1
|
Liu ZH, Shi JJ, Zhang M, Dang SS. Advances in application of serum biomarkers for screening and early diagnosis of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2025; 33:251-260. [DOI: 10.11569/wcjd.v33.i4.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/28/2025] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major global health challenge, with early detection through surveillance of high-risk populations remaining critical for improving clinical outcomes. Serum biomarkers play a crucial role in the early detection of HCC. Currently, commonly used serological markers for HCC include alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, and the Lens culinaris agglutinin-reactive fraction of AFP. Other potential biomarkers under investigation include glypican-3, osteopontin, alpha-L-fucosidase, Dickkopf-1, heat shock protein 90α, and Golgi protein 73. With the advancement of liquid biopsy technologies, novel markers such as circulating tumor DNA, circulating tumor cells, microRNAs, and long non-coding RNAs have emerged as promising tools for early screening and diagnosis of HCC. This review aims to summarize the research progress and clinical applications of these biomarkers related to liver cancer, providing scientific evidence to enhance early diagnosis rates, improve prognosis, and ultimately reduce HCC-related mortality.
Collapse
Affiliation(s)
- Zi-Han Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| | - Juan-Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| | - Meng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71004, Shaanxi Province, China
| |
Collapse
|
2
|
Liu ZH, Shi JJ, Zhang M, Dang SS. Advances in application of serum biomarkers for screening and early diagnosis of hepatocellular carcinoma. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2025; 33:251-260. [DOI: https:/dx.doi.org/10.11569/wcjd.v33.i4.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
3
|
Li K, Mathew B, Saldanha E, Ghosh P, Krainer AR, Dasarathy S, Huang H, Xiang X, Mishra L. New insights into biomarkers and risk stratification to predict hepatocellular cancer. Mol Med 2025; 31:152. [PMID: 40269686 PMCID: PMC12020275 DOI: 10.1186/s10020-025-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
Collapse
Affiliation(s)
- Katrina Li
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Brandon Mathew
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Ethan Saldanha
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Puja Ghosh
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Hai Huang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Department of Medicine, Division of Gastroenterology and Hepatology, Northwell Health, NY, 11030, USA.
- Department of Surgery, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
4
|
Fares S, Wehrle CJ, Hong H, Sun K, Jiao C, Zhang M, Gross A, Allkushi E, Uysal M, Kamath S, Ma WW, Modaresi Esfeh J, Linganna MW, Khalil M, Pita A, Kim J, Walsh RM, Miller C, Hashimoto K, Schlegel A, Kwon DCH, Aucejo F. Emerging and Clinically Accepted Biomarkers for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1453. [PMID: 38672535 PMCID: PMC11047909 DOI: 10.3390/cancers16081453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and the sixth most diagnosed malignancy worldwide. Serum alpha-fetoprotein (AFP) is the traditional, ubiquitous biomarker for HCC. However, there has been an increasing call for the use of multiple biomarkers to optimize care for these patients. AFP, AFP-L3, and prothrombin induced by vitamin K absence II (DCP) have described clinical utility for HCC, but unfortunately, they also have well established and significant limitations. Circulating tumor DNA (ctDNA), genomic glycosylation, and even totally non-invasive salivary metabolomics and/or micro-RNAS demonstrate great promise for early detection and long-term surveillance, but still require large-scale prospective validation to definitively validate their clinical validity. This review aims to provide an update on clinically available and emerging biomarkers for HCC, focusing on their respective clinical strengths and weaknesses.
Collapse
Affiliation(s)
- Sami Fares
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Chase J. Wehrle
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Hanna Hong
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Keyue Sun
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Chunbao Jiao
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Mingyi Zhang
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Abby Gross
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Erlind Allkushi
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Melis Uysal
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Suneel Kamath
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.K.); (W.W.M.)
| | - Wen Wee Ma
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.K.); (W.W.M.)
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (J.M.E.); (M.W.L.)
| | - Maureen Whitsett Linganna
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (J.M.E.); (M.W.L.)
| | - Mazhar Khalil
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Alejandro Pita
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Jaekeun Kim
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - R. Matthew Walsh
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Charles Miller
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Koji Hashimoto
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Andrea Schlegel
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - David Choon Hyuck Kwon
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| | - Federico Aucejo
- Department of Hepato-Pancreato-Biliary & Liver Transplant Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.F.); (H.H.); (K.S.); (C.J.); (M.Z.); (A.G.); (E.A.); (M.U.); (M.K.); (A.P.); (J.K.); (R.M.W.); (K.H.); (A.S.); (D.C.H.K.)
| |
Collapse
|
5
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
6
|
Youssef E, El-Khouly N, Elzahrani YA, Tash RME, Khalifa EA, Bayoumy ESM, Khalil M, Edreis AE, Mohamed FS, Abdou AE, Seliem N, Sofy M, Fakhrelden S, Marmoush SMH, Elmohaseb GF, Elhosary AA. TGF-1 mRNA, AFP-L3, and Annexin II in the Early and Late Detection of Hepatocellular Carcinoma: The Diagnostic Value. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND: Alpha-fetoprotein (AFP) is the recommended screening biomarker for hepatocellular carcinoma (HCC), despite its drawbacks: AFP-negative HCC, poor specificity, and sensitivity. As a result, new HCC-sensitive and specific biomarkers are urgently needed.
AIM: This study aimed to determine the diagnostic value of transforming growth factor (TGF)-β1 mRNA and Annexin II in the early detection and follow-up of HCC.
PATIENT AND METHODS: This research involved 75 HCC patients (30 early and 45 late) and 75 liver cirrhosis (LC) patients (all patients have HCV), and 75 healthy individuals as controls. Reverse transcription polymerase chain reaction measured TGF-β1 mRNA. Enzyme-linked immunosorbent assay ELISA measured Annexin II, AFP-L3, and AFP.
RESULTS: Annexin II was a biomarker with a significant difference between the LC and early HCC groups. TGF-β1 mRNA showed a significant difference when the LC group was compared to the control group and the late HCC group.
CONCLUSION: Annexin II has better sensitivity and specificity for early HCC detection than AFP, and TGF-β1 mRNA can be used for the assessment of the degree of HCC, and TGF-1 signaling inhibitors may be a possible new treatment choice for HCC.
Collapse
|
7
|
Lin N, Lin Y, Xu J, Liu D, Li D, Meng H, Gallant MA, Kubota N, Roy D, Li JS, Gorospe EC, Sherman M, Gish RG, Abou-Alfa GK, Nguyen MH, Taggart DJ, Van Etten RA, Hoshida Y, Li W. A multi-analyte cell-free DNA-based blood test for early detection of hepatocellular carcinoma. Hepatol Commun 2022; 6:1753-1763. [PMID: 35244350 PMCID: PMC9234637 DOI: 10.1002/hep4.1918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
The limited performance of guideline-recommended abdominal ultrasound and serum alpha-fetoprotein (AFP) highlights the urgent, unmet need for new biomarkers for more accurate detection of early hepatocellular carcinoma (HCC). To this end, we have conducted a prospective clinical validation study to evaluate the performance of the HelioLiver Test, a multi-analyte blood test combining cell-free DNA methylation patterns, clinical variables, and protein tumor markers. A blinded, multicenter validation study was performed with 247 subjects, including 122 subjects with HCC and 125 control subjects with chronic liver disease. The performance of the HelioLiver Test was compared with AFP and the GALAD score as established HCC surveillance blood tests. The performance of the HelioLiver Test (area under the receiver operating characteristic curve [AUROC] = 0.944) was superior to both AFP (AUROC = 0.851; p < 0.0001) and GALAD (AUROC = 0.899; p < 0.0001). Using a prespecified diagnostic algorithm, the HelioLiver Test showed sensitivities of 85% (95% confidence interval [CI], 78%-90%) for HCC of any stage and 76% (95% CI, 60%-87%) for early stage (American Joint Committee on Cancer [AJCC] I and II) HCC. In contrast, AFP (≥20 ng/mL) alone and the GALAD score (≥-0.63) showed lower sensitivities of 62% (95% CI, 54%-70%) and 75% (95% CI, 67%-82%) for HCC overall, and 57% (95% CI, 40%-71%) and 65% (95% CI, 49%-79%) for early stage (AJCC I and II) HCC, respectively. The specificities of the HelioLiver Test (91%; 95% CI, 85%-95%), AFP (97%; 95% CI, 92%-99%), and the GALAD score (94%; 95% CI, 88%-97%) were similar for control subjects. The HelioLiver Test showed superior performance for HCC detection compared to with both AFP and the GALAD score and warrants further evaluation in HCC surveillance settings.
Collapse
Affiliation(s)
- Nan Lin
- The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Yongping Lin
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Dan Liu
- Laboratory for Advanced Medicine, Inc.BeijingChina
| | - Diange Li
- Guangzhou Youze Biological Pharmaceutical Technology Company LtdGuangzhouGuangdong ProvinceChina
| | - Hongyu Meng
- The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | | | - Naoto Kubota
- Department of Internal MedicineSimmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | | | - Jason S Li
- Division of Computational BiomedicineDepartment of Biological ChemistrySchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | | | | | | | | | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology and Department of Epidemiology and Population HealthStanford University Medical CenterStanfordCaliforniaUSA
| | | | - Richard A Van Etten
- Department of MedicineChao Family Comprehensive Cancer CenterUniversity of CaliforniaIrvineCaliforniaUSA
| | - Yujin Hoshida
- Department of Internal MedicineSimmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Wei Li
- Division of Computational BiomedicineDepartment of Biological ChemistrySchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
8
|
Cao L, Guo Y, Chen Y, Hong J, Wu J, Hangbiao J. Per-/polyfluoroalkyl substance concentrations in human serum and their associations with liver cancer. CHEMOSPHERE 2022; 296:134083. [PMID: 35216980 DOI: 10.1016/j.chemosphere.2022.134083] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs) are widespread in global human blood, and have some toxic effects on liver. However, effects of PFAS exposure on human liver cancer (LC) risk are still not known. In this study, 203 LC patients and 203 controls were recruited, and their serum samples were collected between 2019 and 2021. We determined the residues of 12 PFASs in serum from all participants and quantified their association with LC incidence and tumor markers. PFOS (9.8 ng/mL) had the highest mean concentration in human serum, followed by PFOA (8.3 ng/mL) and 6:2 Cl-PFESA (3.9 ng/mL). We found that concentrations of PFOS and 6:2 Cl-PFESA in human serum were significantly correlated with the levels of alpha fetoprotein (AFP) (βPFOS = 0.13, 95% confidence interval (CIPFOS): 0.088, 0.17; β6:2 Cl-PFESA = 0.070, CI6:2 Cl-PFESA: 0.036, 0.10). A positive association of PFOS and 6:2 Cl-PFESA with odds ratios (OR) of LC (ORPFOS = 0.609, CIPFOS: 1.179, 4.029, P = 0.001; OR6:2 Cl-PFESA = 1.844, CI6:2 Cl-PFESA: 1.176, 2.512, P = 0.02) were found, after adjusting for different covariates. Moreover, serum PFOA concentrations were associated with carcinoembryonic antigen (CEA), but their correlation with the LC incidence was not statistically significant. This new finding supports the evidence for the positive associations among PFAS exposure, change of specific tumor marker, and LC risks.
Collapse
Affiliation(s)
- Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China
| | - Yu Guo
- Focused Photonics (Hangzhou) Inc., Hangzhou, Zhejiang, 311000, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China.
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
9
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Philips CA, Rajesh S, Nair DC, Ahamed R, Abduljaleel JK, Augustine P. Hepatocellular Carcinoma in 2021: An Exhaustive Update. Cureus 2021; 13:e19274. [PMID: 34754704 PMCID: PMC8569837 DOI: 10.7759/cureus.19274] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is a challenging global health concern with an estimated more than a million persons to be affected annually by the year 2025. The commonest type is hepatocellular carcinoma (HCC), which has been increasing in incidence the world over, mostly due to chronic viral hepatitis B infection. In the last decade, paradigm changes in the etiology, understanding of molecular biology, and pathogenesis, including the role of gut microbiota; medical and surgical treatments, and outcome trends are notable. The application of omics-based technology has helped us unlock the molecular and immune landscape of HCC, through which novel targets for drug treatment such as immune-checkpoint inhibitors have been identified. Novel tools for the surveillance and diagnosis of HCC include protein-, genomics-, and composite algorithm-based clinical/biomarker panels. Magnetic resonance imaging-based novel techniques have improved HCC diagnosis through ancillary features that enhance classical criteria while positron emission tomography has shown value in prognostication. Identification of the role of gut microbiota in the causation and progression of HCC has opened areas for novel therapeutic research. A select group of patients still benefit from modified surgical and early interventional radiology treatments. Improvements in radiotherapy protocols, identification of parameters of futility among radiological interventions, and the emergence of novel first-line systemic therapies that include a combination of antiangiogenic and immune-checkpoint inhibitors have seen a paradigm change in progression-free and overall survival. The current review is aimed at providing exhaustive updates on the etiology, molecular biology, biomarker diagnosis, imaging, and recommended treatment options in patients with HCC.
Collapse
Affiliation(s)
- Cyriac A Philips
- Clinical and Translational Hepatology, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| | - Sasidharan Rajesh
- Interventional Hepatobiliary Radiology, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| | - Dinu C Nair
- Interventional Hepatobiliary Radiology, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| | - Rizwan Ahamed
- Gastroenterology and Advanced Gastrointestinal (GI) Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| | - Jinsha K Abduljaleel
- Gastroenterology and Advanced Gastrointestinal (GI) Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| | - Philip Augustine
- Gastroenterology and Advanced Gastrointestinal (GI) Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, IND
| |
Collapse
|
11
|
Adeniji N, Dhanasekaran R. Current and Emerging Tools for Hepatocellular Carcinoma Surveillance. Hepatol Commun 2021; 5:1972-1986. [PMID: 34533885 PMCID: PMC8631096 DOI: 10.1002/hep4.1823] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer‐related mortality worldwide. Early detection of HCC enables patients to avail curative therapies that can improve patient survival. Current international guidelines advocate for the enrollment of patients at high risk for HCC, like those with cirrhosis, in surveillance programs that perform ultrasound every 6 months. In recent years, many studies have further characterized the utility of established screening strategies and have introduced new promising tools for HCC surveillance. In this review, we provide an overview of the most promising new imaging modalities and biomarkers for the detection of HCC. We discuss the role of imaging tools like ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) in the early detection of HCC, and describe recent innovations which can potentially enhance their applicability, including contrast enhanced ultrasound, low‐dose CT scans, and abbreviated MRI. Next, we outline the data supporting the use of three circulating biomarkers (i.e., alpha‐fetoprotein [AFP], AFP lens culinaris agglutinin‐reactive fraction, and des‐gamma‐carboxy prothrombin) in HCC surveillance, and expand on multiple emerging liquid biopsy biomarkers, including methylated cell‐free DNA (cfDNA), cfDNA mutations, extracellular vesicles, and circulating tumor cells. These promising new imaging modalities and biomarkers have the potential to improve early detection, and thus improve survival, in patients with HCC.
Collapse
Affiliation(s)
- Nia Adeniji
- Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
12
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
13
|
Tao R, Zhang C, Liu M, Yang M, Gao W, Chen J, Mo N, Cheng Y, He J, Xie Q. Research and discussion on the evaluation scheme of reagent lot-to-lot differences in 16 chemiluminescence analytes, established by the EP26-A guidelines of the CLSI. J Clin Lab Anal 2020; 35:e23675. [PMID: 33274497 PMCID: PMC7957972 DOI: 10.1002/jcla.23675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background Verification of new reagent lots is a part of the crucial tasks in clinical laboratories. The Clinical and Laboratory Standards Institute (CLSI) EP26‐A guideline provides laboratories with an evaluation method for reagent verification. The purpose of this study was to compare the performance of EP26‐A with our laboratory reagent lot verification protocol and get the final scheme. Method 16 chemiluminescence analytes including estradiol (E2), progesterone (P), ferritin (FER), cortisol (COR),carbohydrate antigen 153 (CA153), and free prostate‐specific antigen (FPSA). were prospectively evaluated in two reagent lots. The laboratory's lot verification process included evaluating 5 patient samples with the current and new lots and acceptability according to a predefined criteria. For EP26‐A, method imprecision data and critical differences at medical decision points were important factors affecting the sample size requirements and rejection limits. Result The number of samples required for EP26‐A was 3 to 12, of which P, CA153, and FPSA had increased by more than 5 samples compared with the current protocol. Of the 16 chemiluminescence analytes, 11 had higher rejection limits when using EP26‐A than the current laboratory scheme. Our current protocol and EP26‐A were in agreement in 32 of the 32 (100%) paired verifications. Conclusion The EP26‐A protocol is an important tool to find the differences between reagent lots, and it makes up for the loopholes in the statistical efficiency, sample concentration and quantity, and the selection of rejection limits in the current protocol.
Collapse
Affiliation(s)
- Ran Tao
- Laboratory Diagnosis Department, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Clinical laboratory medicine, Guangzhou Medical University, Guangzhou, China
| | - Chenli Zhang
- Laboratory Diagnosis Department, Taiyuan Kingmed Center for Clinical Laboratory, Taiyuan, China
| | - Min Liu
- Laboratory Diagnosis Department, Taiyuan Kingmed Center for Clinical Laboratory, Taiyuan, China
| | - Miao Yang
- Laboratory Diagnosis Department, Taiyuan Kingmed Center for Clinical Laboratory, Taiyuan, China
| | - Wenying Gao
- Laboratory Diagnosis Department, Taiyuan Kingmed Center for Clinical Laboratory, Taiyuan, China
| | - Jianbo Chen
- Laboratory Diagnosis Department, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Clinical laboratory medicine, Guangzhou Medical University, Guangzhou, China
| | - Nanxun Mo
- Laboratory Diagnosis Department, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Clinical laboratory medicine, Guangzhou Medical University, Guangzhou, China
| | - Yating Cheng
- Laboratory Diagnosis Department, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Clinical laboratory medicine, Guangzhou Medical University, Guangzhou, China
| | - Jun He
- Laboratory Diagnosis Department, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China.,Clinical laboratory medicine, Guangzhou Medical University, Guangzhou, China
| | - Qin Xie
- Laboratory Diagnosis Department, Changsha Kingmed Center for Clinical Laboratory, Changsha, China
| |
Collapse
|
14
|
Chen S, Li J, Tan X, Xu Q, Mo Y, Qin H, Zhou L, Ma L, Wei Z. Clinical role of combining alpha-fetoprotein and lens culinaris agglutinin-reactive fraction of alpha-fetoprotein for hepatocellular carcinoma: Evidence from literature and an original study. J Clin Lab Anal 2020; 34:e23262. [PMID: 32167614 PMCID: PMC7370718 DOI: 10.1002/jcla.23262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background To evaluate the clinical diagnostic efficacy of the combination of alpha‐fetoprotein (AFP) and lens culinaris agglutinin‐reactive fraction of AFP/total AFP (AFP‐L3%) for detecting hepatocellular carcinoma (HCC). Methods A comprehensive and systemic literature search was executed in Web of Science, PubMed, and the Cochrane Library websites. Then, the related articles were reviewed and the quality of included studies was evaluated with the QUADAS tool. Further, serum samples were collected from 49 HCC patients, 52 cirrhosis patients, 47 hepatitis patients, and 48 healthy controls and these samples were tested for AFP and AFP‐L3% levels. Results A total of 16 eligible articles were included in our meta‐analysis. The overall sensitivity (SEN) of AFP + AFP‐L3% was higher than that of AFP or AFP‐L3 alone; the overall specificity (SPE) of AFP + AFP‐L3% was lower than that of AFP or AFP‐L3 alone. In the original study, the related statistics were, respectively, SEN = 0.592 and SPE = 0.918 for AFP; SEN = 0.367 and SPE = 1.000 for AFP‐L3%; and SEN = 0.592 and SPE = 0.918 for the combination. Conclusion The results of meta‐analysis indicate there is a beneficial effect of using the unity of AFP and AFP‐L3% for HCC diagnosing. However, in the original study, just for the results of sensitivity and specificity, there is no significant difference between AFP alone and AFP + AFP‐L3%.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junhong Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Tan
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi Xu
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuncong Mo
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongyan Qin
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lili Zhou
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingxiu Ma
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|