1
|
Mattioda C, Voena C, Ciardelli G, Mattu C. In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Cells 2025; 14:38. [PMID: 39791739 PMCID: PMC11720277 DOI: 10.3390/cells14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment. The development of biomimetic, in vitro models may promote the investigation of the interactions between cancer cells and the tumor microenvironment and may help to better understand the mechanisms leading to drug resistance. Although advanced in vitro models have been largely explored in the field of solid tumors, due to the complex nature of the blood cancer tumor microenvironment, the mimicking of haematological malignancies mostly relies on simpler systems, often limited to two-dimensional cell culture, which intrinsically excludes the microenvironmental niche, or to ethically debated animal models. This review aims at reporting an updated overview of state-of-the-art hematological malignancies 3D in vitro models, emphasizing the key features and limitations of existing systems to inspire further research in this underexplored field.
Collapse
Affiliation(s)
- Carlotta Mattioda
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gianluca Ciardelli
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| | - Clara Mattu
- DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (C.M.); (G.C.)
| |
Collapse
|
2
|
van der Net A, Rahman Z, Bordoloi AD, Muntz I, ten Dijke P, Boukany PE, Koenderink GH. EMT-related cell-matrix interactions are linked to states of cell unjamming in cancer spheroid invasion. iScience 2024; 27:111424. [PMID: 39717087 PMCID: PMC11665421 DOI: 10.1016/j.isci.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels. Spheroids displayed solid-like (non-invasive) states in small-pore hydrogels and fluid-like (strand-based) or gas-like (disseminating cells) states in large-pore hydrogels or for mesenchymal-like cells. Our findings are consistent with different unjamming states as a function of cell motility and matrix confinement predicted in recent models for cancer invasion, but show that cell motility and matrix confinement are coupled via EMT-related matrix degradation.
Collapse
Affiliation(s)
- Anouk van der Net
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Zaid Rahman
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Ankur D. Bordoloi
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Iain Muntz
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Cell and Chemical Biology and Oncode Institute, Leiden 2333 ZC, the Netherlands
| | - Pouyan E. Boukany
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Gijsje H. Koenderink
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| |
Collapse
|
3
|
Zanotelli MR, Miller JP, Wang W, Ortiz I, Tahon E, Bordeleau F, Reinhart-King CA. Tension directs cancer cell migration over fiber alignment through energy minimization. Biomaterials 2024; 311:122682. [PMID: 38959532 DOI: 10.1016/j.biomaterials.2024.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Cell migration during many fundamental biological processes including metastasis requires cells to traverse tissue with heterogeneous mechanical cues that direct migration as well as determine force and energy requirements for motility. However, the influence of discrete structural and mechanical cues on migration remains challenging to determine as they are often coupled. Here, we decouple the pro-invasive cues of collagen fiber alignment and tension to study their individual impact on migration. When presented with both cues, cells preferentially travel in the axis of tension against fiber alignment. Computational and experimental data show applying tension perpendicular to alignment increases potential energy stored within collagen fibers, lowering requirements for cell-induced matrix deformation and energy usage during migration compared to motility in the direction of fiber alignment. Energy minimization directs migration trajectory, and tension can facilitate migration against fiber alignment. These findings provide a conceptual understanding of bioenergetics during migration through a fibrous matrix.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joseph P Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Elise Tahon
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, G1R 3S3, Canada; Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Université Laval, Québec, Canada, G1V 0A6.
| | | |
Collapse
|
4
|
Kang JH, Hong SW. Is autoimmunity associated with the development of premalignant oral conditions and the progression to oral squamous cell carcinoma?: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102139. [PMID: 39561876 DOI: 10.1016/j.jormas.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Oral potentially malignant disorders (OPMDs) are oral mucosal conditions that may progress to oral squamous cell carcinoma (OSCC). Although autoimmunity has linked to the malignant transformation potential of various precancerous conditions, its role in OPMD remains unclear. This review aimed to identify the role of systemic autoimmunity on OPMD development and their progression to OSCC. METHODS A comprehensive literature search was conducted using PubMed, Cochrane CENTRAL, and SCOPUS database for articles published up to January 2024. The key questions addressed by this review were "Is autoimmunity associated with the development of OPMD" and "How does systemic autoimmunity influence the potential for malignant transformation of OPMD?". This review followed the PRISMA guidelines for scoping reviews (PRISMA-ScR). RESULTS Of the 1265 articles initially identified, 21 fulfilled the search criteria. Three themes were emerged; 1) the prevalence and prognosis of oral cancers in patients with systemic autoimmune diseases, 2) circulating autoantibodies in OPMD patients, and 3) autoimmune-related markers linked to malignant transformation in OPMD patients. This review indicated that systemic autoimmunity may contribute to chronic inflammatory conditions, disruption of oral mucosal integrity, and interference with the DNA damage repair process, thus influencing malignant transformation in the oral epithelium of patients with OPMD. CONCLUSION The co-occurrence of OPMD with circulating autoantibodies or systemic autoimmune diseases underscores the importance of understanding these interactions for improved management of OPMD and early detection of OSCC.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Korea (ROK); Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Korea (ROK).
| | - Seok Woo Hong
- Department of Orthopedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Korea (ROK)
| |
Collapse
|
5
|
Shi H, Hao X, Sun Y, Zhao Y, Wang Y, Cao X, Gong Z, Ji S, Lu J, Yan Y, Yu X, Luo X, Wang J, Wang H. Exercise-inducible circulating extracellular vesicle irisin promotes browning and the thermogenic program in white adipose tissue. Acta Physiol (Oxf) 2024; 240:e14103. [PMID: 38288566 DOI: 10.1111/apha.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
AIM Exercise can reduce body weight and promote white fat browning, but the underlying mechanisms remain largely unknown. This study investigated the role of fibronectin type III domain-containing protein 5 (FNDC5)/Irisin, a hormone released from exercising muscle, in the browning of white fat in circulating extracellular vesicles (EVs). METHODS Mice were subjected to a 4 weeks of running table exercise, and fat browning was analyzed via histology, protein blotting and qPCR. Circulating EVs were extracted by ultrahigh-speed centrifugation, and ELISA was used to measure the irisin concentration in the circulating EVs. Circulating EVs that differentially expressed irisin were applied to adipocytes, and the effect of EV-irisin on adipocyte energy metabolism was analyzed by immunofluorescence, protein blotting, and cellular oxygen consumption rate analysis. RESULTS During sustained exercise, the mice lost weight and developed fat browning. FNDC5 was induced, cleaved, and secreted into irisin, and irisin levels subsequently increased in the plasma during exercise. Interestingly, irisin was highly expressed in circulating EVs that effectively promoted adipose browning. Mechanistically, the circulating EV-irisin complex is transported intracellularly by the adipocyte membrane receptor integrin αV, which in turn activates the AMPK signaling pathway, which is dependent on mitochondrial uncoupling protein 1 to cause mitochondrial plasmonic leakage and promote heat production. After inhibition of the AMPK signaling pathway, the effects of the EV-irisin on promoting fat browning were minimal. CONCLUSION Exercise leads to the accumulation of circulating EV-irisin, which enhances adipose energy metabolism and thermogenesis and promotes white fat browning in mice, leading to weight loss.
Collapse
Affiliation(s)
- Hongwei Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaojing Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yaqin Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yating Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yue Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaorui Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Zeen Gong
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Shusen Ji
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiuju Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, P.R. China
| |
Collapse
|
6
|
Conceição ALC, Müller V, Burandt EC, Mohme M, Nielsen LC, Liebi M, Haas S. Unveiling breast cancer metastasis through an advanced X-ray imaging approach. Sci Rep 2024; 14:1448. [PMID: 38228854 PMCID: PMC10791658 DOI: 10.1038/s41598-024-51945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Breast cancer is a significant global health burden, causing a substantial number of deaths. Systemic metastatic tumour cell dissemination is a major cause of poor outcomes. Understanding the mechanisms underlying metastasis is crucial for effective interventions. Changes in the extracellular matrix play a pivotal role in breast cancer metastasis. In this work, we present an advanced multimodal X-ray computed tomography, by combining Small-angle X-ray Scattering Tensor Tomography (SAXS-TT) and X-ray Fluorescence Computed Tomography (XRF-CT). This approach likely brings out valuable information about the breast cancer metastasis cascade. Initial results from its application on a breast cancer specimen reveal the collective influence of key molecules in the metastatic mechanism, identifying a strong correlation between zinc accumulation (associated with matrix metalloproteinases MMPs) and highly oriented collagen. MMPs trigger collagen alignment, facilitating breast cancer cell intravasation, while iron accumulation, linked to angiogenesis and vascular endothelial growth factor VEGF, supports cell proliferation and metastasis. Therefore, these findings highlight the potential of the advanced multimodal X-ray computed tomography approach and pave the way for in-depth investigation of breast cancer metastasis, which may guide the development of novel therapeutic approaches and enable personalised treatment strategies, ultimately improving patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Andre L C Conceição
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eike-Christian Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sylvio Haas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| |
Collapse
|
7
|
Joselevitch JA, Vargas THM, Pulz LH, Cadrobbi KG, Huete GC, Nishiya AT, Kleeb SR, Xavier JG, Strefezzi RDF. High lysyl oxidase expression is an indicator of poor prognosis in dogs with cutaneous mast cell tumours. Vet Comp Oncol 2023; 21:401-405. [PMID: 37186079 DOI: 10.1111/vco.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Mast cell tumour (MCT) is one of the most frequent skin tumours in dogs. Due to their unpredictable biological behaviour, MCTs often cause several therapeutic frustrations, leading to investigation regarding prognostic markers. Lysyl oxidase (LOX) is an enzyme that promotes extracellular matrix stability and contributes to cell migration, angiogenesis and epithelial-mesenchymal transition. Its expression positively correlates with poor prognoses in several human and canine mammary cancers. The aim of this study was to characterise the immunohistochemical expression of LOX in MCT samples and compare it with histological grading and post-surgical survival. Twenty-six tumours were submitted to immunohistochemistry for LOX expression evaluation. All samples were positive for LOX, with variable percentages of cytoplasmic and nuclear positivity. Cytoplasmic positivity was significantly higher in high-grade MCTs (P = .0297). Our results indicate that high expression of cytoplasmic LOX in neoplastic mast cells is an indicator of poor prognosis for canine cutaneous MCTs.
Collapse
Affiliation(s)
- Julia Antongiovanni Joselevitch
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Henrique Moroni Vargas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Lidia Hildebrand Pulz
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Karine Germano Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | - Greice Cestari Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | | | - Silvia Regina Kleeb
- Universidade Anhembi Morumbi, São Paulo, Brazil
- Universidade Metodista de São Paulo, São Bernardo do Campo, Brazil
| | | | - Ricardo De Francisco Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
8
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
9
|
Uribe Castaño L, Mirsanaye K, Kontenis L, Krouglov S, Žurauskas E, Navab R, Yasufuku K, Tsao MS, Akens MK, Wilson BC, Barzda V. Wide-field Stokes polarimetric microscopy for second harmonic generation imaging. JOURNAL OF BIOPHOTONICS 2023; 16:e202200284. [PMID: 36651498 DOI: 10.1002/jbio.202200284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 05/17/2023]
Abstract
We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 μm × 700 μm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.
Collapse
Affiliation(s)
- Leonardo Uribe Castaño
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Kamdin Mirsanaye
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Lukas Kontenis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Light Conversion, Vilnius, Lithuania
| | - Serguei Krouglov
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Edvardas Žurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Vilnius, Lithuania
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Margarete K Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
11
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
12
|
Bray J, Eward W, Breen M. Evaluating the relevance of surgical margins. Part one: The problems with current methodology. Vet Comp Oncol 2023; 21:1-11. [PMID: 36308442 DOI: 10.1111/vco.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
The goal of cancer surgery is to achieve a "clean" microscopic resection, with no residual tumour remaining in the wound. To achieve that goal, the surgeon typically incorporates a measured buffer of grossly normal tissue about the entire circumference of the tumour. Microscopic analysis of the resection boundaries is then performed to determine if all traces of the tumour have been completely removed. This analysis is thought to provide a surrogate indication as to the likelihood for that tumour to recur after surgery. However, it is recognised that tumour recurrence may not occur even when microscopic evidence of tumour has been identified at the resection margins, and recurrence can also occur when conventional histology has considered the tumour to have been completely removed. The explanations for this dichotomy are numerous and include technical and practical limitations of the processing methodology, and also several surgeon-related and tumour-related reasons. Ultimately, the inability to confidently determine when a tumour has been removed sufficiently to prevent recurrence can impact on the ability to provide owners with confident treatment advice. In this article, the authors describe the challenges with defining the true extent of the tumour margin from the perspective of the surgeon, the pathologist and the tumour. The authors also provide an analysis of why our current efforts to ensure that all traces of the local tumour have been successfully removed may provide an imperfect assessment of the risk of recurrence.
Collapse
Affiliation(s)
| | - Will Eward
- Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Tischenko K, Brill-Karniely Y, Steinberg E, Segev-Yekutiel H, Benny O. Surface physical cues mediate the uptake of foreign particles by cancer cells. APL Bioeng 2023; 7:016113. [PMID: 36960390 PMCID: PMC10030191 DOI: 10.1063/5.0138245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Cancer phenotypes are often associated with changes in the mechanical states of cells and their microenvironments. Numerous studies have established correlations between cancer cell malignancy and cell deformability at the single-cell level. The mechanical deformation of cells is required for the internalization of large colloidal particles. Compared to normal epithelial cells, cancer cells show higher capacities to distort their shapes during the engulfment of external particles, thus performing phagocytic-like processes more efficiently. This link between cell deformability and particle uptake suggests that the cell's adherence state may affect this particle uptake, as cells become stiffer when plated on a more rigid substrate and vice versa. Based on this, we hypothesized that cancer cells of the same origin, which are subjected to external mechanical cues through attachment to surfaces with varying rigidities, may express different capacities to uptake foreign particles. The effects of substrate rigidity on cancer cell uptake of inert particles (0.8 and 2.4 μm) were examined using surfaces with physiologically relevant rigidities (from 0.5 to 64 kPa). Our data demonstrate a wave-like ("meandering") dependence of cell uptake on the rigidity of the culture substrate explained by a superposition of opposing physical and biological effects. The uptake patterns were inversely correlated with the expression of phosphorylated paxillin, indicating that the initial passive particle absorbance is the primary limiting step toward complete uptake. Overall, our findings may provide a foundation for mechanical rationalization of particle uptake design.
Collapse
Affiliation(s)
- Katerina Tischenko
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Yifat Brill-Karniely
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Eliana Steinberg
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Hadas Segev-Yekutiel
- The Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| |
Collapse
|
14
|
Deng X, Wang Y, Jiang L, Li J, Chen Q. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol 2023; 13:1023213. [PMID: 36700192 PMCID: PMC9870618 DOI: 10.3389/fimmu.2022.1023213] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic immune inflammatory disease that is an oral potentially malignant disorder (OPMD), occurs in the oral mucosa and affects approximately 0.5% to 4% of the general population. There are usually five types of OLP: reticular/papular, plaque-like, atrophic/erythematous, erosive/ulcerative, and bullous. Furthermore, the chance of causing oral squamous cell carcinoma (OSCC) is 1.4%. Although the etiology of OLP is still unknown, accumulating evidence supports that immune dysregulation may play a vital role in the pathogenesis of OLP, especially the massive production of various inflammatory cells and inflammatory mediators. In this review, we focus on the relationship between OLP and its immune microenvironment. We summarize current developments in the immunology of OLP, summarizing functional cell types and crucial cytokines in the OLP immune microenvironment and the underlying mechanisms of key signaling pathways in the OLP immune microenvironment. We highlight the application potential of targeted immune microenvironment therapy for OLP.
Collapse
Affiliation(s)
| | | | - Lu Jiang
- *Correspondence: Jing Li, ; Lu Jiang,
| | - Jing Li
- *Correspondence: Jing Li, ; Lu Jiang,
| | | |
Collapse
|
15
|
Nie S, Huili Y, He Y, Hu J, Kang S, Cao F. Identification of Bladder Cancer Subtypes Based on Necroptosis-Related Genes, Construction of a Prognostic Model. Front Surg 2022; 9:860857. [PMID: 35478725 PMCID: PMC9035642 DOI: 10.3389/fsurg.2022.860857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundNecroptosis is associated with the development of many tumors but in bladder cancer the tumor microenvironment (TME) and prognosis associated with necroptosis is unclear.MethodsWe classified patients into different necroptosis subtypes by the expression level of NRGS (necroptosis-related genes) and analyzed the relationship between necroptosis subtypes of bladder cancer and TME, then extracted differentially expressed genes (DEGS) of necroptosis subtypes, classified patients into different gene subtypes according to DEGS, and performed univariate COX analysis on DEGS to obtain prognosis-related DEGS. All patients included in the analysis were randomized into the Train and Test groups in a 1:1 ratio, and the prognostic model was obtained using the LASSO algorithm and multivariate COX analysis with the Train group as the sample, and external validation of the model was conducted using the GSE32894.ResultsTwo necroptosis subtypes and three gene subtypes were obtained by clustering analysis and the prognosis-related DEGS was subjected to the LASSO algorithm and multivariate COX analysis to determine six predictors to construct the prognostic model using the formula: riskScore = CERCAM × 0.0035 + POLR1H × −0.0294 + KCNJ15 × −0.0172 + GSDMB × −0.0109 + EHBP1 × 0.0295 + TRIM38 × −0.0300. The results of the survival curve, roc curve, and risk curve proved the reliability of the prognostic model by validating the model with the test group and the results of the calibration chart of the Nomogram applicable to the clinic also showed its good accuracy. Necroptosis subtype A with high immune infiltration had a higher risk score than necroptosis subtype B, gene subtype B with low immune infiltration had a lower risk score than gene subtypes A and C, CSC index was negatively correlated with the risk score and drug sensitivity prediction showed that commonly used chemotherapeutic agents were highly sensitive to the high-risk group.ConclusionOur analysis of NRGS in bladder cancer reveals their potential role in TME, immunity, and prognosis. These findings may improve our understanding of necroptosis in bladder cancer and provide some reference for predicting prognosis and developing immunotherapies.
Collapse
Affiliation(s)
- Shiwen Nie
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Youlong Huili
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yadong He
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Junchao Hu
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Fenghong Cao
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
- *Correspondence: Fenghong Cao
| |
Collapse
|
16
|
Chen GT, Tifrea DF, Murad R, Habowski AN, Lyou Y, Duong MR, Hosohama L, Mortazavi A, Edwards RA, Waterman ML. Disruption of beta-catenin dependent Wnt signaling in colon cancer cells remodels the microenvironment to promote tumor invasion. Mol Cancer Res 2021; 20:468-484. [PMID: 34799404 DOI: 10.1158/1541-7786.mcr-21-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/29/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
The recent classification of colon cancer into molecular subtypes revealed that patients with the poorest prognosis harbor tumors with the lowest levels of Wnt signaling. This is contrary to the general understanding that overactive Wnt signaling promotes tumor progression from early initiation stages through to the later stages including invasion and metastasis. Here, we directly test this assumption by reducing the activity of ß-catenin-dependent Wnt signaling in colon cancer cell lines at either an upstream or downstream step in the pathway. We determine that Wnt-reduced cancer cells exhibit a more aggressive disease phenotype, including increased mobility in vitro and disruptive invasion into mucosa and smooth muscle in an orthotopic mouse model. RNA sequencing reveals that interference with Wnt signaling leads to an upregulation of gene programs that favor cell migration and invasion and a downregulation of inflammation signatures in the tumor microenvironment. We identify a set of upregulated genes common among the Wnt perturbations that are predictive of poor patient outcomes in early-invasive colon cancer. Our findings suggest that while targeting Wnt signaling may reduce tumor burden, an inadvertent side effect is the emergence of invasive cancer. Implications: Decreased Wnt signaling in colon tumors leads to a more aggressive disease phenotype due to an upregulation of gene programs favoring cell migration in the tumor and downregulation of inflammation programs in the tumor microenvironment; these impacts must be carefully considered in developing Wnt-targeting therapies.
Collapse
Affiliation(s)
- George T Chen
- Microbiology & Molecular Genetics, University of California, Irvine
| | | | - Rabi Murad
- Developmental and Cell Biology, University of California, Irvine
| | - Amber N Habowski
- Microbiology & Molecular Genetics, University of California, Irvine
| | - Yung Lyou
- Microbiology and Molecular Genetics, University of California, Irvine
| | | | - Linzi Hosohama
- Microbiology & Molecular Genetics, University of California, Irvine
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine
| | | | - Marian L Waterman
- Microbiology and Molecular Genetics, University of California, Irvine
| |
Collapse
|
17
|
Farhat A, Ferns GA, Ashrafi K, Arjmand MH. Lysyl Oxidase Mechanisms to Mediate Gastrointestinal Cancer Progression. Gastrointest Tumors 2021; 8:33-40. [PMID: 34568293 DOI: 10.1159/000511244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023] Open
Abstract
Background Malignancy is a complex process resulting from different changes such as extracellular matrix (ECM) remodeling and stiffness. One of the important enzymes that contribute to ECM remodeling is lysyl oxidase (Lox) that is overexpressed in different types of human cancers. Because of the high prevalence and poor survival of gastrointestinal (GI) malignancies in this review, we discuss the association between Lox activity and the progression of GI cancers. Lox proteins are a group of extracellular enzymes that catalyzed the cross-linking of collagen and elastin, so they have important roles in the control of structure and homeostasis of ECM. Abnormal activation and expression of the Lox family of proteins lead to changes in the ECM toward increased rigidity and fibrosis. Stiffness of ECM can contribute to the pathogenesis of cancers. Summary Dysregulation of Lox expression is a factor in both fibrotic diseases and cancer. ECM stiffness by Lox overactivity creates a physical barrier against intratumoral concentration of chemotherapeutic drugs and facilitates cancer inflammation, angiogenesis, and metastasis. Key Message Because of the roles of Lox in GI cancers, development targeting Lox protein isotypes may be an appropriate strategy for treatment of GI cancers and improvement in survival of patients.
Collapse
Affiliation(s)
- Ahmadshah Farhat
- Neonatal Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Korosh Ashrafi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
18
|
Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A, Alfano M. Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol 2021; 4:1011. [PMID: 34446834 PMCID: PMC8390675 DOI: 10.1038/s42003-021-02539-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Valentina Murdica
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Filippo Pederzoli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bandini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
19
|
Kulkarni A, Ferreira T, Bretscher C, Grewenig A, El-Andaloussi N, Bonifati S, Marttila T, Palissot V, Hossain JA, Azuaje F, Miletic H, Ystaas LAR, Golebiewska A, Niclou SP, Roeth R, Niesler B, Weiss A, Brino L, Marchini A. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat Commun 2021; 12:3834. [PMID: 34158478 PMCID: PMC8219832 DOI: 10.1038/s41467-021-24034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.
Collapse
Affiliation(s)
- Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Annabel Grewenig
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Nazim El-Andaloussi
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Lonza Cologne GmbH, Köln, Germany
| | - Serena Bonifati
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Tiina Marttila
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Valérie Palissot
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jubayer A Hossain
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Genomics England, London, United Kingdom
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A R Ystaas
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ralf Roeth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Amélie Weiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
20
|
Dzobo K, Sinkala M. Cancer Stem Cell Marker CD44 Plays Multiple Key Roles in Human Cancers: Immune Suppression/Evasion, Drug Resistance, Epithelial-Mesenchymal Transition, and Metastasis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:313-332. [PMID: 33961518 DOI: 10.1089/omi.2021.0025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most frequently utilized cancer stem cell markers in human cancers, including colorectal cancer and breast cancer, is CD44. A glycoprotein, CD44, traverses the cell membrane and binds to many ligands, including hyaluronan, resulting in activation of signaling cascades. There are conflicting data, however, on expression of CD44 in relationship to subtypes of cancers. Moreover, the associations of CD44 expression with drug resistance, immune infiltration, epithelial-mesenchymal transition (EMT), metastasis, and clinical prognosis in several cancer types are not clear and call for further studies. We report here an original study on CD44 expression in several human cancers and its relationship with tumorigenesis. We harnessed data from the publicly available databases, including The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, Oncomine, Genomics of Drug Sensitivity in Cancer, and the Tumor Immune Estimation Resource. Our analysis reveals that CD44 expression varies across cancer types and is significantly associated with cancer patients' survival, in gastric and pancreatic cancers (p < 0.05). In addition, CD44 expression is closely linked with immune infiltration and immune suppressive features in pancreatic, colon adenocarcinoma, and stomach cancer. High CD44 expression was significantly correlated with the expression of drug resistance, EMT, and metastasis associated genes. Tumors expressing high CD44 have higher mutation burden and afflict older patients compared to tumors expressing low CD44. Cell lines expressing high CD44 are more resistant to anticancer drugs compared to those expressing low CD44. Protein-protein interaction investigations and functional enrichment analysis showed that CD44 interacts with gene products related to cell-substrate adhesion, migration, platelet activation, and cellular response to stress. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that these genes play key roles in biological adhesion, cell component organization, locomotion, G-α-signaling, and the response to stimulus. In summary, these findings lend evidence for the multiple key roles played by CD44 in tumorigenesis and suggest that CD44 is considered further in future studies of cancer pathogenesis and the search for novel molecular targets and personalized medicine biomarkers in clinical oncology.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Musalula Sinkala
- Division of Computational Biology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
21
|
Byrne CE, Decombe JB, Bingham GC, Remont J, Miller LG, Khalif L, King CT, Hamel K, Bunnell BA, Burow ME, Martin EC. Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling. Tissue Eng Part A 2021; 27:500-511. [PMID: 33797977 PMCID: PMC8349725 DOI: 10.1089/ten.tea.2020.0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 01/16/2023] Open
Abstract
The development of resistance to therapy is a significant obstacle to effective therapeutic regimens. Evaluating the effects of oncology drugs in the laboratory setting is limited by the lack of translational models that accurately recapitulate cell-microenvironment interactions present in tumors. Acquisition of resistance to therapy is facilitated, in part, by the composition of the tumor extracellular matrix (ECM), with the primary current in vitro model using collagen I (COL I). Here we seek to identify the prevalence of COL I-enhanced expression in the triple-negative breast cancer (TNBC) subtype. Furthermore, we identify if methods of response to therapy are altered depending on matrix composition. We demonstrated that collagen content varies in patient tumor samples across subtypes, with COL I expression dramatically increased in typically less aggressive estrogen receptor (ER)-positive(ER+)/progesterone receptor (PGR)-positive (PGR+) cancers irrespective of patient age or race. These findings are of significance considering how frequently COL I is implicated in tumor progression. In vitro analyses of ER+ and ER-negative (ER-) cell lines were used to determine the effects of ECM content (collagen I, collagen IV, fibronectin, and laminin) on proliferation, cellular phenotype, and survival. Neither ER+ nor ER- cells demonstrated significant increases in proliferation when cultured on these ECM substrates. ER- cells cultured on these substrates were sensitized to both chemotherapy and targeted therapy. In addition, MDA-MB-231 cells expressed different morphologies, binding affinities, and stiffness across these substrates. We also demonstrated that ECM composition significantly alters transcription of senescence-associated pathways across ER+ and ER- cell lines. Together, these results suggest that complex matrix composites should be incorporated into in vitro tumor models, especially for the drug-resistant TNBC subtype. Impact statement The importance of tumor extracellular matrix (ECM) in disease progression is often inadequately represented in models of breast cancer that rely heavily on collagen I and Matrigel. Through immunohistochemistry analysis of patient breast tumors, we show a wide variation in collagen content based on subtype, specifically a repression of fibril collagens in the receptor negative subtype, irrespective of age and race. We also demonstrated that tumor ECM composition alters cellular elasticity and oncogenic pathway activation demonstrating that physiologically relevant three-dimensional models of breast cancer should include an ECM that is subtype specific.
Collapse
Affiliation(s)
- Charles Ethan Byrne
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Grace C. Bingham
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jordan Remont
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lindsay G. Miller
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Layah Khalif
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Katie Hamel
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
22
|
Liu X, Hao Y, Popovtzer R, Feng L, Liu Z. Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Adv Healthc Mater 2021; 10:e2001167. [PMID: 32985139 DOI: 10.1002/adhm.202001167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Enzymes play pivotal roles in regulating and maintaining the normal functions of all living systems, and some of them are extensively employed for diagnosis and treatment of diverse diseases. More recently, several kinds of enzymes with unique catalytic activities have been found to be promising options to directly suppress tumor growth and/or augment the therapeutic efficacy of other treatments by modulating the hostile tumor microenvironment (TME), which is reported to negatively impair the therapeutic efficacy of different cancer treatments. In this review, first a summary is presented on the chemical approaches utilized for the construction of distinct enzyme nanoreactors with well-retained catalytic performance and reduced immunogenicity. Then, the utilization of such enzyme nanoreactors in attenuating tumor hypoxia, modulating extracellular matrix, and amplifying tumor oxidative stress is discussed in depth. Afterward, some perspectives are presented on the future development of such enzyme nanoreactors in TME modulation and enhanced cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Liu
- Clinical Translational Center for Targeted Drug Department of Pharmacology School of Medicine Jinan University Guangzhou Guangdong Province 510632 China
| | - Yu Hao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 52900 Israel
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
23
|
Merchant YP, Subash A, Shetty S, George A, Kudpaje A, Rao VU. A relook at how we assess tumor margins: Is it ‘TIME’ for new criteria? Oral Oncol 2020; 111:104980. [DOI: 10.1016/j.oraloncology.2020.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
|
24
|
Zaffar M, Pradhan A. Spatial autocorrelation analysis on two-dimensional images of Mueller matrix for diagnosis and differentiation of cervical precancer. JOURNAL OF BIOPHOTONICS 2020; 13:e202000006. [PMID: 32285604 DOI: 10.1002/jbio.202000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The spatial autocorrelation and correlation map of amplitude and phase anisotropy along with depolarization parameter from the stroma of uterine cervix utilizing their Mueller matrix (MM) images have been reported for early diagnosis of cervical cancer and differentiation of precancerous stages. The comparative results of the evaluation of the spatial autocorrelation over MM images of optically anisotropic collagen structures from normal and various grades of cervical precancer reflect significant alterations which are correlated with the pathological changes. The spatially varying polarizance from different region of anisotropic stromal region gets correlated within a given spatial lag during the precancerous changes. The diattenuation governing elements M12, M13 and M14 clearly discriminate normal and various grades of precancerous cervical tissue through their autocorrelation profile and correlation map. Evaluation of autocorrelation of spatially varying linear birefringence and linear-45 birefringence characterized by MM elements M34 and M43 and M24 and M42 are not found to differ between the precancer grades, indicating that these changes may be arising from highly directional collagen network while the changes displayed by MM elements M23 and M32 faithfully represent that the chirality of the stromal region is compromised as the cervical cancer evolves and only one type of nature dominates.
Collapse
Affiliation(s)
- Mohammad Zaffar
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, India
| | - Asima Pradhan
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, India
- Centre for Laser and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
25
|
Hu F, Zhou Y, Wang Q, Yang Z, Shi Y, Chi Q. Gene Expression Classification of Lung Adenocarcinoma into Molecular Subtypes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1187-1197. [PMID: 30892233 DOI: 10.1109/tcbb.2019.2905553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As one of the most common malignancies in the world, lung adenocarcinoma (LUAD) is currently difficult to cure. However, the advent of precision medicine provides an opportunity to improve the treatment of lung cancer. Subtyping lung cancer plays an important role in performing a specific treatment. Here, we developed a framework that combines k-means clustering, t-test, sensitivity analysis, self-organizing map (SOM) neural network, and hierarchical clustering methods to classify LUAD into four subtypes. We determined that 24 differentially expressed genes could be used as therapeutic targets, and five genes (i.e., RTKN2, ADAM6, SPINK1, COL3A1, and COL1A2) could be potential novel markers for LUAD. Multivariate analysis showed that the four subtypes could serve as prognostic subtypes. Representative genes of each subtype were also identified, which could be potentially targetable markers for the different subtypes. The function and pathway enrichment analyses of these representative genes showed that the four subtypes have different pathological mechanisms. Mutations associated with the subtypes, e.g., epidermal growth factor receptor (EGFR) mutations in subtype 4 and tumor protein p53 (TP53) mutations in subtypes 1 and 2, could serve as potential markers for drug development. The four subtypes provide a foundation for subtype-specific therapy of LUAD.
Collapse
|
26
|
Leask A. A centralized communication network: Recent insights into the role of the cancer associated fibroblast in the development of drug resistance in tumors. Semin Cell Dev Biol 2020; 101:111-114. [DOI: 10.1016/j.semcdb.2019.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
|
27
|
Golaraei A, Mostaço-Guidolin LB, Raja V, Navab R, Wang T, Sakashita S, Yasufuku K, Tsao MS, Wilson BC, Barzda V. Polarimetric second-harmonic generation microscopy of the hierarchical structure of collagen in stage I-III non-small cell lung carcinoma. BIOMEDICAL OPTICS EXPRESS 2020; 11:1851-1863. [PMID: 32341852 PMCID: PMC7173881 DOI: 10.1364/boe.387744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Vaishnavi Raja
- Department of Chemistry, University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, K7L 3N6, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Toronto General Hospital, University Health Network, 200 Elizabeth St, Toronto, M5G 2C4, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Department of Medical Biophysics, 101 College St, Toronto, M5G 1L7, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, 10223, Lithuania
| |
Collapse
|
28
|
Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct Target Ther 2020; 5:12. [PMID: 32296050 PMCID: PMC7005157 DOI: 10.1038/s41392-019-0104-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
Stage IV breast cancer, which has a high risk of invasion, often develops into metastases in distant organs, especially in the lung, and this could threaten the lives of women. Thus, the development of more advanced therapeutics that can efficiently target metastatic foci is crucial. In this study, we built an dual-acting therapeutic strategy using micelles with high stability functionalized with fibronectin-targeting CREKA peptides encapsulating two slightly soluble chemotherapy agents in water, doxorubicin (D) and vinorelbine (V), which we termed C-DVM. We found that small C-DVM micelles could efficiently codeliver drugs into 4T1 cells and disrupt microtubule structures. C-DVM also exhibited a powerful ability to eradicate and inhibit invasion of 4T1 cells. Moreover, an in vivo pharmacokinetics study showed that C-DVM increased the drug circulation half-life and led to increased enrichment of drugs in lung metastatic foci after 24 h. Moreover, dual-acting C-DVM treatment led to 90% inhibition of metastatic foci development and reduced invasion of metastases. C-DVM could potentially be used as a targeted treatment for metastasis and represents a new approach with higher therapeutic efficacy than conventional chemotherapy for stage IV breast cancer that could be used in the future.
Collapse
|
29
|
Lei Y, Goldblatt ZE, Billiar KL. Micromechanical Design Criteria for Tissue-Engineering Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Hu F, Zeng W, Liu X. A Gene Signature of Survival Prediction for Kidney Renal Cell Carcinoma by Multi-Omic Data Analysis. Int J Mol Sci 2019; 20:ijms20225720. [PMID: 31739630 PMCID: PMC6888680 DOI: 10.3390/ijms20225720] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kidney renal cell carcinoma (KIRC), which is the most common subtype of kidney cancer, has a poor prognosis and a high mortality rate. In this study, a multi-omics analysis is performed to build a multi-gene prognosis signature for KIRC. A combination of a DNA methylation analysis and a gene expression data analysis revealed 863 methylated differentially expressed genes (MDEGs). Seven MDEGs (BID, CCNF, DLX4, FAM72D, PYCR1, RUNX1, and TRIP13) were further screened using LASSO Cox regression and integrated into a prognostic risk score model. Then, KIRC patients were divided into high- and low-risk groups. A univariate cox regression analysis revealed a significant association between the high-risk group and a poor prognosis. The time-dependent receiver operating characteristic (ROC) curve shows that the risk group performs well in predicting overall survival. Furthermore, the risk group is contained in the best multivariate model that was obtained by a multivariate stepwise analysis, which further confirms that the risk group can be used as a potential prognostic biomarker. In addition, a nomogram was established for the best multivariate model and shown to perform well in predicting the survival of KIRC patients. In summary, a seven-MDEG signature is a powerful prognosis factor for KIRC patients and may provide useful suggestions for their personalized therapy.
Collapse
Affiliation(s)
- Fuyan Hu
- Department of Statistics, Faculty of Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China;
| | - Wenying Zeng
- Department of Water Resources and Hydro-elctricity Engineering, College of Water Resources and Architectural Engineering, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Xiaoping Liu
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
- Correspondence: ; Tel.: +86-631-5688523
| |
Collapse
|
31
|
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019; 10:787-807. [PMID: 31140150 PMCID: PMC6834755 DOI: 10.1007/s13238-019-0639-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and over-expressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptide-based therapeutics in the clinics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
32
|
Golaraei A, Kontenis L, Mirsanaye K, Krouglov S, Akens MK, Wilson BC, Barzda V. Complex Susceptibilities and Chiroptical Effects of Collagen Measured with Polarimetric Second-Harmonic Generation Microscopy. Sci Rep 2019; 9:12488. [PMID: 31462663 PMCID: PMC6713739 DOI: 10.1038/s41598-019-48636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Nonlinear optical properties of collagen type-I are investigated in thin tissue sections of pig tendon as a research model using a complete polarimetric second-harmonic generation (P-SHG) microscopy technique called double Stokes-Mueller polarimetry (DSMP). Three complex-valued molecular susceptibility tensor component ratios are extracted. A significant retardance is observed between the chiral susceptibility component and the achiral components, while the achiral components appear to be in phase with each other. The DSMP formalism and microscopy measurements are further used to explain and experimentally validate the conditions required for SHG circular dichroism (SHG-CD) of collagen to occur. The SHG-CD can be observed with the microscope when: (i) the chiral second-order susceptibility tensor component has a non-zero value, (ii) a phase retardance is present between the chiral and achiral components of the second-order susceptibility tensor and (iii) the collagen fibres are tilted out of the image plane. Both positive and negative areas of SHG-CD are observed in microscopy images, which relates to the anti-parallel arrangement of collagen fibres in different fascicles of the tendon. The theoretical formalism and experimental validation of DSMP imaging technique opens new opportunities for ultrastructural characterisation of chiral molecules, in particular collagen, and provides basis for the interpretation of SHG-CD signals. The nonlinear imaging of chiroptical parameters offers new possibilities to further improve the diagnostic sensitivity and/or specificity of nonlinear label-free histopathology.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Lukas Kontenis
- Light Conversion Ltd., LT-10223, Vilnius, Lithuania
- Vilnius University, Laser Research Centre, Faculty of Physics, Vilnius, 10223, Lithuania
| | - Kamdin Mirsanaye
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Serguei Krouglov
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Margarete K Akens
- Techna Institute, University Health Network, Toronto, M5G 1L5, Canada
- University of Toronto, Department of Surgery, Toronto, M5S 1A1, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
| | - Virginijus Barzda
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada.
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada.
- Vilnius University, Laser Research Centre, Faculty of Physics, Vilnius, 10223, Lithuania.
| |
Collapse
|
33
|
Ahn-Jarvis JH, Parihar A, Doseff AI. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants (Basel) 2019; 8:E202. [PMID: 31261915 PMCID: PMC6680729 DOI: 10.3390/antiox8070202] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Flavonoids, one of the most abundant phytochemicals in a diet rich in fruits and vegetables, have been recognized as possessing anti-proliferative, antioxidant, anti-inflammatory, and estrogenic activities. Numerous cellular and animal-based studies show that flavonoids can function as antioxidants by preventing DNA damage and scavenging reactive oxygen radicals, inhibiting formation of DNA adducts, enhancing DNA repair, interfering with chemical damage by induction of Phase II enzymes, and modifying signaling pathways. Recent evidence also shows their ability to regulate the immune system. However, findings from clinical trials have been mixed with no clear consensus on dose, frequency, or type of flavonoids best suited to elicit many of the beneficial effects. Delivery of these bioactive compounds to their biological targets through "targeted designed" food processing strategies is critical to reach effective concentration in vivo. Thus, the identification of novel approaches that optimize flavonoid bioavailability is essential for their successful clinical application. In this review, we discuss the relevance of increasing flavonoid bioavailability, by agricultural engineering and "targeted food design" in the context of the immune system and cancer.
Collapse
Affiliation(s)
| | - Arti Parihar
- Department of Science, Bellingham Technical College, WA, 98225, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, MI, 48864, USA.
| |
Collapse
|
34
|
Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed Pharmacother 2019; 114:108812. [PMID: 30965237 DOI: 10.1016/j.biopha.2019.108812] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
β-Elemene is a sesquiterpene compound extracted from the herb Curcuma Rhizoma and is used in traditional Chinese medicine (TCM) to treat several types of cancer, with no reported severe adverse effects. Recent studies, using in vitro and in vivo studies combined with molecular methods, have shown that β-elemene can inhibit cell proliferation, arrest the cell cycle, and induce cell apoptosis. Recent studies have identified the molecular targets of β-elemene that may have a role in cancer therapy. This review aims to discuss the anticancer potential of β-elemene through its actions on several molecular targets including kinase enzymes, transcription factors, growth factors and their receptors, and proteins. β-Elemene also regulates the expression of several key molecules that are involved in tumor angiogenesis and metastasis including vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), E-cadherin, N-cadherin, and vimentin. Also, β-elemene has been shown to have regulatory effects on the immune response and increases the sensitivity of cancer cells to chemoradiotherapy and has shown effects on multidrug resistance (MDR) in malignancy. Recent studies have shown that β-elemene can induce autophagy, which prevents cancer cells from undergoing apoptosis. Therefore, the molecular mechanisms for the treatment effects on cancer of the herbal extract, β-elemene, which has been used for centuries in traditional Chinese medicine, are now being studied and identified.
Collapse
|
35
|
Cox MC, Deng C, Naler LB, Lu C, Verbridge SS. Effects of culture condition on epigenomic profiles of brain tumor cells. ACS Biomater Sci Eng 2019; 5:1544-1552. [PMID: 31799379 PMCID: PMC6886720 DOI: 10.1021/acsbiomaterials.9b00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Personalized cancer medicine offers the promise of more effective treatments that are tailored to an individual's own dynamic cancer phenotype. Meanwhile, tissue-engineering approaches to modeling tumors may complement these advances by providing a powerful new approach to understanding the adaptation dynamics occurring during treatment. However, in both of these areas new tools will be required to gain a full picture of the genetic and epigenetic regulators of phenotype dynamics occurring in the small populations of cells that drive resistance. In this study, we perform epigenomic analysis of brain tumor cells that are collected from micro-engineered three-dimensional tumor models, overcoming the challenges associated with the small numbers of cells contained within these micro-tissue niches, in this case collecting ~1,000 cells per sample. Specifically, we use a high-resolution epigenomic analysis method known as microfluidic-oscillatory-washing-based chromatin immunoprecipitation with sequencing (MOWChIP-seq) to analyze histone methylation patterns (H3K4me3). We identified gene loci that are associated with the H3K4me3 modification, which is generally a mark of active transcription. We compared methylation patterns in standard 2D cultures and 3D cultures based on type I collagen hydrogels, under both normoxic and hypoxic conditions. We found that culture dimensionality drastically impacted the H3k4me3 profile and resulted in differential modifications in response to hypoxic stress. Differentially H3K4me3-marked regions under the culture conditions used in this study have important implications for gene expression differences that have been previously observed. In total, our work illustrates a direct connection between cell culture or tissue niche condition and genome-wide alterations in histone modifications, providing the first steps towards analyzing the spatiotemporal variations in epigenetic regulation of cancer cell phenotypes. This study, to our knowledge, also represents the first time broad-spectrum epigenomic analysis has been applied to small cell samples collected from engineered micro-tissues.
Collapse
Affiliation(s)
- Megan C. Cox
- School of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lynette B. Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Scott S. Verbridge
- School of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University
| |
Collapse
|
36
|
Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange K, Xia L, Sarkar K, Mallik S. Tissue-Penetrating, Hypoxia-Responsive Echogenic Polymersomes For Drug Delivery To Solid Tumors. Chemistry 2018; 24:12490-12494. [PMID: 29968262 DOI: 10.1002/chem.201802229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/22/2018] [Indexed: 01/02/2023]
Abstract
Hypoxia in solid tumors facilitates the progression of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anticancer drugs to solid tumors. The polymersomes are composed of a hypoxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In-vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.
Collapse
Affiliation(s)
- Prajakta Kulkarni
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Manas K Haldar
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Fataneh Karandish
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Matthew Confeld
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Rayat Hossain
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Pawel Borowicz
- Department of Animal and Range Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Kara Gange
- Department of Health, Exercise, and Nutrition Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| | - Lang Xia
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Kausik Sarkar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Sanku Mallik
- Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA
| |
Collapse
|
37
|
Sandri BJ, Kaplan A, Hodgson SW, Peterson M, Avdulov S, Higgins L, Markowski T, Yang P, Limper AH, Griffin TJ, Bitterman P, Lock EF, Wendt CH. Multi-omic molecular profiling of lung cancer in COPD. Eur Respir J 2018; 52:13993003.02665-2017. [PMID: 29794131 DOI: 10.1183/13993003.02665-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a known risk factor for developing lung cancer but the underlying mechanisms remain unknown. We hypothesise that the COPD stroma contains molecular mechanisms supporting tumourigenesis.We conducted an unbiased multi-omic analysis to identify gene expression patterns that distinguish COPD stroma in patients with or without lung cancer. We obtained lung tissue from patients with COPD and lung cancer (tumour and adjacent non-malignant tissue) and those with COPD without lung cancer for profiling of proteomic and mRNA (both cytoplasmic and polyribosomal). We used the Joint and Individual Variation Explained (JIVE) method to integrate and analyse across the three datasets.JIVE identified eight latent patterns that robustly distinguished and separated the three groups of tissue samples (tumour, adjacent and control). Predictive variables that associated with the tumour, compared to adjacent stroma, were mainly represented in the transcriptomic data, whereas predictive variables associated with adjacent tissue, compared to controls, were represented at the translatomic level. Pathway analysis revealed extracellular matrix and phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B signalling pathways as important signals in the tumour adjacent stroma.The multi-omic approach distinguishes tumour adjacent stroma in lung cancer and reveals two stromal expression patterns associated with cancer.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dept of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.,Both authors contributed equally
| | - Adam Kaplan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Both authors contributed equally
| | - Shane W Hodgson
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Mark Peterson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dept of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Svetlana Avdulov
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dept of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - LeeAnn Higgins
- Dept of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd Markowski
- Dept of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ping Yang
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy J Griffin
- Dept of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Peter Bitterman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dept of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Chris H Wendt
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dept of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.,Pulmonary, Allergy, Critical Care, and Sleep Medicine, Veterans Affairs Medical Center, Minneapolis, MN, USA
| |
Collapse
|
38
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, Guo Y, Wu M, Chen Y, Li W, Wang J, Du Y. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials 2018; 198:167-179. [PMID: 29807624 DOI: 10.1016/j.biomaterials.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Oncology drug development is greatly hampered by inefficient drug screening using 2D culture. Herein, we present ready-to-use micro-scaffolds in 384-well format to generate uniform 3D micro-tumor array (3D-MTA, CV < 0.15) that predicts in vivo drug responses more accurately than 2D monolayer. 3D-MTA generated from both cell lines and primary cells achieved high screen quality (Z' > 0.5), and were compatible with standard high throughput and high content instruments. Doxorubicin identified by 3D-MTA and 2D successfully inhibited tumor growth in mice bearing lung cancer cell line (H226) xenografts, but not gemcitabine and vinorelbine, which were selected solely by 2D. Resistance towards targeted therapy was modeled on 3D-MTA, which elicited SK-BR-3 to express higher proliferation-related genes in response to gefitinb, as compared to 2D. Screening of 56 MAPK inhibitors identified pisamertib to synergistically improve cytotoxicity effect in combination with gefitinib. Primary tumor cells derived from patient-derived xenografts further attested concordance of drug response in 3D-MTA with in vivo response. 3D-MTA was further extended to realize chemosensitivity testing using patient-derived cells. Overall, 3D-MTA demonstrated strong potential to accelerate drug discovery and improve cancer treatment by providing efficient drug screening.
Collapse
Affiliation(s)
- Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Lyu Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China; School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Xun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Yanan Guo
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Min Wu
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Yuyang Chen
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
40
|
Jeong YJ, Park SH, Mun SH, Kwak SG, Lee SJ, Oh HK. Association between lysyl oxidase and fibrotic focus in relation with inflammation in breast cancer. Oncol Lett 2017; 15:2431-2440. [PMID: 29434955 DOI: 10.3892/ol.2017.7617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/03/2017] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that lysyl oxidase (LOX) contributes to the formation of fibrotic focus (FF) in association with inflammation and serves a significant role in breast carcinogenesis. In the present study, the association between the expression of LOX family members and FF with regards to with inflammation was analyzed, and the prognostic significance of LOX and FF in breast cancer was investigated. Immunohistochemical staining for LOX, LOX-like protein (LOXL) 1, LOXL2 and LOXL3 was performed in primary breast cancer tissues. The status of FF within the tumor was assessed, including size and grade. Levels of inflammatory markers, intratumoral and peritumoral lymphocyte infiltration were also evaluated. The clinicopathological characteristics were evaluated from the medical records of patients. In the present study, the expression of LOX family members was not associated with the presence of FF. FF was identified to be associated with intratumoral and peritumoral inflammation, tumor stage, larger tumor size, lymph node metastasis, high histologic grade, and p53 expression. LOX and LOXL3 were associated with intratumoral, and peritumoral inflammation. Furthermore, LOXL1 was associated with intratumoral inflammation and interleukin-4. In addition, LOX was associated with cluster of differentiation 8+ T cells. LOXL3 was associated with expression of ER and PR, and molecular subtype. In the survival analysis, overall survival time was statistically significantly longer in the FF-negative compared with that in the FF-positive group. In conclusion, it was demonstrated that FF and the expression of LOX family members were associated with inflammation in breast cancer. FF was associated with poor prognostic markers of breast cancer. Further studies are required to clarify the mechanisms underlying the association between the LOX family, FF and inflammation in breast cancer.
Collapse
Affiliation(s)
- Young Ju Jeong
- Department of Surgery, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| | - Sung Hwan Park
- Department of Surgery, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| | - Sung Hee Mun
- Department of Radiology, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| | - Sun-Jae Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| | - Hoon Kyu Oh
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 705-718, Repulic of South Korea
| |
Collapse
|
41
|
Gao P, Li C, Chang Z, Wang X, Xuan M. Carcinoma associated fibroblasts derived from oral squamous cell carcinoma promote lymphangiogenesis via c-Met/PI3K/AKT in vitro. Oncol Lett 2017; 15:331-337. [PMID: 29375714 PMCID: PMC5766077 DOI: 10.3892/ol.2017.7301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/07/2017] [Indexed: 02/05/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are dominant components of the tumor microenvironment (TME) that promote the development, progression and metastasis of cancer. c-Met is a receptor of the hepatocyte growth factor (HGF), which is involved in lymphangiogenesis. Currently, the roles of CAFs during lymphangiogenesis are unknown. It has been hypothesized that CAFs contribute to lymphangiogenesis of oral squamous cell carcinoma (OSCC) via a HGF/c-Met complex. The expression of HGF in OSCC was determined using CAFs derived from OSCC tissue and it was demonstrated that HGF is overexpressed in OSCC-derived CAFs. It was also revealed that c-Met was highly expressed in human lymphatic endothelial cells (HLECs) when co-cultured with CAFs. Furthermore, it was demonstrated that recombinant human HGF significantly enhanced the proliferation, migration, invasion and tube formation of HLECs. By contrast, the inhibition of c-Met expression suppressed the aforementioned biological activities and also downregulated the expression of c-Met, phosphoinositide 3-kinase and phosphorylated protein kinase B. Taken together, these data demonstrate that c-Met is associated with the regulation of lymphangiogenesis. Thus, the results of the present study indicate that c-Met may be a promising novel therapeutic target to treat patients with OSCC.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zheng Chang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Xuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
42
|
Lv WQ, Peng J, Wang HC, Chen DP, Yang Y, Zhao Y, Qiu XY, Jiang JH, Li CY. Expression of cancer cell-derived IgG and extra domain A-containing fibronectin in salivary adenoid cystic carcinoma. Arch Oral Biol 2017; 81:15-20. [PMID: 28460248 DOI: 10.1016/j.archoralbio.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cancer-IgG is a newly-discovered molecule, mainly derived from epithelial carcinoma cells and is significantly correlated with differentiation, metastasis, local invasion, and poor prognosis of many cancers. In our previous study we detected IgG expression in oral epithelial carcinoma, including salivary adenoid cystic carcinoma (SACC), using an IgG-specific commercial antibody. Here, we explored the correlation between cancer-IgG and clinicopathological features of SACC. DESIGN A total of 68 human SACC tissue specimens and 2 siRNAs were used to analyze the correlation between cancer-IgG and extra domain A (EDA+)-containing fibronectin using the cancer-IgG-specific monoclonal antibody, RP215. RESULTS We found an unexpected correlation between cancer-IgG and EDA+ fibronectin, both of which showed aberrant expression in SACC tissue samples. Both were highly expressed in SACC with nerve invasion. In our previous study, EDA+ fibronectin overexpression in SACC cells decreased N-cadherin expression. In the present study, we used SACC-83 cells, wherein EDA+ fibronectin is overexpressed and cancer-IgG is knocked down. EDA+ fibronectin expression was reduced with cancer-IgG knockdown, while cancer-IgG expression did not affect EDA+ fibronectin overexpression. Furthermore, knockdown of non-B cell-derived IgG in SACC cells decreased cellular motility (P<0.05) as well as increased E-cadherin and alpha-smooth muscle actin levels. CONCLUSION The results suggest that cancer IgG potentially regulates EDA+ fibronectin expression, thereby suggesting possible new therapeutic approaches for SACC.
Collapse
Affiliation(s)
- Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China
| | - Jing Peng
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Hai-Cheng Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - De-Ping Chen
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Yue Yang
- Department of Dentistry Capital Medical University Xuanwu Hospital, 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yang Zhao
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Xiao-Yan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China.
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China.
| |
Collapse
|
43
|
Campbell KR, Campagnola PJ. Wavelength-Dependent Second Harmonic Generation Circular Dichroism for Differentiation of Col I and Col III Isoforms in Stromal Models of Ovarian Cancer Based on Intrinsic Chirality Differences. J Phys Chem B 2017; 121:1749-1757. [PMID: 28170263 DOI: 10.1021/acs.jpcb.6b06822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive remodeling of the extracellular matrix (ECM) occurs in many epithelial cancers. For example, in ovarian cancer, upregulation of collagen isoform type III has been linked to invasive forms of the disease, and this change may be a potential biomarker. To examine this possibility, we implemented wavelength-dependent second harmonic generation circular dichroism (SHG-CD) imaging microscopy to quantitatively determine changes in chirality in ECM models comprised of different Col I/Col III composition. In these models, Col III was varied between 0 and 40%, and we found increasing Col III results in reduced net chirality, consistent with structural biology studies of Col I and III in tissues where the isoforms comingle in the same fibrils. We further examined the wavelength dependence of the SHG-CD to both optimize the response and gain insight into the underlying mechanism. We found using shorter SHG excitation wavelengths resulted in increased SHG-CD sensitivity, where this is consistent with the electric-dipole-coupled oscillator model suggested previously for the nonlinear chirality response from thin films. Moreover, the sensitivity is further consistent with the wavelength dependency of SHG intensity fit to a two-state model of the two-photon absorption in collagen. We also provide experimental calibration protocols to implement the SHG-CD modality on a laser scanning microscope. We last suggest that the technique has broad applicability in probing a wide range of diseased states with changes in collagen molecular structure.
Collapse
Affiliation(s)
- Kirby R Campbell
- Department of Biomedical Engineering, University of Wisconsin-Madison , 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison , 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Wu H, Li J, Xu D, Jv D, Meng X, Qiao P, Cui T, Shi B. The 37-kDa laminin receptor precursor regulates the malignancy of human glioma cells. Cell Biochem Funct 2017; 34:516-521. [PMID: 27748570 DOI: 10.1002/cbf.3225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022]
Abstract
Glioma is one of the most common brain tumors and one of the most aggressive cancers. Although extensive progress has been made regarding to the diagnosis and treatment, the mortality in glioma patients is still high. Therefore, finding new therapeutic targets to the glioma is critical to the advancement in cancer treatment. Recently, the 37-kDa laminin receptor precursor (37LRP) was reported to play important roles in occurrence of some types of cancer, indicating that this molecule may function as a key regulator in the tumor migration and metastasis. However, there is still no report to elucidate the correlation between 37LRP expression and glioma genesis and development. In this study, we found the higher expression of 37LRP in the glioma cells compared with the normal brain cells. We also indicated that the downregulation of 37LRP could affect the glioma biomarker expression and also weaken the proliferative, migratory, and metastatic capacity of glioma cells in vitro. Furthermore, 37LRP silencing inhibited the glioma tumor growth in vivo. Collectively, these data demonstrated that 37LRP regulates the metastasis of glioma cells in vitro and tumor growth in vivo, suggesting that 37LRP may function as a potential molecular target in the glioma treatment.
Collapse
Affiliation(s)
- Hongjie Wu
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| | - Jing Li
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Dongxiao Xu
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Donghui Jv
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China, 150086
| | - Xiaofeng Meng
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Peng Qiao
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Tao Cui
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Baozhong Shi
- Department of Neurosurgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| |
Collapse
|
45
|
Wen B, Campbell KR, Tilbury K, Nadiarnykh O, Brewer MA, Patankar M, Singh V, Eliceiri KW, Campagnola PJ. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer. Sci Rep 2016; 6:35734. [PMID: 27767180 PMCID: PMC5073303 DOI: 10.1038/srep35734] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/03/2016] [Indexed: 01/28/2023] Open
Abstract
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83–91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
Collapse
Affiliation(s)
- Bruce Wen
- Department of Medical Physics, University of Wisconsin- Madison, Madison, WI 53706, USA.,Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kirby R Campbell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karissa Tilbury
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Oleg Nadiarnykh
- VU Medical Center, VU University Amsterdam, Amsterdam, Netherlands
| | - Molly A Brewer
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vikas Singh
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Morgridge Institute for Research, Madison, WI 53715, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J Campagnola
- Department of Medical Physics, University of Wisconsin- Madison, Madison, WI 53706, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
46
|
Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness. Sci Rep 2016; 6:31998. [PMID: 27534915 PMCID: PMC4989222 DOI: 10.1038/srep31998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.
Collapse
|
47
|
Abstract
Breast cell pathology results from biochemical and molecular changes that culminate in the cell’s loss of functional responsiveness. The epithelial cell compartment in the breast ductal system is the site of approximately 98% of malignant proliferations, and it is from within these cells that the first biochemical signal of change may be expressed as an inflammatory response. Inflammation may be represented by biomarkers of early pathologic changes in breast cells and be associated with risk for the development of breast cancer. A theoretical model of the inflammatory process is proposed showing predictive linkages among stimuli in the breast microenvironment and the development of breast pathology, in particular, breast cancer. This model fuels intervention concepts that may prevent malignant breast health outcomes.
Collapse
|
48
|
van der Steen SC, van Tilborg AA, Vallen MJ, Bulten J, van Kuppevelt TH, Massuger LF. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11. Gynecol Oncol 2016; 140:527-36. [DOI: 10.1016/j.ygyno.2015.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
49
|
Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, Sun H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs 2015. [PMID: 26214321 DOI: 10.1097/cad.0000000000000263] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colon cancer is one of the most common malignancies worldwide and has a high mortality rate. Carvacrol is a major component of oregano and thyme essential oils and shows antitumor properties. Here, we investigated the effects of carvacrol on the proliferation and apoptosis of two human colon cancer cell lines, HCT116 and LoVo, and studied the molecular mechanisms of its antitumor properties. We found that carvacrol inhibited the proliferation and migration of the two colon cancer cell lines in a concentration-dependent manner. Cell invasion was suppressed after carvacrol treatment by decreasing the expression of matrix metalloprotease-2 (MMP-2) and MMP-9. Carvacrol treatment also caused cell cycle arrest in the G2/M phase and decreased cyclin B1 expression. Finally, carvacrol induced cell apoptosis in a dose-dependent manner. At the molecular level, carvacrol downregulated the expression of Bcl-2 and induced the phosphorylation of the extracellular-regulated protein kinase and protein kinase B (p-Akt). In parallel, carvacrol upregulated the expression of Bax and c-Jun N-terminal kinase. These results indicate that carvacrol might induce apoptosis in colon cancer cells through the mitochondrial apoptotic pathway and the MAPK and PI3K/Akt signaling pathways. Together, our results suggest that carvacrol may have therapeutic potential for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Kai Fan
- Departments of aPathophysiology bPathology and cPharmacology, Harbin Medical University-Daqing dDepartment of Surgery, Fifth Clinical College of Harbin Medical University, Daqing, Heilongjiang, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin Cancer Biol 2015; 35:3-10. [PMID: 26416466 DOI: 10.1016/j.semcancer.2015.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Several evidences support the concept that cancer development and progression are not entirely cancer cell-autonomous processes, but may be influenced, and possibly driven, by cross-talk between cancer cells and the surrounding microenvironment in which, besides immune cells, stromal cells and extracellular matrix (ECM) play a major role in regulating distinct biologic processes. Stroma and ECM-related signatures proved to influence breast cancer progression, and to contribute to the identification of tumor phenotypes resistant to cytotoxic and hormonal treatments. The possible clinical implications of the interplay between tumor cells and the microenvironment, with special reference to ECM remodelling, will be discussed in this review.
Collapse
Affiliation(s)
- Marta Giussani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Vera Cappelletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Elda Tagliabue
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| |
Collapse
|