1
|
O’Halloran K, Hakimjavadi H, Bootwalla M, Ostrow D, Kerawala R, Cotter JA, Yellapantula V, Kaneva K, Wadhwani NR, Treece A, Foreman NK, Alexandrescu S, Vega JV, Biegel JA, Gai X. Pediatric Chordoma: A Tale of Two Genomes. Mol Cancer Res 2024; 22:721-729. [PMID: 38691518 PMCID: PMC11296893 DOI: 10.1158/1541-7786.mcr-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Department of Hematology, Oncology and Blood & Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Moiz Bootwalla
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Rhea Kerawala
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A. Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Amy Treece
- Division of Pathology, Children’s Hospital Colorado, Denver, CO, USA
| | - Nicholas K. Foreman
- Division of Hematology, Oncology, Children’s Hospital Colorado, Denver, CO, USA
| | | | | | - Jaclyn A. Biegel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Li X, He SG, Li WR, Luo LY, Yan Z, Mo DX, Wan X, Lv FH, Yang J, Xu YX, Deng J, Zhu QH, Xie XL, Xu SS, Liu CX, Peng XR, Han B, Li ZH, Chen L, Han JL, Ding XZ, Dingkao R, Chu YF, Wu JY, Wang LM, Zhou P, Liu MJ, Li MH. Genomic analyses of wild argali, domestic sheep, and their hybrids provide insights into chromosome evolution, phenotypic variation, and germplasm innovation. Genome Res 2022; 32:1669-1684. [PMID: 35948368 PMCID: PMC9528982 DOI: 10.1101/gr.276769.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - San-Gang He
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Wen-Rong Li
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ze Yan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dong-Xin Mo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xing Wan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ji Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ya-Xi Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juan Deng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang-Hui Zhu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Song-Song Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Chen-Xi Liu
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Xin-Rong Peng
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Bin Han
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Zhong-Hui Li
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Lei Chen
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | - Xue-Zhi Ding
- MOA Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture (MOA), Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Renqing Dingkao
- Institute of Animal Science and Veterinary Medicine, Gannan Tibetan Autonomous Prefecture, Hezuo, 747000, China
| | - Yue-Feng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jin-Yan Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Li-Min Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Ming-Jun Liu
- MOA Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture (MOA); Key Laboratory of Animal Technology of Xinjiang, Xinjiang Academy of Animal Science, Urumqi, 830000, China
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|