1
|
Nasiri M, Bahadorani M, Dellinger K, Aravamudhan S, Vivero-Escoto JL, Zadegan R. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. Int J Biol Macromol 2024; 260:129495. [PMID: 38228209 PMCID: PMC11060068 DOI: 10.1016/j.ijbiomac.2024.129495] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.
Collapse
Affiliation(s)
- Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA.
| |
Collapse
|
2
|
De Luca E, Wang Y, Baars I, De Castro F, Lolaico M, Migoni D, Ducani C, Benedetti M, Högberg B, Fanizzi FP. Wireframe DNA Origami for the Cellular Delivery of Platinum(II)-Based Drugs. Int J Mol Sci 2023; 24:16715. [PMID: 38069036 PMCID: PMC10706596 DOI: 10.3390/ijms242316715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes.
Collapse
Affiliation(s)
- Erik De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy; (E.D.L.); (F.D.C.); (D.M.); (M.B.)
| | - Yang Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.W.); (I.B.); (M.L.); (C.D.); (B.H.)
| | - Igor Baars
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.W.); (I.B.); (M.L.); (C.D.); (B.H.)
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy; (E.D.L.); (F.D.C.); (D.M.); (M.B.)
| | - Marco Lolaico
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.W.); (I.B.); (M.L.); (C.D.); (B.H.)
| | - Danilo Migoni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy; (E.D.L.); (F.D.C.); (D.M.); (M.B.)
| | - Cosimo Ducani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.W.); (I.B.); (M.L.); (C.D.); (B.H.)
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy; (E.D.L.); (F.D.C.); (D.M.); (M.B.)
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.W.); (I.B.); (M.L.); (C.D.); (B.H.)
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, I-73100 Lecce, Italy; (E.D.L.); (F.D.C.); (D.M.); (M.B.)
| |
Collapse
|
3
|
Kulikova T, Shamagsumova R, Rogov A, Stoikov I, Padnya P, Shiabiev I, Evtugyn G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:4761. [PMID: 37430675 DOI: 10.3390/s23104761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Rezeda Shamagsumova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
4
|
Baig MMFA, Ma J, Gao X, Khan MA, Ali A, Farid A, Zia AW, Noreen S, Wu H. Exploring the robustness of DNA nanotubes framework for anticancer theranostics toward the 2D/3D clusters of hypopharyngeal respiratory tumor cells. Int J Biol Macromol 2023; 236:123988. [PMID: 36907299 DOI: 10.1016/j.ijbiomac.2023.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
This study aimed to develop a robust approach for the early diagnosis and treatment of tumors. Short circular DNA nanotechnology synthesized a stiff and compact DNA nanotubes (DNA-NTs) framework. TW-37, a small molecular drug, was loaded into DNA-NTs for BH3-mimetic therapy to elevate the intracellular cytochrome-c levels in 2D/3D hypopharyngeal tumor (FaDu) cell clusters. After anti-EGFR functionalization, the DNA-NTs were tethered with a cytochrome-c binding aptamer, which can be applied to evaluate the elevated intracellular cytochrome-c levels via in situ hybridization (FISH) analysis and fluorescence resonance energy transfer (FRET). The results showed that DNA-NTs were enriched within the tumor cells via anti-EGFR targeting with a pH-responsive controlled release of TW-37. In this way, it initiated the triple inhibition of "BH3, Bcl-2, Bcl-xL, and Mcl-1". The triple inhibition of these proteins caused Bax/Bak oligomerization, leading to the perforation of the mitochondrial membrane. This led to the elevation of intracellular cytochrome-c levels, which reacted with the cytochrome-c binding aptamer to produce FRET signals. In this way, we successfully targeted 2D/3D clusters of FaDu tumor cells and achieved the tumor-specific and pH-triggered release of TW-37, causing tumor cell apoptosis. This pilot study suggests that anti-EGFR functionalized, TW-37 loaded, and cytochrome-c binding aptamer tethered DNA-NTs might be the hallmark for early tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jinwei Ma
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiuli Gao
- Microbiological and Biochemical Pharmaceutical Engineering Research Center of Guizhou Province, State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Atif Ali
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Abdul Wasy Zia
- Institute of Mechanical, Process, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Sobia Noreen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Department of Chemical and Biological Engineering, Division of Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
5
|
Baig MMFA, Fatima A, Gao X, Farid A, Ajmal Khan M, Zia AW, Wu H. Disrupting biofilm and eradicating bacteria by Ag-Fe 3O 4@MoS 2 MNPs nanocomposite carrying enzyme and antibiotics. J Control Release 2022; 352:98-120. [PMID: 36243235 DOI: 10.1016/j.jconrel.2022.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/07/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
In this study, novel multilayered magnetic nanoparticles (ML-MNPs) loaded with DNase and/or vancomycin (Vanc) were fabricated for eliminating multispecies biofilms. Iron-oxide MNPs (IO-core) (500-800 nm) were synthesized via co-precipitation; further, the IO-core was coated with heavy-metal-based layers (Ag and MoS2 NPs) using solvent evaporation. DNase and Vanc were loaded onto the outermost layer of the ML-MNP formed by nanoporous MoS2 NPs through physical deposition and adsorption. The biofilms of S. mutans or E. faecalis (or both) were formed in a brain-heart-infusion broth (BHI) for 3 days, followed by treatment with ML-MNPs for 24 h. The results revealed that coatings of Ag (200 nm) and ultrasmall MoS2 (20 nm) were assembled as outer layers of ML-MNPs successfully, and they formed Ag-Fe3O4@MoS2 MNPs (3-5 μm). The DNase-Vanc-loaded MNPs caused nanochannels digging and resulted in the enhanced penetration of MNPs towards the bottom layers of biofilm, which resulted in a decrease in the thickness of the 72-h biofilm from 48 to 58 μm to 0-4 μm. The sustained release of Vanc caused a synergistic bacterial killing up to 96%-100%. The heavy-metal-based layers of MNPs act as nanozymes to interfere with bacterial metabolism and proliferation, which adversely affects biofilm integrity. Further, loading DNase/Vanc onto the nanoporous-MoS2-layer of ML-MNPs promoted nanochannel creation through the biofilm. Therefore, DNase-and Vanc-loaded ML-MNPs exhibited potent effects on biofilm disruption and bacterial killing.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Arshia Fatima
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Xiuli Gao
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China.
| | - Awais Farid
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Marie Curie Research Unit, Northumbria University, Newcastle, United Kingdom
| | - Hongkai Wu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; Department of Chemical and Biological Engineering, Division of Biomedical Engineering, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Abstract
In this work, we investigated aggregation of native DNA and thiacalix[4]arene derivative bearing eight terminal amino groups in cone configuration using various redox probes on the glassy carbon electrode. It was shown that sorption transfer of the aggregates on the surface of the electrode covered with carbon black resulted in changes in electrostatic interactions and diffusional permeability of the surface layer. Such changes alter the signals of ferricyanide ion, methylene green and hydroquinone as redox probes to a degree depending on their specific interactions with DNA and own charge. Inclusion of DNA in the surface layer was independently confirmed by scanning electron microscopy, electrochemical impedance spectroscopy and experiments with doxorubicin as a model intercalator. Thermal denaturing of DNA affected the charge separation on the electrode interface and the signals of redox probes. Using hydroquinone, less sensitive to electrostatic interactions, made it possible to determine from 10 pM to 1.0 nM doxorubicin (limit of detection 3 pM) after 10 min incubation. Stabilizers present in the commercial medications did not alter the signal. The DNA sensors developed can find future application in the assessment of the complexes formed by DNA and macrocycles as delivery agents for small chemical species.
Collapse
|
7
|
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol 2021; 188:657-669. [PMID: 34371047 DOI: 10.1016/j.ijbiomac.2021.07.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/06/2023]
Abstract
Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|