• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4597081)   Today's Articles (5282)   Subscriber (49345)
For: Cummins PL, Gready JE. Mechanistic aspects of biological redox reactions involving NADH 2: A combined semiempirical andab initio study of hydride-ion transfer between the NADH analogue, 1-methyl-dihydronicotinamide, and folate and dihydrofolate analogue substrates of dihydrofolate reductase. J Comput Chem 1990. [DOI: 10.1002/jcc.540110703] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Miller SP, Gonçalves S, Matias PM, Dean AM. Evolution of a transition state: role of Lys100 in the active site of isocitrate dehydrogenase. Chembiochem 2014;15:1145-53. [PMID: 24797066 DOI: 10.1002/cbic.201400040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/09/2022]
2
Doron D, Major DT, Kohen A, Thiel W, Wu X. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface. J Chem Theory Comput 2011;7:3420-37. [PMID: 26598171 DOI: 10.1021/ct2004808] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
3
Castillo R, Oliva M, Martí S, Moliner V. A theoretical study of the catalytic mechanism of formate dehydrogenase. J Phys Chem B 2008;112:10012-22. [PMID: 18646819 DOI: 10.1021/jp8025896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
4
Sergi A, Watney JB, Wong KF, Hammes-Schiffer S. Freezing a Single Distal Motion in Dihydrofolate Reductase. J Phys Chem B 2006;110:2435-41. [PMID: 16471835 DOI: 10.1021/jp056939u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
5
Hammes-Schiffer S. Quantum-classical simulation methods for hydrogen transfer in enzymes: a case study of dihydrofolate reductase. Curr Opin Struct Biol 2005;14:192-201. [PMID: 15093834 DOI: 10.1016/j.sbi.2004.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
6
Wong KF, Watney JB, Hammes-Schiffer S. Analysis of Electrostatics and Correlated Motions for Hydride Transfer in Dihydrofolate Reductase. J Phys Chem B 2004. [DOI: 10.1021/jp048565v] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Cummins PL, Greatbanks SP, Rendell AP, Gready JE. Computational Methods for the Study of Enzymic Reaction Mechanisms. 1. Application to the Hydride Transfer Step in the Catalysis of Dihydrofolate Reductase. J Phys Chem B 2002. [DOI: 10.1021/jp021070q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Dybala-Defratyka A, Paneth P. Theoretical evaluation of the hydrogen kinetic isotope effect on the first step of the methylmalonyl-CoA mutase reaction. J Inorg Biochem 2001;86:681-9. [PMID: 11583786 DOI: 10.1016/s0162-0134(01)00230-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
9
Lewandowicz A, Rudziński J, Tronstad L, Widersten M, Ryberg P, Matsson O, Paneth P. Chlorine kinetic isotope effects on the haloalkane dehalogenase reaction. J Am Chem Soc 2001;123:4550-5. [PMID: 11457241 DOI: 10.1021/ja003503d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Castillo R, Andrés J, Moliner V. Catalytic Mechanism of Dihydrofolate Reductase Enzyme. A Combined Quantum-Mechanical/Molecular-Mechanical Characterization of Transition State Structure for the Hydride Transfer Step. J Am Chem Soc 1999. [DOI: 10.1021/ja9843019] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Greatbanks SP, Gready JE, Limaye AC, Rendell AP. Enzyme polarization of substrates of dihydrofolate reductase by different theoretical methods. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19991101)37:2<157::aid-prot2>3.0.co;2-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
12
Torres RA, Schiøtt B, Bruice TC. Molecular Dynamics Simulations of Ground and Transition States for the Hydride Transfer from Formate to NAD+ in the Active Site of Formate Dehydrogenase. J Am Chem Soc 1999. [DOI: 10.1021/ja9912731] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Rucker J, Klinman JP. Computational Study of Tunneling and Coupled Motion in Alcohol Dehydrogenase-Catalyzed Reactions:  Implication for Measured Hydrogen and Carbon Isotope Effects. J Am Chem Soc 1999. [DOI: 10.1021/ja9824425] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Schiøtt B, Zheng YJ, Bruice TC. Theoretical Investigation of the Hydride Transfer from Formate to NAD+ and the Implications for the Catalytic Mechanism of Formate Dehydrogenase. J Am Chem Soc 1998. [DOI: 10.1021/ja9807338] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
15
Mesecar AD, Stoddard BL, Koshland DE. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 1997;277:202-6. [PMID: 9211842 DOI: 10.1126/science.277.5323.202] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
16
Hurley MM, Hammes-Schiffer S. Development of a Potential Surface for Simulation of Proton and Hydride Transfer Reactions in Solution:  Application to NADH Hydride Transfer. J Phys Chem A 1997. [DOI: 10.1021/jp970269d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Transition structures for hydride transfer reactions in vacuo and their role in enzyme catalysis. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0166-1280(96)04670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
18
Olson LP, Luo J, Almarsson O, Bruice TC. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase. Biochemistry 1996;35:9782-91. [PMID: 8703951 DOI: 10.1021/bi952020x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
19
Andrés J, Moliner V, Krechl J, Silla E. Transition state structures for the molecular mechanism of lactate dehydrogenase enzyme. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/p29950001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Ranganathan S, Gready JE. Mechanistic aspects of biological redox reactions involving NADH. Part 5.—AM1 transition-state studies for the pyruvate–L-lactate interconversion inL-lactate dehydrogenase. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/ft9949002047] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
21
von Onciul AR, Clark T. Molecular orbital studies of enzyme mechanisms. II. Catalytic oxidation of alcohols by liver alcohol dehydrogenase. J Comput Chem 1993. [DOI: 10.1002/jcc.540140403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
22
Jurema MW, Shields GC. Ability of the PM3 quantum-mechanical method to modelintermolecular hydrogen bonding between neutral molecules. J Comput Chem 1993. [DOI: 10.1002/jcc.540140113] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
23
Kollman PA. Theory of enzyme mechanisms. Curr Opin Struct Biol 1992. [DOI: 10.1016/0959-440x(92)90213-q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
24
Mestres J, Lledós A, Duran M, Bertrán J. Analysis of the hydride transfer in the [CH3-H-CH3]+ system in terms of valence bond structures. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0166-1280(92)87048-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
25
Gerres T, Heesing A. Wasserstoffübertragungen, 20[1a] Konkurrierende pericyclische Reaktionen von Dihydroarenen mit gespannten Cycloalkenen und -alkinen. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/cber.19921250621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
26
Warshel A. Computer simulations of enzymatic reactions. Curr Opin Struct Biol 1992. [DOI: 10.1016/0959-440x(92)90151-v] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA