Koh E, Lee YT. Preparation of Ligand Brush Nanocapsules for Robust Self-Controlled Antimicrobial Activity with Low Cytotoxicity at Target pH and Humidity.
Pharmaceutics 2022;
14:280. [PMID:
35214011 PMCID:
PMC8877937 DOI:
10.3390/pharmaceutics14020280]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
This study prepared nanocapsules (NCs) with excellent self-controlled antimicrobial activity at pH 6-7 and humidity 45-100%, conditions in which most bacterial and fungal strains thrive. The nanocapsule substrate (NC@SiO2) was 676 nm in diameter, and the ligand-grafted capsule (NC@SiO2-g-MAA) was 888 nm. The large surface area and outer ligand brush of the NCs induced a rapid, self-controlled antibacterial response in the pH and humidity conditions needed for industrial and medical applications. Ligand-brush NCs containing an anionic antimicrobial drug had a rapid release effect because of the repellent electrostatic force and swelling properties of the ligand brushes. Controlled release of the drug was achieved at pH 6 and humidity of 45% and 100%. As many carboxylic acid groups are deprotonated into carboxylic acids at pH 5, the NC@SiO2-g-MAA had a high negative charge density. Carboxylic acid groups are anionized (-COO-) at pH 6 and above and push each other out of the capsule, expanding the outer shell as in a polymer brush to create the release behavior. The surface potential of the NC intermediate (NC@SiO2-MPS) was -23.45 [mV], and the potential of the capsule surface decreased to -36.4 [mV] when the MAA ligand brushes were grafted onto the surface of the capsule intermediate. In an antimicrobial experiment using Escherichia coli, a clear zone of 13-20 mm formed at pH 6, and the E. coli was eradicated completely at pH 6 and pH 7 when the humidity was 100%.
Collapse