.1021/jacs.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the dynamics of reactive mixtures still challenges both experiments and theory. A relevant example can be found in the chemistry of molecular metal-oxide nanoclusters, also known as polyoxometalates. The high number of species potentially involved, the interconnectivity of the reaction network, and the precise control of the pH and concentrations needed in the synthesis of such species make the theoretical/computational treatment of such processes cumbersome. This work addresses this issue relying on a unique combination of recently developed computational methods that tackle the construction, kinetic simulation, and analysis of complex chemical reaction networks. By using the Bell-Evans-Polanyi approximation for estimating activation energies, and an accurate and robust linear scaling for correcting the computed pKa values, we report herein multi-time-scale kinetic simulations for the self-assembly processes of polyoxotungstates that comprise 22 orders of magnitude, from tens of femtoseconds to months of reaction time. This very large time span was required to reproduce very fast processes such as the acid/base equilibria (at 10-12 s), relatively slow reactions such as the formation of key clusters such as the metatungstate (at 103 s), and the very slow assembly of the decatungstate (at 106 s). Analysis of the kinetic data and of the reaction network topology shed light onto the details of the main reaction mechanisms, which explains the origin of kinetic and thermodynamic control followed by the reaction. Simulations at alkaline pH fully reproduce experimental evidence since clusters do not form under those conditions.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel•li Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
18
|
Xu R, Meisner J, Chang AM, Thompson KC, Martínez TJ. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chem Sci 2023; 14:7447-7464. [PMID: 37449065 PMCID: PMC10337770 DOI: 10.1039/d3sc01202f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Our recent success in exploiting graphical processing units (GPUs) to accelerate quantum chemistry computations led to the development of the ab initio nanoreactor, a computational framework for automatic reaction discovery and kinetic model construction. In this work, we apply the ab initio nanoreactor to methane pyrolysis, from automatic reaction discovery to path refinement and kinetic modeling. Elementary reactions occurring during methane pyrolysis are revealed using GPU-accelerated ab initio molecular dynamics simulations. Subsequently, these reaction paths are refined at a higher level of theory with optimized reactant, product, and transition state geometries. Reaction rate coefficients are calculated by transition state theory based on the optimized reaction paths. The discovered reactions lead to a kinetic model with 53 species and 134 reactions, which is validated against experimental data and simulations using literature kinetic models. We highlight the advantage of leveraging local brute force and Monte Carlo sensitivity analysis approaches for efficient identification of important reactions. Both sensitivity approaches can further improve the accuracy of the methane pyrolysis kinetic model. The results in this work demonstrate the power of the ab initio nanoreactor framework for computationally affordable systematic reaction discovery and accurate kinetic modeling.
Collapse
Affiliation(s)
- Rui Xu
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Jan Meisner
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Alexander M Chang
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Keiran C Thompson
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA
- SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
19
|
Suzuki K, Kanno M, Koseki S, Kono H. A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde. J Phys Chem A 2023; 127:4152-4165. [PMID: 37129441 DOI: 10.1021/acs.jpca.2c09088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the "pseudo-lattice points" at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm-1 with only 875 SBGs at the MP2/6-31G(d,p) level of theory, in good agreement with 25 cm-1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40-45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.
Collapse
Affiliation(s)
- Kazuma Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shiro Koseki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Zhao Q, Garimella SS, Savoie BM. Thermally Accessible Prebiotic Pathways for Forming Ribonucleic Acid and Protein Precursors from Aqueous Hydrogen Cyanide. J Am Chem Soc 2023; 145:6135-6143. [PMID: 36883252 DOI: 10.1021/jacs.2c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The search for prebiotic chemical pathways to biologically relevant molecules is a long-standing puzzle that has generated a menagerie of competing hypotheses with limited experimental prospects for falsification. However, the advent of computational network exploration methodologies has created the opportunity to compare the kinetic plausibility of various channels and even propose new pathways. Here, the space of organic molecules that can be formed within four polar or pericyclic reactions from water and hydrogen cyanide (HCN), two established prebiotic candidates for generating biological precursors, was comprehensively explored with a state-of-the-art exploration algorithm. A surprisingly diverse reactivity landscape was revealed within just a few steps of these simple molecules. Reaction pathways to several biologically relevant molecules were discovered involving lower activation energies and fewer reaction steps compared with recently proposed alternatives. Accounting for water-catalyzed reactions qualitatively affects the interpretation of the network kinetics. The case-study also highlights omissions of simpler and lower barrier reaction pathways to certain products by other algorithms that qualitatively affect the interpretation of HCN reactivity.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Sanjay S Garimella
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
21
|
Nakao A, Harabuchi Y, Maeda S, Tsuda K. Exploring the Quantum Chemical Energy Landscape with GNN-Guided Artificial Force. J Chem Theory Comput 2023; 19:713-717. [PMID: 36689311 PMCID: PMC9933424 DOI: 10.1021/acs.jctc.2c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Artificial force has been proven useful to get over energy barriers and quickly search a large portion of the energy landscape. This work proposes a method based on graph neural networks to optimize the choice of transformation patterns to examine and accelerate energy landscape exploration. In open search from glutathione, the search efficiency was largely improved in comparison to random selection. We also applied transfer learning from glutathione to tuftsin, resulting in further efficiency gains.
Collapse
Affiliation(s)
- Atsuyuki Nakao
- Graduate
School of Frontier Sciences, The University
of Tokyo, Kashiwa277-8561, Japan
| | - Yu Harabuchi
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan,JST
ERATO Maeda Artificial Intelligence for Chemical Reaction Design and
Discovery Project, Sapporo060-0810, Japan,Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo060-0810, Japan
| | - Satoshi Maeda
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan,JST
ERATO Maeda Artificial Intelligence for Chemical Reaction Design and
Discovery Project, Sapporo060-0810, Japan,Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo060-0810, Japan
| | - Koji Tsuda
- Graduate
School of Frontier Sciences, The University
of Tokyo, Kashiwa277-8561, Japan,RIKEN
Center for Advanced Intelligence Project, Tokyo103-0027, Japan,Research
and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba305-0047, Japan,
| |
Collapse
|
22
|
Tu Z, Stuyver T, Coley CW. Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery. Chem Sci 2023; 14:226-244. [PMID: 36743887 PMCID: PMC9811563 DOI: 10.1039/d2sc05089g] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
The field of predictive chemistry relates to the development of models able to describe how molecules interact and react. It encompasses the long-standing task of computer-aided retrosynthesis, but is far more reaching and ambitious in its goals. In this review, we summarize several areas where predictive chemistry models hold the potential to accelerate the deployment, development, and discovery of organic reactions and advance synthetic chemistry.
Collapse
Affiliation(s)
- Zhengkai Tu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Thijs Stuyver
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Connor W Coley
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
23
|
Mita T, Takano H, Hayashi H, Kanna W, Harabuchi Y, Houk KN, Maeda S. Prediction of High-Yielding Single-Step or Cascade Pericyclic Reactions for the Synthesis of Complex Synthetic Targets. J Am Chem Soc 2022; 144:22985-23000. [PMID: 36451276 DOI: 10.1021/jacs.2c09830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Pericyclic reactions, which involve cyclic concerted transition states without ionic or radical intermediates, have been extensively studied since their definition in the 1960s, and the famous Woodward-Hoffmann rules predict their stereoselectivity and chemoselectivity. Here, we describe the application of a fully automated reaction-path search method, that is, the artificial force induced reaction (AFIR), to trace an input compound back to reasonable starting materials through thermally allowed pericyclic reactions via product-based quantum-chemistry-aided retrosynthetic analysis (QCaRA) without using any a priori experimental knowledge. All categories of pericyclic reactions, including cycloadditions, ene reactions, group-transfer, cheletropic, electrocyclic, and sigmatropic reactions, were successfully traced back via concerted reaction pathways, and starting materials were computationally obtained with the correct stereochemistry. Furthermore, AFIR was used to predict whether the identified reaction pathway can be expected to occur in good yield relative to other possible reactions of the identified starting material. In order to showcase its practical utility, this state-of-the-art technology was also applied to the retrosynthetic analysis of a natural product with a relatively high number of atoms (52 atoms: endiandric acid C methyl ester), which was first synthesized by Nicolaou in 1982 and provided the corresponding starting polyenes with the correct stereospecificity via three pericyclic reaction cascades (one Diels-Alder reaction as well as 6π and 8π electrocyclic reactions). Moreover, not only systems that obey the Woodward-Hoffmann rules but also systems that violate these rules, such as those recently calculated by Houk, can be retrosynthesized accurately.
Collapse
Affiliation(s)
- Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - K N Houk
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
24
|
Krep L, Schmalz F, Solbach F, Komissarov L, Nevolianis T, Kopp WA, Verstraelen T, Leonhard K. A Reactive Molecular Dynamics Study of Chlorinated Organic Compounds. Part II: A ChemTraYzer Study of Chlorinated Dibenzofuran Formation and Decomposition Processes. Chemphyschem 2022; 24:e202200783. [PMID: 36511423 DOI: 10.1002/cphc.202200783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
In our two-paper series, we first present the development of ReaxFF CHOCl parameters using the recently published ParAMS parametrization tool. In this second part, we update the reactive Molecular Dynamics - Quantum Mechanics coupling scheme ChemTraYzer and combine it with our new ReaxFF parameters from Part I to study formation and decomposition processes of chlorinated dibenzofurans. We introduce a self-learning method for recovering failed transition-state searches that improves the overall ChemTraYzer transition-state search success rate by 10 percentage points to a total of 48 %. With ChemTraYzer, we automatically find and quantify more than 500 reactions using transition state theory and DFT. Among the discovered chlorinated dibenzofuran reactions are numerous reactions that are new to the literature. In three case studies, we discuss the set of reactions that are most relevant to the dibenzofuran literature: (i) bimolecular reactions of the chlorinated-dibenzofuran precursors phenoxy radical and 1,3,5-trichlorobenzene, (ii) dibenzofuran chlorination and pyrolysis, and (iii) oxidation of chlorinated dibenzofurans.
Collapse
Affiliation(s)
- Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Florian Solbach
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Leonid Komissarov
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052, Ghent, Belgium
| | - Thomas Nevolianis
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, B-9052, Ghent, Belgium
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, North Rhine-Westphalia, 52062, Aachen, Germany
| |
Collapse
|
25
|
Lavigne C, Gomes G, Pollice R, Aspuru-Guzik A. Guided discovery of chemical reaction pathways with imposed activation. Chem Sci 2022; 13:13857-13871. [PMID: 36544742 PMCID: PMC9710306 DOI: 10.1039/d2sc05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada
| | - Gabe Gomes
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada,Department of Chemical Engineering & Applied Chemistry, University of Toronto200 College St.OntarioM5S 3E5Canada,Department of Materials Science & Engineering, University of Toronto184 College St.OntarioM5S 3E4Canada,Vector Institute for Artificial Intelligence661 University Ave Suite 710TorontoOntarioM5G 1M1Canada,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR)661 University AveTorontoOntarioM5GCanada
| |
Collapse
|
26
|
Zhao Q, Savoie BM. Algorithmic Explorations of Unimolecular and Bimolecular Reaction Spaces. Angew Chem Int Ed Engl 2022; 61:e202210693. [PMID: 36074520 PMCID: PMC9827825 DOI: 10.1002/anie.202210693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Algorithmic reaction exploration based on transition state searches has already made inroads into many niche applications, but its potential as a general-purpose tool is still largely unrealized. Computational cost and the absence of benchmark problems involving larger molecules remain obstacles to further progress. Here an ultra-low cost exploration algorithm is implemented and used to explore the reactivity of unimolecular and bimolecular reactants, comprising a total of 581 reactions involving 51 distinct reactants. The algorithm discovers all established reaction pathways, where such comparisons are possible, while also revealing a much richer reactivity landscape, including lower barrier reaction pathways and a strong dependence of reaction conformation in the apparent barriers of the reported reactions. The diversity of these benchmarks illustrate that reaction exploration algorithms are approaching general-purpose capability.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| | - Brett M. Savoie
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
27
|
Ramos-Sánchez P, Harvey JN, Gámez JA. An automated method for graph-based chemical space exploration and transition state finding. J Comput Chem 2022; 44:27-42. [PMID: 36239971 DOI: 10.1002/jcc.27011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Algorithms that automatically explore the chemical space have been limited to chemical systems with a low number of atoms due to expensive involved quantum calculations and the large amount of possible reaction pathways. The method described here presents a novel solution to the problem of chemical exploration by generating reaction networks with heuristics based on chemical theory. First, a second version of the reaction network is determined through molecular graph transformations acting upon functional groups of the reacting. Only transformations that break two chemical bonds and form two new ones are considered, leading to a significant performance enhancement compared to previously presented algorithm. Second, energy barriers for this reaction network are estimated through quantum chemical calculations by a growing string method, which can also identify non-octet species missed during the previous step and further define the reaction network. The proposed algorithm has been successfully applied to five different chemical reactions, in all cases identifying the most important reaction pathways.
Collapse
Affiliation(s)
- Pablo Ramos-Sánchez
- Digital R&D, Covestro Deutschland AG, Leverkusen, Germany.,Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - José A Gámez
- Digital R&D, Covestro Deutschland AG, Leverkusen, Germany
| |
Collapse
|
28
|
Ismail I, Chantreau Majerus R, Habershon S. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. J Phys Chem A 2022; 126:7051-7069. [PMID: 36190262 PMCID: PMC9574932 DOI: 10.1021/acs.jpca.2c06408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Graph-based descriptors, such as bond-order matrices and adjacency matrices, offer a simple and compact way of categorizing molecular structures; furthermore, such descriptors can be readily used to catalog chemical reactions (i.e., bond-making and -breaking). As such, a number of graph-based methodologies have been developed with the goal of automating the process of generating chemical reaction network models describing the possible mechanistic chemistry in a given set of reactant species. Here, we outline the evolution of these graph-based reaction discovery schemes, with particular emphasis on more recent methods incorporating graph-based methods with semiempirical and ab initio electronic structure calculations, minimum-energy path refinements, and transition state searches. Using representative examples from homogeneous catalysis and interstellar chemistry, we highlight how these schemes increasingly act as "virtual reaction vessels" for interrogating mechanistic questions. Finally, we highlight where challenges remain, including issues of chemical accuracy and calculation speeds, as well as the inherent challenge of dealing with the vast size of accessible chemical reaction space.
Collapse
Affiliation(s)
- Idil Ismail
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| | | | - Scott Habershon
- Department of Chemistry, University
of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
29
|
Raucci U, Sanchez DM, Martínez TJ, Parrinello M. Enhanced Sampling Aided Design of Molecular Photoswitches. J Am Chem Soc 2022; 144:19265-19271. [PMID: 36222799 DOI: 10.1021/jacs.2c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in the evolving field of atomistic simulations promise important insights for the design and fundamental understanding of novel molecular photoswitches. Here, we use state-of-the-art enhanced simulation techniques to unravel the complex, multistep chemistry of donor-acceptor Stenhouse adducts (DASAs). Our reaction discovery workflow consists of enhanced sampling for efficient chemical space exploration, refinement of newly observed pathways with more accurate ab initio electronic structure calculations, and structural modifications to introduce design principles within future generations of DASAs. We showcase our discovery workflow by not only recovering the full photoswitching mechanism of DASA but also predicting a plethora of new plausible thermal pathways and suggesting a way for their experimental validation. Furthermore, we illustrate the tunability of these newly discovered reactions, leading to a potential avenue for controlling DASA dynamics through multiple external stimuli. Overall, these insights could offer alternative routes to increase the efficiency and control of DASA's photoswitching mechanism, providing new elements to design more complex light-responsive materials.
Collapse
Affiliation(s)
| | - David M Sanchez
- Department of Chemistry, Stanford University, Stanford, California94305, United States.,SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, California94025, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California94305, United States.,SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, California94025, United States
| | | |
Collapse
|
30
|
Pracht P, Bannwarth C. Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. J Chem Theory Comput 2022; 18:6370-6385. [PMID: 36121838 DOI: 10.1021/acs.jctc.2c00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of photochemical processes is a highly active field in computational chemistry. One research direction is the automated exploration and identification of minimum energy conical intersection (MECI) geometries. However, due to the immense technical effort required to calculate nonadiabatic potential energy landscapes, the routine application of such computational protocols is severely limited. In this study, we will discuss the prospect of combining adiabatic potential energy surfaces from semiempirical quantum mechanical calculations with specialized confinement potential and metadynamics simulations to identify S0/T1 minimum energy crossing point (MECP) geometries. It is shown that MECPs calculated at the GFN2-xTB level can provide suitable approximations to high-level S0/S1ab initio conical intersection geometries at a fraction of the computational cost. Reference MECIs of benzene are studied to illustrate the basic concept. An example application of the presented protocol is demonstrated for a set of photoswitch molecules.
Collapse
Affiliation(s)
- Philipp Pracht
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| |
Collapse
|
31
|
Unsleber JP, Grimmel SA, Reiher M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. J Chem Theory Comput 2022; 18:5393-5409. [PMID: 35926118 PMCID: PMC11516015 DOI: 10.1021/acs.jctc.2c00193] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
Abstract
Fueled by advances in hardware and algorithm design, large-scale automated explorations of chemical reaction space have become possible. Here, we present our approach to an open-source, extensible framework for explorations of chemical reaction mechanisms based on the first-principles of quantum mechanics. It is intended to facilitate reaction network explorations for diverse chemical problems with a wide range of goals such as mechanism elucidation, reaction path optimization, retrosynthetic path validation, reagent design, and microkinetic modeling. The stringent first-principles basis of all algorithms in our framework is key for the general applicability that avoids any restrictions to specific chemical systems. Such an agile framework requires multiple specialized software components of which we present three modules in this work. The key module, Chemoton, drives the exploration of reaction networks. For the exploration itself, we introduce two new algorithms for elementary-step searches that are based on Newton trajectories. The performance of these algorithms is assessed for a variety of reactions characterized by a broad chemical diversity in terms of bonding patterns and chemical elements. Chemoton successfully recovers the vast majority of these. We provide the resulting data, including large numbers of reactions that were not included in our reference set, to be used as a starting point for further explorations and for future reference.
Collapse
Affiliation(s)
- Jan P. Unsleber
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stephanie A. Grimmel
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische
Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Zhao Q, Xu Y, Greeley J, Savoie BM. Deep reaction network exploration at a heterogeneous catalytic interface. Nat Commun 2022; 13:4860. [PMID: 35982057 PMCID: PMC9388529 DOI: 10.1038/s41467-022-32514-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Characterizing the reaction energies and barriers of reaction networks is central to catalyst development. However, heterogeneous catalytic surfaces pose several unique challenges to automatic reaction network characterization, including large sizes and open-ended reactant sets, that make ad hoc network construction the current state-of-the-art. Here, we show how automated network exploration algorithms can be adapted to the constraints of heterogeneous systems using ethylene oligomerization on silica-supported single-site Ga3+ as a model system. Using only graph-based rules for exploring the network and elementary constraints based on activation energy and size for identifying network terminations, a comprehensive reaction network is generated and validated against standard methods. The algorithm (re)discovers the Ga-alkyl-centered Cossee-Arlman mechanism that is hypothesized to drive major product formation while also predicting several new pathways for producing alkanes and coke precursors. These results demonstrate that automated reaction exploration algorithms are rapidly maturing towards general purpose capability for exploratory catalytic applications.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
33
|
Geiger J, Settels V, Deglmann P, Schäfer A, Bergeler M. Automated input structure generation for single-ended reaction path optimizations. J Comput Chem 2022; 43:1662-1674. [PMID: 35866245 DOI: 10.1002/jcc.26969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022]
Abstract
The exploration of a reaction network requires highly automated workflows to avoid error-prone and time-consuming manual steps. In this respect, a major bottleneck is the search for transition-state (TS) structures, which frequently fails and, therefore, makes (manual) revision necessary. In this work, we present a technique for obtaining suitable input structures for automated TS searches based on single-ended reaction path optimization algorithms, which makes subsequent TS searches via this method significantly more robust. First, possible input structures are generated based on the spatial alignment of the reactants. The appropriate orientation of reacting groups is achieved via stepwise rotations along selected torsional degrees of freedom. Second, a ranking of the obtained structures is performed according to selected geometric criteria. The main goals are to properly align the reactive atoms, to avoid hindrance within the reaction channel and to resolve steric clashes between the reactants. The developed procedure has been carefully tested on a variety of examples and provides suitable input structures for TS searches within seconds. The method is in daily use in an industrial setting.
Collapse
Affiliation(s)
- Julian Geiger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| | | | | | | | - Maike Bergeler
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
| |
Collapse
|
34
|
Kang PL, Shi YF, Shang C, Liu ZP. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity. Chem Sci 2022; 13:8148-8160. [PMID: 35919423 PMCID: PMC9278456 DOI: 10.1039/d2sc02107b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The complex interaction between molecules and catalyst surfaces leads to great difficulties in understanding and predicting the activity and selectivity in heterogeneous catalysis. Here we develop an end-to-end artificial intelligence framework for the activity prediction of heterogeneous catalytic systems (AI-Cat method), which takes simple inputs from names of molecules and metal catalysts and outputs the reaction energy profile from the input molecule to low energy pathway products. The AI-Cat method combines two neural network models, one for predicting reaction patterns and the other for providing the reaction barrier and energy, with a Monte Carlo tree search to resolve the low energy pathways in a reaction network. We then apply AI-Cat to resolve the reaction network of glycerol hydrogenolysis on Cu surfaces, which is a typical selective C-O bond activation system and of key significance for biomass-derived polyol utilization. We show that glycerol hydrogenolysis features a huge reaction network of relevant candidates, containing 420 reaction intermediates and 2467 elementary reactions. Among them, the surface-mediated enol-keto tautomeric resonance is a key step to facilitate the primary C-OH bond breaking and thus selects 1,2-propanediol as the major product on Cu catalysts. 1,3-Propanediol can only be produced under strong acidic conditions and high surface H coverage by following a hydrogenation-dehydration pathway. AI-Cat further discovers six low-energy reaction patterns for C-O bond activation on metals that is of general significance to polyol catalysis. Our results demonstrate that the reaction prediction for complex heterogeneous catalysis is now feasible with AI-based atomic simulation and a Monte Carlo tree search.
Collapse
Affiliation(s)
- Pei-Lin Kang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Yun-Fei Shi
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
35
|
Ismail I, Robertson C, Habershon S. Successes and challenges in using machine-learned activation energies in kinetic simulations. J Chem Phys 2022; 157:014109. [DOI: 10.1063/5.0096027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The prediction of the thermodynamic and kinetic properties of chemical reactions is increasingly being addressed by machine-learning (ML) methods such as artificial neural networks (ANNs). While a number of recent studies have reported success in predicting chemical reaction activation energies, less attention has focused on how the accuracy of ML predictions filter through to predictions of macroscopic observables. Here, we consider the impact of the uncertainty associated with ML prediction of activation energies on observable properties of chemical reaction networks, as given by microkinetics simulations based on ML-predicted reaction rates. After training an ANN to predict activation energies given standard molecular descriptors for reactants and products alone, we performed microkinetics simulations of three different prototypical reaction networks: formamide decomposition, aldol reactions and decomposition of 3-hydroperoxypropanal. We find that the kinetic modelling predictions can be in excellent agreement with corresponding simulations performed with ab initio calculations, but this is dependent on the inherent energetic landscape of the networks. We use these simulations to suggest some guidelines for when ML-based activation energies can be reliable, and when one should take more care in applications to kinetics modelling.
Collapse
Affiliation(s)
| | | | - Scott Habershon
- Department of Chemistry, University of Warwick, United Kingdom
| |
Collapse
|
36
|
Two-state reactivity in the acetylene cyclotrimerization reaction catalyzed by a single atomic transition-metal ion: The case for V+ and Fe+. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Zhao Q, Hsu HH, Savoie BM. Conformational Sampling for Transition State Searches on a Computational Budget. J Chem Theory Comput 2022; 18:3006-3016. [PMID: 35403426 DOI: 10.1021/acs.jctc.2c00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Hsuan-Hao Hsu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
38
|
Rasmussen MH, Jensen JH. Fast and automated identification of reactions with low barriers using meta-MD simulations. PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We test our meta-molecular dynamics (MD) based approach for finding low-barrier (<30 kcal/mol) reactions on uni- and bimolecular reactions extracted from the barrier dataset developed by Grambow, Pattanaik & Green (2020). For unimolecular reactions the meta-MD simulations identify 25 of the 26 products found by Grambow, Pattanaik & Green (2020), while the subsequent semiempirical screening eliminates an additional four reactions due to an overestimation of the reaction energies or estimated barrier heights relative to DFT. In addition, our approach identifies 36 reactions not found by Grambow, Pattanaik & Green (2020), 10 of which are <30 kcal/mol. For bimolecular reactions the meta-MD simulations identify 19 of the 20 reactions found by Grambow, Pattanaik & Green (2020), while the subsequent semiempirical screening eliminates an additional reaction. In addition, we find 34 new low-barrier reactions. For bimolecular reactions we found that it is necessary to “encourage” the reactants to go to previously undiscovered products, by including products found by other MD simulations when computing the biasing potential as well as decreasing the size of the molecular cavity in which the MD occurs, until a reaction is observed. We also show that our methodology can find the correct products for two reactions that are more representative of those encountered in synthetic organic chemistry. The meta-MD hyperparameters used in this study thus appear to be generally applicable to finding low-barrier reactions.
Collapse
|
39
|
Matsuoka W, Harabuchi Y, Maeda S. Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wataru Matsuoka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
40
|
Krep L, Roy IS, Kopp W, Schmalz F, Huang C, Leonhard K. Efficient Reaction Space Exploration with ChemTraYzer-TAD. J Chem Inf Model 2022; 62:890-902. [PMID: 35142513 DOI: 10.1021/acs.jcim.1c01197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a reaction model is often a time-consuming process, especially if unknown reactions have to be found and quantified. To alleviate the reaction modeling process, automated procedures for reaction space exploration are highly desired. We present ChemTraYzer-TAD, a new reactive molecular dynamics acceleration technique aimed at efficient reaction space exploration. The new method is based on the basin confinement strategy known from the temperature-accelerated dynamics (TAD) acceleration method. Our method features integrated ChemTraYzer bond-order processing steps for the automatic and on-the-fly determination of the positions of virtual walls in configuration space that confine the system in a potential energy basin. We use the example of 1,3-dioxolane-4-hydroperoxide-2-yl radical oxidation to show that ChemTraYzer-TAD finds more than 100 different parallel reactions for the given set of reactants in less than 2 ns of simulation time. Among the many observed reactions, ChemTraYzer-TAD finds the expected typical low-temperature reactions despite the use of extremely high simulation temperatures up to 5000 K. Our method also finds a new concerted β-scission plus O2 addition with a lower reaction barrier than the literature-known and so-far dominant β-scission.
Collapse
Affiliation(s)
- Lukas Krep
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Indu Sekhar Roy
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Wassja Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Felix Schmalz
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Can Huang
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
41
|
Chen X, Liu M, Gao J. CARNOT: a Fragment-Based Direct Molecular Dynamics and Virtual-Reality Simulation Package for Reactive Systems. J Chem Theory Comput 2022; 18:1297-1313. [PMID: 35129348 DOI: 10.1021/acs.jctc.1c01032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, the study of reaction mechanisms of complex reaction systems such as combustion has been performed on an individual basis by optimizations of transition structure and minimum energy path or by reaction dynamics trajectory calculations for one elementary reaction at a time. It is effective, but time-consuming, whereas important and unexpected processes could have been missed. In this article, we present a direct molecular dynamics (DMD) approach and a virtual-reality simulation program, CARNOT, in which plausible chemical reactions are simulated simultaneously at finite temperature and pressure conditions. A key concept of the present ab initio molecular dynamics method is to partition a large, chemically reactive system into molecular fragments that can be adjusted on the fly of a DMD simulation. The theory represents an extension of the explicit polarization method to reactive events, called ReX-Pol. We propose a highest-and-lowest adapted-spin approximation to define the local spins of individual fragments, rather than treating the entire system by a delocalized wave function. Consequently, the present ab initio DMD can be applied to reactive systems consisting of an arbitrarily varying number of closed and open-shell fragments such as free radicals, zwitterions, and separate ions found in combustion and other reactions. A graph-data structure algorithm was incorporated in CARNOT for the analysis of reaction networks, suitable for reaction mechanism reduction. Employing the PW91 density functional theory and the 6-31+G(d) basis set, the capabilities of the CARNOT program were illustrated by a combustion reaction, consisting of 28 650 atoms, and by reaction network analysis that revealed a range of mechanistic and dynamical events. The method may be useful for applications to other types of complex reactions.
Collapse
Affiliation(s)
- Xin Chen
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Meiyi Liu
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China
| | - Jiali Gao
- Peking University Shenzhen Graduate School, Shenzhen, Guangdong 581055, China.,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 581055, China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Garay-Ruiz D, Álvarez-Moreno M, Bo C, Martínez-Núñez E. New Tools for Taming Complex Reaction Networks: The Unimolecular Decomposition of Indole Revisited. ACS PHYSICAL CHEMISTRY AU 2022; 2:225-236. [PMID: 36855573 PMCID: PMC9718323 DOI: 10.1021/acsphyschemau.1c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The level of detail attained in the computational description of reaction mechanisms can be vastly improved through tools for automated chemical space exploration, particularly for systems of small to medium size. Under this approach, the unimolecular decomposition landscape for indole was explored through the automated reaction mechanism discovery program AutoMeKin. Nevertheless, the sheer complexity of the obtained mechanisms might be a hindrance regarding their chemical interpretation. In this spirit, the new Python library amk-tools has been designed to read and manipulate complex reaction networks, greatly simplifying their overall analysis. The package provides interactive dashboards featuring visualizations of the network, the three-dimensional (3D) molecular structures and vibrational normal modes of all chemical species, and the corresponding energy profiles for selected pathways. The combination of the joined mechanism generation and postprocessing workflow with the rich chemistry of indole decomposition enabled us to find new details of the reaction (obtained at the CCSD(T)/aug-cc-pVTZ//M06-2X/MG3S level of theory) that were not reported before: (i) 16 pathways leading to the formation of HCN and NH3 (via amino radical); (ii) a barrierless reaction between methylene radical and phenyl isocyanide, which might be an operative mechanism under the conditions of the interstellar medium; and (iii) reaction channels leading to both hydrogen cyanide and hydrogen isocyanide, of potential astrochemical interest as the computed HNC/HCN ratios greatly exceed the calculated equilibrium value at very low temperatures. The reported reaction networks can be very valuable to supplement databases of kinetic data, which is of remarkable interest for pyrolysis and astrochemical studies.
Collapse
Affiliation(s)
- Diego Garay-Ruiz
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Moises Álvarez-Moreno
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain,
| | - Emilio Martínez-Núñez
- Departmento
de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain,
| |
Collapse
|
43
|
Cui Q, Peng J, Xu C, Lan Z. Automatic Approach to Explore the Multireaction Mechanism for Medium-Sized Bimolecular Reactions via Collision Dynamics Simulations and Transition State Searches. J Chem Theory Comput 2022; 18:910-924. [DOI: 10.1021/acs.jctc.1c00795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinghai Cui
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
44
|
Baiardi A, Grimmel SA, Steiner M, Türtscher PL, Unsleber JP, Weymuth T, Reiher M. Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Acc Chem Res 2022; 55:35-43. [PMID: 34918903 DOI: 10.1021/acs.accounts.1c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum mechanical methods have been well-established for the elucidation of reaction paths of chemical processes and for the explicit dynamics of molecular systems. While they are usually deployed in routine manual calculations on reactions for which some insights are already available (typically from experiment), new algorithms and continuously increasing capabilities of modern computer hardware allow for exploratory open-ended computational campaigns that are unbiased and therefore enable unexpected discoveries. Highly efficient and even automated procedures facilitate systematic approaches toward the exploration of uncharted territory in molecular transformations and dynamics. In this work, we elaborate on such explorative approaches that range from reaction network explorations with (stationary) quantum chemical methods to explorative molecular dynamics and migrant wave packet dynamics. The focus is on recent developments that cover the following strategies. (i) Pruning search options for elementary reaction steps by heuristic rules based on the first-principles of quantum mechanics: Rules are required for reducing the combinatorial explosion of potentially reactive atom pairings, and rooting them in concepts derived from the electronic wave function makes them applicable to any molecular system. (ii) Enforcing reactive events by external biases: Inducing a reaction requires constraints that steer and direct elementary-step searches, which can be formulated in terms of forces, velocities, or supplementary potentials. (iii) Manual steering facilitated by interactive quantum mechanics: As ultrafast quantum chemical methods allow for real-time manual interactions with molecular systems, human-intuition-guided paths can be easily explored with suitable human-machine interfaces. (iv) New approaches for transition-state optimization with continuous curve representations can provide stable schemes to be driven in an automated way by allowing for an efficient tuning of the curve's parameters (instead of a manipulation of a collection of structures along the path), and (v) reactive molecular dynamics and direct wave packet propagation exploit the equations of motion of an underlying mechanical theory (usually, classical Newtonian mechanics or Schrödinger quantum mechanics). Explorative approaches are likely to replace the current state of the art in computational chemistry, because they reduce the human effort to be invested in reaction path elucidations, they are less prone to errors and bias-free, and they cover more extensive regions of the relevant configuration space. As a result, computational investigations that rely on these techniques are more likely to deliver surprising discoveries.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A. Grimmel
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P. Unsleber
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
45
|
Hirai H, Jinnouchi R. Discovering surface reaction pathways using accelerated molecular dynamics and network analysis tools. RSC Adv 2022; 12:23274-23283. [PMID: 36090391 PMCID: PMC9382359 DOI: 10.1039/d2ra04343b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions. In this method, bias potentials promoting surface reactions are applied to enable statistical samplings of the surface reaction within the timescale of ab initio molecular dynamics (MD) simulations, and elementary reactions are extracted automatically using an extension of the method constructed for gas- or liquid-phase reactions. By converting the extracted elementary reaction data to directed graph data, MD trajectories can be efficiently mapped onto reaction pathways using a network analysis tool. To demonstrate the power of the method, it was applied to the steam reforming of methane on the Rh(111) surface and to propane reforming on the Pt(111) and Pt3Sn(111) surfaces. We discover new energetically favorable pathways for both reactions and reproduce the experimentally-observed materials-dependence of the surface reaction activity and the selectivity for the propane reforming reactions. We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions.![]()
Collapse
Affiliation(s)
- Hirotoshi Hirai
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Ryosuke Jinnouchi
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
46
|
Schmitz G, Yönder Ö, Schnieder B, Schmid R, Hättig C. An automatized workflow from molecular dynamic simulation to quantum chemical methods to identify elementary reactions and compute reaction constants. J Comput Chem 2021; 42:2264-2282. [PMID: 34636424 DOI: 10.1002/jcc.26757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present an automatized workflow which, starting from molecular dynamics simulations, identifies reaction events, filters them, and prepares them for accurate quantum chemical calculations using, for example, Density Functional Theory (DFT) or Coupled Cluster methods. The capabilities of the automatized workflow are demonstrated by the example of simulations for the combustion of some polycyclic aromatic hydrocarbons (PAHs). It is shown how key elementary reaction candidates are filtered out of a much larger set of redundant reactions and refined further. The molecular species in question are optimized using DFT and reaction energies, barrier heights, and reaction rates are calculated. The setup is general enough to include at this stage configurational sampling, which can be exploited in the future. Using the introduced machinery, we investigate how the observed reaction types depend on the gas atmosphere used in the molecular dynamics simulation. For the re-optimization on the DFT level, we show how the additional information needed to switch from reactive force-field to electronic structure calculations can be filled in and study how well ReaxFF and DFT agree with each other and shine light on the perspective of using more accurate semi-empirical methods in the MD simulation.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Özlem Yönder
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Bastian Schnieder
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Rochus Schmid
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
47
|
Chantreau Majerus R, Robertson C, Habershon S. Assessing and rationalizing the performance of Hessian update schemes for reaction path Hamiltonian rate calculations. J Chem Phys 2021; 155:204112. [PMID: 34852478 DOI: 10.1063/5.0064685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reaction path Hamiltonian (RPH) can be used to calculate chemical reaction rate constants, going beyond transition-state theory in taking account of recrossing by providing an approximation to the dynamic transmission coefficient. However, the RPH necessitates the calculation of the Hessian matrix at a number of points along the minimum energy path; the associated computational cost stands as a bottleneck in RPH calculations, especially if one is interested in using high-accuracy electronic structure methods. In this work, four different Hessian update schemes (symmetric rank-1, Powell-symmetric Broyden, Bofill, and TS-BFGS updates) are assessed to see whether or not they reliably reproduce calculated transmission coefficients for three different chemical reactions. Based on the reactions investigated, the symmetric rank-1 Hessian update was the least appropriate for RPH construction, giving different transmission coefficients from the standard analytical Hessian approach, as well as inconsistent frequencies and coupling properties. The Bofill scheme, the Powell-symmetric Broyden scheme, and the TS-BFGS scheme were the most reliable Hessian update methods, with transmission coefficients that were in good agreement with those calculated by the standard RPH calculations. The relative accuracy of the different Hessian update schemes is further rationalized by investigating the approximated Coriolis and curvature coupling terms along the reaction-path, providing insight into when these schemes would be expected to work well. Furthermore, the associated computational cost associated with the RPH calculations was substantially reduced by the tested update schemes. Together, these results provide useful rules-of-thumb for using Hessian update schemes in RPH simulations.
Collapse
Affiliation(s)
- R Chantreau Majerus
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - C Robertson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S Habershon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
48
|
Lan T, An Q. Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles. J Am Chem Soc 2021; 143:16804-16812. [PMID: 34606265 DOI: 10.1021/jacs.1c08794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Determining the reaction pathways, which is central to illustrating the working mechanisms of a catalyst, is severely hindered by the high complexity of the reaction and the extreme scarcity of the data. Here, we develop a novel artificial intelligence framework integrating deep reinforcement learning (DRL) techniques with density functional theory simulations to automate the quantitative search and evaluation on the complex catalytic reaction networks from zero knowledge. Our framework quantitatively transforms the first-principles-derived free energy landscape of the chemical reactions to a DRL environment and the corresponding actions. By interacting with this dynamic environment, our model evolves by itself from scratch to a complete reaction path. We demonstrate this framework using the Haber-Bosch process on the most active Fe(111) surface. The new path found by our framework has a lower overall free energy barrier than the previous study based on domain knowledge, demonstrating its outstanding capability in discovering complicated reaction paths. Looking forward, we anticipate that this framework will open the door to exploring the fundamental reaction mechanisms of many catalytic reactions.
Collapse
Affiliation(s)
- Tian Lan
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Qi An
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| |
Collapse
|
49
|
Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Top Catal 2021. [DOI: 10.1007/s11244-021-01506-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Martínez-Núñez E, Barnes GL, Glowacki DR, Kopec S, Peláez D, Rodríguez A, Rodríguez-Fernández R, Shannon RJ, Stewart JJP, Tahoces PG, Vazquez SA. AutoMeKin2021: An open-source program for automated reaction discovery. J Comput Chem 2021; 42:2036-2048. [PMID: 34387374 DOI: 10.1002/jcc.26734] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023]
Abstract
AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare-event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond-order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin.
Collapse
Affiliation(s)
- Emilio Martínez-Núñez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York, USA
| | - David R Glowacki
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Sabine Kopec
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Daniel Peláez
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Aurelio Rodríguez
- Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
| | | | - Robin J Shannon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | - Pablo G Tahoces
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saulo A Vazquez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|