1
|
Hattab A, Malloum A, Dhaouadi Z, Russo N. Structures and Solvation Energies Effects Versus Temperature. An MP2 Investigations in the Framework of Cluster Model. J Comput Chem 2025; 46:e70066. [PMID: 39970034 PMCID: PMC11838818 DOI: 10.1002/jcc.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Structures, relative stabilities, solvation enthalpies, and free energies of theBe H 2 O n = 12 2 + $$ {\left[\mathrm{Be}{\left({\mathrm{H}}_2\mathrm{O}\right)}_{n=12}\right]}^{2+} $$ cluster in gas and in water phases were investigated in this work using Moller-Plesset perturbation theory (MP2) and considering a temperature range of 40-400 K. The 12 H2O molecules are distributed between the first, second, and third solvation shells. The calculated distancesBe 2 + - O $$ {\mathrm{Be}}^{2+}-\mathrm{O} $$ distances in gas phase are in good agreement with the experimental range which confirms the strong influence of long-distance interactions in cluster stabilization. Structural comparison between gas and water phases shows that the addition of the bulk solvent causes changes in the cation-water bond lengths of few hundredths of angstroms. The obtained solvation free energy of beryllium ion in water at room temperature (298.15 K) results in b - 575.1 kcal mol-1 in very good agreement with the corresponding experimental counterpart. The computed solvation free energies increase as a polynomial function of the temperature while the change in the solvation enthalpies is found to be negligible.
Collapse
Affiliation(s)
- Awatef Hattab
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El ManarCampus UniversitaireTunisTunisie
- Faculté des Sciences de BizerteUniversité de CarthageZarzouna BizerteTunisie
| | - Alhadji Malloum
- Department of Physics, Faculty of ScienceThe University of NgaoundereNgaoundereCameroon
| | - Zoubeida Dhaouadi
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El ManarCampus UniversitaireTunisTunisie
- Faculté des Sciences de BizerteUniversité de CarthageZarzouna BizerteTunisie
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie ChimicheUniversitá della CalabriaRende (CS)Italy
| |
Collapse
|
2
|
Boukar O, Malloum A, Nsangou M, Fifen JJ, Conradie J. Clusters of solvated ferrous ion in water-ammonia mixture: Structures and noncovalent interactions. J Mol Graph Model 2024; 133:108867. [PMID: 39321610 DOI: 10.1016/j.jmgm.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The behavior of metal ions is commonly studied in pure solvent although, in our daily life, these metals are involved in mixtures of solvents. In the present study, we investigated structures, relative stabilities and temperature dependance of solvated ferrous ion in water-ammonia mixture solvent at 0K and at various temperatures ranging from 25K to 400K. All the calculations are performed at the MN15 level of theory associated with the aug-cc-pVDZ basis set. For deep understanding of binding patterns in solvated ferrous ion in water-ammonia mixture solvent, noncovalent interactions are presented based on the QTAIM analysis using AIMAll. Our results prove that the ferrous ion is more stable when it is solvated by ammonia instead of water. In addition, hydrogen bonds are weakened by the presence of ammonia molecules. The temperature dependence of the different obtained geometries indicates that from s=6 (s is the sum of water and ammonia molecules around the ferrous ion), when the number of water molecules is almost equal to that of ammonia, the structures with coordination number 5 are dominant. However, the coordination number is six when there are a maximum water molecules (rich water solution) or maximum ammonia molecules (rich ammonia solution) around the ferrous ion (for s≥6). The QTAIM analysis shows that there are two coordination bondings and four hydrogen bondings. Furthermore, it is found that the Fe2+⋯N coordination bondings are stronger than the Fe2+⋯O confirming that the ferrous ion prefers to be solvated by ammonia instead of water.
Collapse
Affiliation(s)
- Ousman Boukar
- Department of Physics, Faculty of science, University of Maroua, Maroua, P.O. Box 46, Cameroon.
| | - Alhadji Malloum
- Department of Physics, Faculty of science, University of Maroua, Maroua, P.O. Box 46, Cameroon; Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Mama Nsangou
- Department of Physics, Faculty of science, University of Maroua, Maroua, P.O. Box 46, Cameroon
| | - Jean Jules Fifen
- Quantum Theory and Applications Unit, Department of Physics, Faculty of Science, The University of Ngaoundere, P.O.BOX 454, Ngaoundere, Cameroon
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
3
|
Boukar O, Fifen JJ, Conradie J, Conradie MM. Solvation energies of the ferrous ion in water and in ammonia at various temperatures. J Mol Model 2024; 30:52. [PMID: 38285315 DOI: 10.1007/s00894-024-05839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
CONTEXT The solvation of metal ions is crucial to understanding relevant properties in physics, chemistry, or biology. Therefore, we present solvation enthalpies and solvation free energies of the ferrous ion in water and ammonia. Our results agree well with the experimental reports for the hydration free energy and hydration enthalpy. We obtained [Formula: see text] kJ mol[Formula: see text] for the hydration free energy and [Formula: see text] kJ mol[Formula: see text] for the hydration enthalpy of ferrous ion in water at room temperature. At ambient temperature, we obtained [Formula: see text] kJ mol[Formula: see text] as the [Formula: see text] ammoniation free energy and [Formula: see text] kJ mol[Formula: see text] for the ammoniation enthalpy. In addition, the free energy of solvation is deeply affected when the temperature increases. This pattern can be attributed to the rise of entropy when the temperature rises. Besides, the temperature does not affect the ammoniation enthalpies and the hydration enthalpy of the [Formula: see text] ion. METHOD All the geometry optimizations are performed at the MP2 methods associated with the 6-31++g(d,p) basis set of Pople. solvated phase structures of [Formula: see text] ion in water or in ammonia are performed using the PCM model. The [Formula: see text] program suite was used to perform all the calculations. The program TEMPO was also used to evaluate the temperature sensitivity of the different obtained geometries.
Collapse
Affiliation(s)
- Ousman Boukar
- Department of Physics, Faculty of Science, University of Maroua, P.O. Box 46, Maroua, Cameroon.
| | - Jean Jules Fifen
- Quantum Theory and Aplications Unit, Department of Physics, Faculty of Science, The University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | | |
Collapse
|
4
|
Jackson BA, Khan SN, Miliordos E. A fresh perspective on metal ammonia molecular complexes and expanded metals: opportunities in catalysis and quantum information. Chem Commun (Camb) 2023; 59:10572-10587. [PMID: 37555315 DOI: 10.1039/d3cc02956e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recent advances in our comprehension of the electronic structure of metal ammonia complexes have opened avenues for novel materials with diffuse electrons. These complexes in their ground state can host peripheral "Rydberg" electrons which populate a hydrogenic-type shell model imitating atoms. Aggregates of such complexes form the so-called expanded or liquid metals. Expanded metals composed of d- and f-block metal ammonia complexes offer properties, such as magnetic moments and larger numbers of diffuse electrons, not present for alkali and alkaline earth (s-block) metals. In addition, tethering metal ammonia complexes via hydrocarbon chains (replacement of ammonia ligands with diamines) yields materials that can be used for redox catalysis and quantum computing, sensing, and optics. This perspective summarizes the recent findings for gas-phase isolated metal ammonia complexes and projects the obtained knowledge to the condensed phase regime. Possible applications for the newly introduced expanded metals and linked solvated electrons precursors are discussed and future directions are proposed.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
5
|
Da-yang TE, Lai CH. Potential energy surfaces of the Cu2+(NH3)n=1−10 clusters in solvent phase: A DFT study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Malloum A, Conradie J. Hydrogen bond networks of dimethylsulfoxide (DMSO) pentamer. J Mol Graph Model 2023; 118:108363. [PMID: 36308947 DOI: 10.1016/j.jmgm.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
Understanding of clusters of dimethylsulfoxide (DMSO) is important in several applications in Chemistry. Despite its importance, very few studies of DMSO clusters, (DMSO)n, have been reported in comparison to systems such as water clusters or methanol clusters. In order to provide further understanding of DMSO clusters, we investigated the structures and non-covalent interactions of the (DMSO)n, n=5. Therefore, the potential energy surface (PES) of the DMSO pentamer has been examined using classical molecular dynamics. The structures generated using classical molecular dynamics are further optimized at the PW6B95D3/aug-cc-pVDZ level of theory. To comprehend the non-covalent bondings in the DMSO pentamer, we carried out a quantum theory of atoms in molecule (QTAIM) analysis. In addition, the effects of temperature on the structural stability is investigated between 20 and 500K. It comes out that seven different kind of non-covalent bondings can be found in DMSO pentamers.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
7
|
Yibain Khokho EC, Tchangnwa Nya F, Malloum A, Conradie J. Comparative study of electronic, optoelectronic, optical, and thermodynamic properties of two ovalene molecules and their derivatives functionalized with potassium and chlorine atoms. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Boukar O, Fifen JJ, Malloum A, Nsangou M, Ghalila H, Conradie J. Solvation energies of ferrous ion in methanol at various temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Beryllium ion coordination in Ammonia, methanol and water solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Malloum A, Conradie J. Non-covalent interactions in dimethylsulfoxide (DMSO) clusters and DFT benchmarking. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Malloum A, Conradie J. Structures, binding energies and non-covalent interactions of furan clusters. J Mol Graph Model 2021; 111:108102. [PMID: 34915345 DOI: 10.1016/j.jmgm.2021.108102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Understanding of the furan solvent is subjected to the knowledge of the structures of the furan clusters and interactions taking place therein. Although, furan clusters can be very important to determine the dynamics and the properties of the furan solvent, there has been only a few investigations reported on furan dimer. In this work, we have explored the potential energy surfaces (PESs) of the furan clusters using two incremental levels of theory. Structures have been initially generated using classical molecular dynamics followed by full optimization at the MP2/aug-cc-pVDZ level of theory. The results show that the most stable structure of the furan dimer has a stacking configuration while that of the trimer has a cyclic configuration. We have noted that the structures of the furan tetramer have no definite configurations. In addition, we have performed a quantum theory of atoms in molecule (QTAIM) analysis to identify all possible non-covalent interactions of the furan clusters. The results show that six different types of non-covalent interactions can be identified in furan clusters. We have noted that the CH⋯C and CH⋯O hydrogen bondings are the strongest non-covalent interactions while the H⋯H bonding interaction is found to be the weakest. Furthermore, we have assessed the performance of ten DFT functionals in calculating the binding energies of the furan clusters. The ten DFT functionals (M05, M05-2X, M06, M06-2X, M08HX, PBE0, ωB97XD, PW6B95D3, APFD and MN15) have been benchmarked to DLPNO-CCSD(T)/CBS. The functionals M05-2X and M06 are recommended for further affordable investigations of the furan clusters.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa; Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
12
|
Jackson BA, Miliordos E. Electronic and geometric structure of cationic and neutral chromium and molybdenum ammonia complexes. J Chem Phys 2021; 155:014303. [PMID: 34241410 DOI: 10.1063/5.0054648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High level quantum chemical approaches are used to study the geometric and electronic structures of M(NH3)n and M(NH3)n + (M = Cr, Mo for n = 1-6). These complexes possess a dual shell electronic structure of the inner metal (3d or 4d) orbitals and the outer diffuse orbitals surrounding the periphery of the complex. Electronic excitations reveal these two shells to be virtually independent of the other. Molybdenum and chromium ammonia complexes are found to differ significantly in geometry with the former adopting an octahedral geometry and the latter a Jahn-Teller distorted octahedral structure where only the axial distortion is stable. The hexa-coordinated complexes and the tetra-coordinated complexes with two ammonia molecules in the second solvation shell are found to be energetically competitive. Electronic excitation energies and computed IR spectra are provided to allow the two isomers to be experimentally distinguished. This work is a component of an ongoing effort to study the periodic trends of transition metal solvated electron precursors.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
13
|
Boukar O, Fifen JJ, Nsangou M, Ghalila H, Conradie J. Structures and relative stability of hydrated ferrous ion clusters and temperature effects. NEW J CHEM 2021. [DOI: 10.1039/d1nj01849c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Structures of solvated ferrous ion clusters have been investigated in the singlet and quintet spin states of the ferrous ion. Relative stabilities of isomers are also discussed at different temperatures.
Collapse
Affiliation(s)
- Ousman Boukar
- Department of Physics
- Faculty of Science
- University of Maroua
- Cameroon
| | - Jean Jules Fifen
- Quantum Theory and Aplications Unit
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
| | - Mama Nsangou
- Department of Physics
- Faculty of Science
- University of Maroua
- Cameroon
- Quantum Theory and Aplications Unit
| | - Hassen Ghalila
- Faculty of Science
- University of Tunis El Manar
- Tunis
- Tunisia
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
14
|
Saputri WD, Pranowo HD, Schuler MJ, Hofer TS. Cu 2+ in liquid ammonia-The impact of solvent flexibility and electron correlation in ab initio quantum mechanical charge field molecular dynamics. J Comput Chem 2020; 41:2168-2176. [PMID: 32735755 DOI: 10.1002/jcc.26379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/13/2020] [Indexed: 11/06/2022]
Abstract
The impact of solvent flexibility and electron correlation on the simulation results of Cu2+ in liquid ammonia has been investigated via an ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulation approach. To achieve this, three different simulation systems were considered in this study, namely Cu2+ in rigid and flexible ammonia at Hartree-Fock (HF) level of theory, as well as resolution of identity second order Møller-Plesset (MP2) perturbation theory in the rigid body case. In all cases, a stable octahedral [Cu(NH3 )6 ]2+ complex subject to dynamic Jahn-Teller distortions without the occurrence of ligand exchange was observed. The Cu2+ - NH3 distance in the first shell agrees well with the experimental and other theoretical data. In all three cases, the structural data shows that the rigid-body ammonia model in conjunction with the HF level of theory provides accurate data for the first solvation shell, while at the same time, the computational demand and thus the achievable simulation time are much more beneficial. The vibrational analysis of the Cu2+ - NH3 interaction yields similar force constants in the three investigated systems indicating that there is no distinct difference on the dynamical properties of the first solvation shell. In addition to the QMCF MD simulations, a number of natural bond orbital (NBO) analyses were carried out, confirming the strong electrostatic character of the Cu2+ - NH3 interaction.
Collapse
Affiliation(s)
- Wahyu Dita Saputri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Austrian-Indonesian Centre for Computational Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Austrian-Indonesian Centre for Computational Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Manuel J Schuler
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Da-yang TE, Fifen JJ, Malloum A, Lahmar S, Nsangou M, Conradie J. Structures of the solvated copper(ii) ion in ammonia at various temperatures. NEW J CHEM 2020. [DOI: 10.1039/c9nj05169d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated theoretically the structures and relative stabilities of the solvated copper(ii) ion in ammonia, Cu2+(NH3)n, n = 1–10.
Collapse
Affiliation(s)
| | - Jean Jules Fifen
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Alhadji Malloum
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
- Department of Physics
| | - Souad Lahmar
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications
- Faculté des Sciences de Tunis
- Université de Tunis El Manar
- Tunis
- Tunisia
| | - Mama Nsangou
- University of Maroua
- Maroua
- Cameroon
- Department of Physics
- Faculty of Science
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
16
|
Abstract
Potential energy surfaces of protonated acetonitrile clusters have been explored to locate global and local minima energy structures. The structures are stabilized by strong hydrogen bonds, anti-parallel dimers, dipole–dipole and CH⋯N interactions.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
- Department of Physics
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
17
|
Ariyarathna IR, Almeida NMS, Miliordos E. Stability and Electronic Features of Calcium Hexa-, Hepta-, and Octa-Coordinated Ammonia Complexes: A First-Principles Study. J Phys Chem A 2019; 123:6744-6750. [DOI: 10.1021/acs.jpca.9b04966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isuru R. Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Nuno M. S. Almeida
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
18
|
Boukar O, Fifen JJ, Malloum A, Dhaouadi Z, Ghalila H, Conradie J. Structures of solvated ferrous ion clusters in ammonia and spin-crossover at various temperatures. NEW J CHEM 2019. [DOI: 10.1039/c9nj02462j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The solvated ferrous ion in ammonia is hexa-coordinated, irrespective of the temperature.
Collapse
Affiliation(s)
- Ousman Boukar
- Department of Physics
- Faculty of Science
- University of Maroua
- Maroua
- Cameroon
| | - Jean Jules Fifen
- Department of Physics
- Faculty of Science
- University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Alhadji Malloum
- Department of Physics
- Faculty of Science
- University of Ngaoundere
- Ngaoundere
- Cameroon
| | | | - Hassen Ghalila
- Faculty of Science
- University of Tunis El Manar
- Tunis
- Tunisia
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|