1
|
Wang Y, Sun C, Liu M, Xu P, Li Y, Zhang Y, Huang J. Dysregulated gene expression of SUMO machinery components induces the resistance to anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. Front Immunol 2024; 15:1424393. [PMID: 39211047 PMCID: PMC11357960 DOI: 10.3389/fimmu.2024.1424393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The majority of patients with lung cancer exhibit drug resistance after anti-PD-1 immunotherapy, leading to shortened patient survival time. Previous studies have suggested an association between epigenetic abnormalities such as methylation and clinical response to anti-PD-1 immunotherapy, while the role of SUMOylation in resistance to anti-PD-1 antibody immunotherapy is still unclear. Methods Here, the mRNA expression of 15 SUMO machinery components in PBMC from lung cancer patients receiving anti-PD-1 immunotherapy were analyzed using real-time PCR. Base on the percentage change in mRNA levels, the relationship between the expression of SUMO machinery components and outcomes of anti-PD-1 immunotherapy, and the influencing factors of SUMOylation were evaluated. PBMC was treated with different concentrations of 2-D08 (a specific inhibitor of SUMOylation) in vitro, and analyzed the activation and the death rates of lymphocyte subsets by flow cytometry analysis. Results A predictive method, base on the gene expression of three SUMO machinery components (SUMO1, SUMO3 and UBE2I), were developed to distinguish non-responders to PD-1 inhibitors. Furthermore, the number of lymphocytes in peripheral blood significantly reduced in the dysregulated SUMOylation groups (the percentage change >100 or -50 ~ -100 groups). In vitro studies confirmed that lightly low SUMOylation level improved the activation status of T and NK lymphocytes, but extremely low SUMOylation level lead to the increased death rates of lymphocytes. Conclusion Our findings implied that dysregulated gene expression of SUMO machinery components could induce the resistance of anti-PD-1 immunotherapy in lung cancer by upregulating the death of peripheral blood lymphocytes. These data might provide effective circulating biomarkers for predicting the efficacy of anti-PD-1 immunotherapy, and uncovered a novel regulatory mechanism of resistance to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Sun
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Mengmeng Liu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Panyang Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yanyan Li
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yongsheng Zhang
- Prenatal Diagnosis Center, Reproductive Medicine Center, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Lin M, Zhang M, Yi B, Chen J, Wen S, Chen R, Chen T, Li Z. Emerging role of SENP1 in tumorigenesis and cancer therapy. Front Pharmacol 2024; 15:1354323. [PMID: 38389923 PMCID: PMC10882314 DOI: 10.3389/fphar.2024.1354323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Acting as a cysteine protease, small ubiquitin-like modifier (SUMO)/sentrin-specific protease1 (SENP1) involved in multiple physiological and pathological processes through processing the precursor SUMO protein into mature form and deSUMOylating target protein. It has been reported that SENP1 is highly expressed and plays a carcinogenic role in various cancers. In this paper, we mainly explore the function and mechanism of SENP1 in tumor cell proliferation, apoptosis, invasion, metastasis, stemness, angiogenesis, metabolism and drug resistance. Furthermore, the research progress of SENP1 inhibitors for cancer treatment is introduced. This study aims to provide theoretical references for cancer therapy by targeting SENP1.
Collapse
Affiliation(s)
- Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ruiqi Chen
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Department of Gastrointestinal Surgery, Guangxi Clinical Research Center for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Zheng X, Wang L, Zhang Z, Tang H. The emerging roles of SUMOylation in pulmonary diseases. Mol Med 2023; 29:119. [PMID: 37670258 PMCID: PMC10478458 DOI: 10.1186/s10020-023-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Small ubiquitin-like modifier mediated modification (SUMOylation) is a critical post-translational modification that has a broad spectrum of biological functions, including genome replication and repair, transcriptional regulation, protein stability, and cell cycle progression. Perturbation or deregulation of a SUMOylation and deSUMOylation status has emerged as a new pathophysiological feature of lung diseases. In this review, we highlighted the link between SUMO pathway and lung diseases, especially the sumoylated substrate such as C/EBPα in bronchopulmonary dysplasia (BDP), PPARγ in pneumonia, TFII-I in asthma, HDAC2 in chronic obstructive pulmonary disease (COPD), KLF15 in hypoxic pulmonary hypertension (HPH), SMAD3 in idiopathic pulmonary fibrosis (IPF), and YTHDF2 in cancer. By exploring the impact of SUMOylation in pulmonary diseases, we intend to shed light on its potential to inspire the development of innovative diagnostic and therapeutic strategies, holding promise for improving patient outcomes and overall respiratory health.
Collapse
Affiliation(s)
- Xuyang Zheng
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China.
| | - Lingqiao Wang
- Department of pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, P.R. China
| | - Zhen Zhang
- Department of Orthopedics Surgery, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, P.R. China
| | - Huifang Tang
- Department of Pharmacology, Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medicial Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Liu J, Li Y, Zhang G. SUMO specific peptidase 1 decreases after induction treatment, and its reduction predicts lower disease risk, better treatment response, longer survival of acute myeloid leukemia. Scand J Clin Lab Invest 2023; 83:283-289. [PMID: 37405376 DOI: 10.1080/00365513.2023.2175237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/28/2023] [Indexed: 07/06/2023]
Abstract
Small ubiquitin-related modifier-specific peptidase 1 (SENP1) takes part in the pathogenesis and progression of hematological malignancies, while its clinical role in acute myeloid leukemia (AML) is unclear. This study aimed to explore the potential of SENP1 to serve as a biomarker reflecting disease risk, treatment response, and survival of AML. A total of 110 AML patients, 30 disease controls (DCs), and 30 healthy controls (HCs) were included. SENP1 in bone marrow samples was detected by RT-qPCR. SENP1 was the top in AML patients (median (interquartile range (IQR)): 2.429 (1.854-3.772)), the second top in DCs (median (IQR): 1.587 (1.023-2.217)), and the lowest in HCs (median (IQR): 0.992 (0.806-1.702)) (p < 0.001). In AML patients, SENP1 was positively associated with white blood cells (rs = 0.210, p = 0.028) and bone marrow blasts (rs = 0.212, p = 0.026) but negatively linked to Inv(16) or t(16;16) presence (p = 0.040). Furthermore, SENP1 was decreased post-treatment vs. at baseline (before induction treatment) in total AML patients (p < 0.001), and in patients with CR (p < 0.001), but not in patients with non-CR (p = 0.055). Additionally, SENP1 at baseline slightly (p = 0.050) but SENP1 post-treatment dramatically (p < 0.001) decreased in patients with CR compared to those with non-CR. Notably, low SENP1 at baseline was related to prolonged EFS (p = 0.007) and OS (p = 0.039); meanwhile, declined SENP1 post-induction treatment showed a more predominant linkage with satisfied EFS (p < 0.001) and OS (p < 0.001). SENP1 is decreased after induction therapy, whose reduction is related to low disease risk, favorable treatment response, and prolonged survival of AML.
Collapse
Affiliation(s)
- Jieban Liu
- Department of Hematology, Xianyang Central Hospital, Xianyang, China
| | - Yue Li
- Department of Hematology, Xianyang Central Hospital, Xianyang, China
| | - Guangying Zhang
- Department of Hematology, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
5
|
Wei J, Wang H, Zheng Q, Zhang J, Chen Z, Wang J, Ouyang L, Wang Y. Recent research and development of inhibitors targeting sentrin-specific protease 1 for the treatment of cancers. Eur J Med Chem 2022; 241:114650. [PMID: 35939992 DOI: 10.1016/j.ejmech.2022.114650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), is a cysteine protease that promotes SUMO maturation and deSUMOylation of target proteins and regulates transcription factors or co-regulatory factors to mediate gene transcription. Many studies have shown that SENP1 is the driving factor for a multitude of cancers including prostate cancer, liver cancer, and breast cancer. Inhibition of SENP1 activity has been proved to inhibit the survival, proliferation, invasion, and migration of cancer cells, and increase their chemical and radiation sensitivity. Therefore, SENP1 is a promising anti-tumor target. At present, peptide inhibitors of SENP1 have entered clinical trials. Recently, many small molecule compounds and natural products were synthesized and identified as SENP1 inhibitors, and showed good tumor inhibitory activity in vitro and in vivo. This review summarizes the structure, physiological function, and role of SENP1 in tumorigenesis and development, focusing on the design and discovery of small molecule inhibitors of SENP1 from the perspective of medicinal chemistry, providing ideas for the development and research of small molecule inhibitors of SENP1 in the future.
Collapse
Affiliation(s)
- Junxia Wei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinwen Zheng
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Zhichao Chen
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Yang Q, Yang M, Zhang J, Ma Y. SENP1 Aberrance and Its Linkage to Clinical Features, Adjuvant Regimen, and Prognosis in Patients With Surgical Non-small Cell Lung Cancer Receiving Adjuvant Chemotherapy. Front Surg 2022; 8:771785. [PMID: 35782332 PMCID: PMC9247181 DOI: 10.3389/fsurg.2021.771785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background Small ubiquitin-like modifier-specific protease 1 (SENP1) plays vital roles in cancer progression and chemoresistance, but its prognostic value in non-small cell lung cancer (NSCLC) is vague. This study aimed to explore the correlation of SENP1 with clinical features, adjuvant chemotherapy regimen, and prognosis in patients with surgical NSCLC receiving adjuvant chemotherapy. Methods Tumor and adjacent tissues were collected from 157 patients with surgical NSCLC receiving adjuvant chemotherapy. Meanwhile, tumor tissue and paired adjacent tissue specimens were obtained to evaluate SENP1 protein expression by immunohistochemistry (IHC) assay; among which, 102 pairs were used to detect SENP1 messenger RNA (mRNA) by reverse transcription quantitative PCR. Results SENP1 IHC score and SENP1 mRNA expression were increased in tumor tissue than adjacent tissue (p < 0.001). Besides, elevated SENP1 IHC score was correlated with > 5 cm tumor size (p = 0.045), lymph node metastasis occurrence (p = 0.003), and advanced tumor-node-metastasis (TNM) stage (p = 0.012); meanwhile, increased SENP1 mRNA expression was associated with histopathological subtype (p = 0.011), lymph node metastasis occurrence (p = 0.008), and higher TNM stage (p = 0.015). Besides, no correlation was found in SENP1 IHC score (p = 0.424) or mRNA expression (p = 0.927) with specific adjuvant chemotherapy regimen. Additionally, both the SENP1 protein (high) (p = 0.003) and mRNA high (p = 0.028) were correlated with poor disease-free survival (DFS), while SENP1 protein high was also associated with shorter overall survival (OS) (p = 0.029). Furthermore, SENP1 protein (high vs. low) was independently associated with unsatisfying DFS [p = 0.009, hazard ratio (HR) = 1.798] and OS (p = 0.049, HR = 1.735). Conclusion SENP1 may serve as a potential biomarker to improve the management of patients with surgical NSCLC receiving adjuvant chemotherapy.
Collapse
|
7
|
Sheng H, Hao Z, Zhu L, Zeng Y, He J. Construction and validation of a two-gene signature based on SUMOylation regulatory genes in non-small cell lung cancer patients. BMC Cancer 2022; 22:572. [PMID: 35606717 PMCID: PMC9125860 DOI: 10.1186/s12885-022-09575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Post-translational modification plays an important role in the occurrence and development of various tumors. However, few researches were focusing on the SUMOylation regulatory genes as tumor biomarkers to predict the survival for specific patients. Here, we constructed and validated a two-gene signature to predict the overall survival (OS) of non-small cell lung cancer (NSCLC) patients. METHODS The datasets analyzed in this study were downloaded from TCGA and GEO databases. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the two-gene signature. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) was used to identify hub pathways associated with risk genes. The CCK-8 assay, cell cycle analysis, and transwell assay was used to validate the function of risk genes in NSCLC cell lines. RESULTS Firstly, most of the SUMOylation regulatory genes were highly expressed in various tumors through the R package 'limma' in the TCGA database. Secondly, our study found that the two gene signature constructed by LASSO regression analysis, as an independent prognostic factor, could predict the OS in both the TCGA training cohort and GEO validation cohorts (GSE68465, GSE37745, and GSE30219). Furthermore, functional enrichment analysis suggests that high-risk patients defined by the risk score system were associated with the malignant phenomenon, such as DNA replication, cell cycle regulation, p53 signaling pathway. Finally, the results of the CCK-8 assay, cell cycle analysis, and transwell assay demonstrated that the two risk genes, SAE1 and UBA2, could promote proliferation and migration in non-small cell lung cancer cells. CONCLUSIONS The two-gene signature constructed in our study could predict the OS and may provide valuable clinical guidance for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Hongxu Sheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yuan Zeng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, China National Center for Respiratory Medicine, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
8
|
Gao C, Xiao F, Zhang L, Sun Y, Wang L, Liu X, Sun H, Xie Z, Liang Y, Xu Q, Wang L. SENP1 inhibition suppresses the growth of lung cancer cells through activation of A20-mediated ferroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:224. [PMID: 35280420 PMCID: PMC8908163 DOI: 10.21037/atm-21-6909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Background Ferroptosis is a type of cell death driven by iron accumulation and lipid peroxidation, which is involved in the pathogenesis of various tumors. Small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) is a critical SUMO-specific protease, which controls multiple cellular signaling processes. However, the roles and mechanisms of SENP1-mediated protein SUMOylation in the regulation of cell death and ferroptosis remain unexplored. Methods The gene expression of SENP1 and ferroptosis-related genes in samples of lung cancer patient and cells were determined by immunohistochemical staining, real-time polymerase chain reaction (RT-qPCR) and Western blot. The association of gene expression with the survival rate of lung cancer patients was analyzed from public database. The erastin and cisplatin was used to induce ferroptosis, and cell ferroptosis were determined by evaluated lipid-reactive oxygen species (ROS), cell viability and electron microscopy. The protein interaction was determined by immunoprecipitation (IP) and shotgun proteomics analysis. An in vivo tumor transplantation model of immunodeficient mice was used to evaluate the effect of SENP1 on tumor growth in vivo. Results SENP1 is aberrantly overexpressed in lung cancer cells and is associated with the low survival rate of patients. SENP1 inhibition by short hairpin RNA transduction or a specific inhibitor suppressed the proliferation and growth of lung cancer cells both in vitro and in vivo. SENP1 overexpression protected lung cancer cells from ferroptosis induced by erastin or cisplatin. Transcriptome and proteomics profiles revealed the involvement of SUMOylation regulation of the inflammation signal A20 in SENP1 inhibition-induced ferroptosis. Functional studies proved that A20 functions as a positive inducer and enhances the ferroptosis of A549 cells. A20 was shown to interact with ACSL4 and SLC7A11 to regulate the ferroptosis of lung cancer cells. Conclusions SENP1 was identified as a suppressor of ferroptosis through a novel network of A20 SUMOylation links ACSL4 and SLC7A11 in lung cancer cells. SENP1 inhibition promotes ferroptosis and apoptosis and represents a novel therapeutic target for lung cancer therapy.
Collapse
Affiliation(s)
- Chuancheng Gao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Sun
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Xiang Liu
- Department of Emergency, Qinghai Provincial People's Hospital, Xining, China
| | - Huiyan Sun
- Medical Research Institute, Hebei Yanda Hospital, Langfang, China
| | - Zhidan Xie
- Department of Medical Oncology, School of Medicine, Qinghai University, Xining, China
| | - Yaqi Liang
- Department of Medical Oncology, School of Medicine, Qinghai University, Xining, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
9
|
Zhu S, Hu J, Cui Y, Liang S, Gao X, Zhang J, Jia W. Knockdown of SENP1 inhibits HIF-1α SUMOylation and suppresses oncogenic CCNE1 in Wilms tumor. Mol Ther Oncolytics 2021; 23:355-366. [PMID: 34820505 PMCID: PMC8581455 DOI: 10.1016/j.omto.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Based on our initial bioinformatics finding of the upregulated expression of sentrin-specific protease 1 (SENP1) and cyclin E1 (CCNE1) in Wilms tumor, this study aimed to illustrate the molecular mechanism of SENP1 in Wilms tumor, which involved the hypoxia-inducible factor 1α (HIF-1α)/stanniocalcin-1 (STC1)/CCNE1 axis. Wilms tumor and adjacent normal tissues were clinically collected. Gain- and loss-of-function assays were performed to evaluate the effects of the regulatory axis on malignant phenotypes of Wilms tumor cells. A mouse model of Wilms tumor xenografts was further established for in vivo substantiation. Overexpression of CCNE1 and SENP1 occurred in Wilms tumor tissues and cells. Silencing SENP1 inhibited viability and enhanced cell-cycle arrest of Wilms tumor cells. SENP1 promoted STC1 expression and upregulated CCNE1 by driving the small ubiquitin-like modifier (SUMO)ylation of HIF-1α, which ultimately promoted the malignant phenotypes of Wilms tumor cells. It was further confirmed that silencing SENP1 downregulated the expression of CCNE1 and restricted tumorigenicity of Wilms tumor cells in vivo. Taken together, SENP1 elevated STC1 expression by driving the SUMOylation of HIF-1α, thereby upregulating the expression of CCNE1 and ultimately promoting the development of Wilms tumor.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Jinhua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Yanhong Cui
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Shen Liang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Jin Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Guangzhou 510623, Guangdong Province, China
| |
Collapse
|
10
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
11
|
Chen MC, Nhan DC, Hsu CH, Wang TF, Li CC, Ho TJ, Mahalakshmi B, Chen MC, Yang LY, Huang CY. SENP1 participates in Irinotecan resistance in human colon cancer cells. J Cell Biochem 2021; 122:1277-1294. [PMID: 34037277 DOI: 10.1002/jcb.29946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/13/2021] [Indexed: 11/09/2022]
Abstract
Colorectal cancer is one of the most prevalent cancers in the world. Chemoresistance has always been a problem encountered in its treatment. It is known that SUMOylation may regulate protein stability and decomposition, and even affect the protein translocation and posttranslational modification in cells. Sentrin-specific protease 1 (SENP1) is involved in the maturation of SUMO protein, and on the other hand, plays a role in deSUMOylation, which dissociates the target protein from SUMO and prevents further degradation of the target protein. In this study, we established an Irinotecan (CPT-11) resistant human colon cancer LoVo strain (LoVoR-CPT-11 ) to investigate the role of SENP1 in the development of drug resistance in colorectal cancer. The abundant accumulation of SENP1 and HIF-1α proteins and the increase of SUMO pathway enzymes were observed in LoVoR-CPT-11 cells while the protein markers of proliferation, angiogenesis, and glycolysis were upregulated. Knockdown of SENP1 reduced the migration ability and trigged re-sensitivity of LoVoR-CPT-11 cells to CPT-11 treatment. The analysis of SENP1 and HIF-1α gene expressions from TCGA/GTEx datasets using the GEPIA web server showed a positive correlation between SENP1 and HIF-1α in colorectal cancer patients and the high expression of these two genes might predict a poor outcome clinically. In conclusion, SENP1 might play an important role in CPT-11 resistance in colorectal cancer. Targeting SENP1 to reduce the resistant property could be considered in prospective clinical studies.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Do Chi Nhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Oncology I Department, Oncology Center, Bai Chay Hospital, Quảng Ninh, Vietnam
| | - Chiung-Hung Hsu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Hematology and Oncology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Immunotherapy, Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Science, Holistic Education Center, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Zhou M, Bian Z, Liu B, Zhang Y, Cao Y, Cui K, Sun S, Li J, Zhang J, Wang X, Li C, Yao S, Yin Y, Fei B, Huang Z. Long noncoding RNA MCM3AP-AS1 enhances cell proliferation and metastasis in colorectal cancer by regulating miR-193a-5p/SENP1. Cancer Med 2021; 10:2470-2481. [PMID: 33686713 PMCID: PMC7982620 DOI: 10.1002/cam4.3830] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulating evidences have shown that long noncoding RNAs (lncRNAs) play key roles in many diseases, including cancer. Several studies reported that MCM3AP antisense RNA 1 (MCM3AP-AS1) was associated with the tumorigenesis and progression. However, the specific function and mechanism of MCM3AP-AS1 in colorectal cancer (CRC) have not been fully understood. METHODS The expression of MCM3AP-AS1 was detected by quantitative reverse transcription PCR (RT-qPCR) in CRC tissues and matched noncancerous tissues (NCTs). CCK-8 assay, colony formation assay, transwell assay, xenograft and lung metastasis mouse models were used to examine the tumor-promoting function of MCM3AP-AS1 in vitro and in vivo. The binding relationship between MCM3AP-AS1, miR-193a-5p and sentrin-specific peptidase 1 (SENP1) were screened and identified by databases, RT-qPCR, dual luciferase reporter assay and western blot. RESULTS In the present study, we got that the expression of MCM3AP-AS1 was higher in CRC tissues than in paired NCTs, and increased MCM3AP-AS1 expression was associated with adverse outcomes in CRC patients. Functional experiments in vitro revealed that silencing of MCM3AP-AS1 could inhibit the proliferation, colony formation, migratory, and invasive abilities of CRC cells. The mouse models of xenograft and lung metastasis further confirmed that in vivo silencing MCM3AP-AS1 could significantly inhibit the growth and metastasis of CRC. Further mechanism studies indicated that MCM3AP-AS1 could sponge miR-193a-5p and inhibit the activity of it. What is more, SENP1 was proved to be a novel target of miR-193a-5p and could be upregulated by MCM3AP-AS1. At last, we observed that SENP1 overexpression in CRC tissues was closely related to unfavorable prognosis. CONCLUSION Taken together, we identified in CRC the MCM3AP-AS1/miR-193a-5p/SENP1 regulatory axis, which affords a therapeutic possibility for CRC.
Collapse
Affiliation(s)
- Mingyue Zhou
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Bingxin Liu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Yi Zhang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yulin Cao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Jiuming Li
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Jia Zhang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Xue Wang
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Chaoqun Li
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Surui Yao
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Yuan Yin
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| | - Bojian Fei
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxi, JiangsuChina
- Cancer Epigenetics ProgramWuxi School of MedicineJiangnan UniversityWuxi, JiangsuChina
| |
Collapse
|
13
|
Wang L, Wu J, Song S, Chen H, Hu Y, Xu B, Liu J. Plasma Exosome-Derived Sentrin SUMO-Specific Protease 1: A Prognostic Biomarker in Patients With Osteosarcoma. Front Oncol 2021; 11:625109. [PMID: 33791211 PMCID: PMC8006461 DOI: 10.3389/fonc.2021.625109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The exosomes contain many important proteins that can be used for early tumor diagnosis or patient prognosis analysis. In this study, we investigated plasma exosome-derived sentrin SUMO-specific protease 1 (SENP1) levels as a prognostic biomarker in patients with osteosarcoma. METHODS The expression of SENP1 protein in osteosarcoma tissues and adjacent tissues was detected by immunohistochemistry (IHC). The exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ELISA was used to detect plasma exosome-derived SENP1 levels to assess prognosis in patients with osteosarcoma. RESULTS IHC showed that the positive expression rate of SENP1 in osteosarcoma tissues was 88.33%, whereas that in adjacent tissues was 46.67% (P < 0.05). Plasma exosome-derived SENP1 levels were related to tumor size, tumor location, necrosis rate, pulmonary metastasis, and surgical stage. Both disease-free survival (DFS) and overall survival (OS) were worse in patients who had higher plasma exosome-derived SENP1 levels compared with those in patients with lower plasma exosome-derived SENP1 levels (P < 0.001). The area under the receiver operating characteristic curve (AUROC) of plasma exosome-derived SENP1, as 1-year DFS and 3-year DFS prognostic biomarkers, was 0.90 (95% CI: 0.83-0.98) and 0.96 (95% CI: 0.94-0.99), respectively. As to OS, the AUROC of plasma exosome-derived SENP1 for 1-year and 3-year prediction was 0.90 (95% CI: 0.82-0.99) and 0.96 (0.93-0.98), respectively. The plasma exosome-derived SENP1 was better than plasma SENP1 as a prognostic biomarker both in DFS and OS. CONCLUSIONS Our findings show that the plasma exosome-derived SENP1 may serve as a novel and independent prognostic predictor in clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haining Chen
- Department of Orthopedics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Hu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Buwei Xu
- Department of Orthopedics, The Third People’s Hospital of Yancheng City, Yancheng, China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
14
|
Wang Y, Xu S, Chen Y, Zheng X, Li T, Guo J. Identification of hsa_circ_0005654 as a new early biomarker of gastric cancer. Cancer Biomark 2020; 26:403-410. [PMID: 31640088 DOI: 10.3233/cbm-190561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer is one of the most common cancers in the world. However, current medical technologies have not identified a reliable method to cure advanced gastric cancer, and early gastric cancer is difficult to diagnose. Therefore, we focused on circular RNAs (circRNAs) that have been proven to be involved in the carcinogenesis of gastric cancer. We first used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to evaluate the expression levels of hsa_circ_0005654 in 301 tissues, including 122 healthy gastric mucosa samples, 68 paired tissues from early gastric cancer and adjacent nontumor mucosae obtained by submucosal dissection, and 43 chronic gastritis tissues. Then, we analyzed the relationship between the expression levels of hsa_circ_0005654 and the clinicopathological characteristics of patients with early gastric cancer. We ultimately confirmed the clinical diagnostic value of hsa_circ_0005654 through generating receiver operating characteristic (ROC) curves and comparing the areas under the ROC curves (AUCs).Our data revealed that hsa_circ_0005654 was significantly downregulated in early gastric cancer tissues compared with matched normal mucosae (P< 0.001). Meanwhile, the expression levels of hsa_circ_0005654 in early gastric cancer tissues were also obviously lower than those in chronic gastritis tissues (P< 0.001). The AUCs of early gastric cancer tissues vs. paired normal adjacent mucosae, and that of early gastric cancer vs. healthy controls, were 0.927 and 0.924, respectively. These results clearly demonstrated that hsa_circ_0005654 may serve as a new and promising diagnostic biomarker for screening early gastric cancer. The AUC, sensitivity and specificity of hsa_circ_0005654 are significantly higher than those of present gastric cancer associated-biomarkers.
Collapse
|
15
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Liu K, Zhang J, Wang H. Small ubiquitin-like modifier/sentrin-specific peptidase 1 associates with chemotherapy and is a risk factor for poor prognosis of non-small cell lung cancer. J Clin Lab Anal 2018; 32:e22611. [PMID: 30043429 DOI: 10.1002/jcla.22611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND SUMO/sentrin-specific peptidase 1 (SENP1) was associated with radioresistance of cancer cells and was upregulated in non-small cell lung cancer (NSCLC). This study was to investigate the association of SENP1 with resistance of NSCLC tumor to chemoradiotherapy. METHODS Sentrin-specific peptidase 1 expression profile was detected using the immunohistochemistry and quantitative real-time PCR (qRT-PCR) analyses. The relative expression level of SENP1 mRNA was detected using qRT-PCR. The response to chemoradiotherapy was evaluated according to the Response Evaluation Criteria in Solid Tumors. RESULTS AND CONCLUSION When compared with adjacent non-tumor tissues, the overexpression of SENP1 mRNA and protein in NSCLC tumor tissues was determined using qRT-PCR and immunochemistry. Based on the chemoradiotherapy response rate, we found that NSCLC patients with higher SENP1 expression showed lower rates of complete response and higher partial and non-response rate to chemoradiotherapy. In the overall survival analysis, we found patients with high SENP1 expression showed significant shorter survival time compared with those with low SENP1 expression. In the multivariate Cox regression model, we found SENP1 overexpression, TNM stage, and lymph metastasis were independent risk factors for poor prognosis of NSCLC. SENP1 overexpression contributed to chemoradiotherapy resistance of NSCLC. The overexpression of SENP1 could be used as a risk factor for the poor prognosis of NSCLC.
Collapse
Affiliation(s)
- Keyuan Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Jing Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| | - Hao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou City, Zhejiang Province, China
| |
Collapse
|