1
|
Song JH, Kim JM, Kim SH, Kim HJ, Lee JJ, Sung MH, Hwang SY, Kim TS. Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci 2003; 73:1705-19. [PMID: 12875902 DOI: 10.1016/s0024-3205(03)00515-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is now recognized that precise patterns of differentially expressed genes ultimately direct a particular cell toward a given lineage. In this study, we compared the expression profiles of cancer-related genes by cDNA microarray analysis during the differentiation of human promyelocytic leukemia HL-60 cells into either monocytes or granulocytes. RNA was isolated at times 0, 6, 12, 24, 36, 48, and 72 h following stimulation of differentiation with all-trans retinoic acid (all-trans RA) or 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], and hybridized to the microarray gene chips containing 872 genes related to cell-cycles, oncogenes and leukemias. Several genes were commonly or differentially regulated during cell differentiation into either lineage, as demonstrated by both hierarchical and self-organizing map clustering analysis. At 72 h the expression levels of 45 genes were commonly up- or down-regulated at least a twofold in both lineages. Most importantly, 32 genes including alpha-L-fucosidase gene and adducin gamma subunit gene were up- or down-regulated only in all-trans RA-treated HL-60 cells, while 12 genes including interleukin 1beta and hypoxia-inducible factor 1alpha were up- or down-regulated only in 1,25-(OH)(2)D(3)-treated HL-60 cells. The expression of selected genes was confirmed by Northern blot analysis. As expected, some genes identified have not been examined during HL-60 cell differentiation into either lineage. The identification of genes associated with a specific differentiation lineage may give important insights into functional and phenotypic differences between two lineages of HL-60 cell differentiation.
Collapse
MESH Headings
- Calcitriol/pharmacology
- Cell Division/drug effects
- Cell Lineage/genetics
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- DNA, Neoplasm/analysis
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Granulocytes/pathology
- Granulocytes/physiology
- HL-60 Cells/physiology
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Monocytes/pathology
- Monocytes/physiology
- Oligonucleotide Array Sequence Analysis
- RNA, Neoplasm/analysis
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ju Han Song
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Kwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Laurora S, Pizzimenti S, Briatore F, Fraioli A, Maggio M, Reffo P, Ferretti C, Dianzani MU, Barrera G. Peroxisome proliferator-activated receptor ligands affect growth-related gene expression in human leukemic cells. J Pharmacol Exp Ther 2003; 305:932-42. [PMID: 12649303 DOI: 10.1124/jpet.103.049098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors. Three subtypes of PPARs (alpha, beta, and gamma) have been identified in different tissues. PPAR alpha and PPAR gamma ligands inhibit cell proliferation and induce differentiation in several human cell models. We demonstrated that both PPAR alpha (clofibrate and ciprofibrate) and PPAR gamma ligands (troglitazone and 15 deoxy-prostaglandin J2, 15d-PGJ2) inhibited growth, induced the onset of monocytic-like differentiation, and increased the proportion of G0/G1 cells in the HL-60 leukemic cell line. Moreover, 3 days after the treatment with 2.5 microM 15d-PGJ2, an increase in sub-G0/G1 population occurred, compatible with an induction of programmed cell death. To clarify the mechanisms involved in HL-60 growth inhibition due to the effects of PPAR ligands, we investigated their action on the expression of some genes involved in the control of cell proliferation, differentiation, and cell cycle progression such as c-myc, c-myb, and cyclin D1 and D2. Clofibrate (50 microM), ciprofibrate (50 microM), and 15d-PGJ2 (2.5 microM) inhibited c-myb and cyclin D2 expression, whereas they did not affect c-myc and cyclin D1 expression. Only troglitazone (5 microM) decreased c-myc mRNA and protein levels, besides decreasing c-myb and cyclin D2. The down-regulations of c-myb and cyclin D2 expression represent the first evidence of the inhibitory effect exerted by PPAR ligands on these genes. Moreover, the inhibition of c-myc expression by troglitazone may depend on a PPAR-independent mechanism.
Collapse
|
3
|
Chen J, Kremer CS, Bender TP. A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state. Oncogene 2002; 21:1859-69. [PMID: 11896618 DOI: 10.1038/sj.onc.1205003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
Friend murine erythroleukemia (MEL) cells are transformed erythroid precursors that are held in an immature and proliferating state but can be induced to differentiate in vivo by treatment with a variety of chemical agents such as N, N-hexamethylene bisacetamide (HMBA). To investigate the role of Myb proteins in maintaining MEL cells in an immature and proliferating state we have produced stable transfectants in the C19 MEL cell line that contain a dominant interfering Myb allele (MEnT) under the control of an inducible mouse metallothionein I promoter. When expression of MEnT protein was induced with ZnCl2, the stable transfectants differentiated with kinetics that were similar to wild type C19 MEL cells treated with HMBA, including induction of alpha-globin mRNA expression, assembly of hemoglobin and growth arrest. Expression of endogenous c-myb and c-myc was also decreased in response to MEnT. Expression of mad-1 mRNA was rapidly increased in response to expression of MEnT resulting in a shift from predominantly c-Myc/Max complexes to predominantly Mad/Max containing complexes. These results strongly suggest that C19 MEL cells are held in an immature and proliferating state by a pathway that is dependent on Myb activity.
Collapse
MESH Headings
- Acetamides/pharmacology
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Basic-Leucine Zipper Transcription Factors
- Cell Cycle Proteins
- Cell Division
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Friend murine leukemia virus/physiology
- Genes, myc/physiology
- Globins/genetics
- Globins/metabolism
- Hemoglobins/biosynthesis
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/virology
- Metallothionein/genetics
- Mice
- Nuclear Proteins
- Phosphoproteins/physiology
- Plasmids
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-myb/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/physiology
- Trans-Activators/physiology
- Transcription Factors
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/virology
- Zinc/metabolism
Collapse
Affiliation(s)
- Jing Chen
- Department of Molecular Physiology, University of Virginia Health System, PO Box 800734, Charlottesville, Virginia, VA 22908-0734, USA
| | | | | |
Collapse
|
4
|
Hong HY, Varvayanis S, Yen A. Retinoic acid causes MEK-dependent RAF phosphorylation through RARalpha plus RXR activation in HL-60 cells. Differentiation 2001; 68:55-66. [PMID: 11683493 DOI: 10.1046/j.1432-0436.2001.068001055.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Retinoic acid (RA) is known to cause the myeloid differentiation of HL-60 human myeloblastic leukemia cells in a process requiring MEK-dependent ERK2 activation. This RA-induced ERK2 activation appears after approximately 4 h and persists until the cells are differentiated and G0 arrested (Yen et al, 1998). This motivates the question of whether RA also activated RAF as part of a typical RAF/MEK/MAPK cascade. Retinoic acid is shown here to also increase the phosphorylation of RAF, but in an unusual way. Surprisingly, increased RAF phosphorylation is first detectable after 12 to 24 hours by phosphorylation-induced retardation of polyacrylamide gel electrophoretic mobility. The RA-induced increased RAF phosphorylation is still apparent after 72 hours of treatment when most cells are differentiated and G0 arrested. There is a progressive dose-response relationship with 10(-8), 10(-7), and 10(-6) M RA. The RA-induced RAF phosphorylation corresponds to increased in vitro kinase activity. Inhibition of MEK with a PD98059 dose which inhibits ERK2 phosphorylation and subsequent cell differentiation also inhibits RAF phosphorylation. RA-induced MEK-dependent RAF phosphorylation is not due to changes in the amount of cellular MEK. The induced RAF phosphorylation, as well as anteceding ERK2 activation, depends on ligand-induced activation of both an RARalpha receptor and an RXR receptor. This and the slow kinetics of activation suggest a need for prior RA-induced gene expression. In summary, RA induces a MEK-dependent prolonged RAF activation, whose slow onset occurs after ERK2 activation but still well before cell cycle arrest and cell differentiation. The RA-induced increased RAF phosphorylation thus differs from typical mitogenic growth factor signaling, features that may contribute to cell cycle arrest and differentiation instead of division as the cellular outcome.
Collapse
Affiliation(s)
- H Y Hong
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
5
|
Wang X, Studzinski GP. Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells. J Cell Biochem 2001; 80:471-82. [PMID: 11169731 DOI: 10.1002/1097-4644(20010315)80:4<471::aid-jcb1001>3.0.co;2-j] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of ERK1 and ERK2 protein kinases has been implicated in diverse cellular processes, including the control of cell proliferation and cell differentiation (Marshall [1995] Cell 80:179). In human myeloblastoid leukemia HL60 cells rapid (ca. 15 min) but transient activation of ERK1/2 has been reported following induction of macrophage/monocyte differentiation by phorbol esters, or by very high (10(-6) M) concentrations of 1,25-dihydroxyvitamin D(3) (1,25D3), while retinoic acid-induced granulocytic differentiation was accompanied by sustained activation of ERK1/2. We report here that monocytic differentiation of HL60 cells induced by moderate (10(-9) to 10(-7) M) concentrations of 1,25D3 could be divided into at least two stages. In the first phase, which lasts 24-48 h, the cells continued in the normal cell cycle while expressing markers of monocytic phenotype, such as CD14. In the next phase the onset of G1 cell cycle block became apparent and expression of CD11b was prominent, indicating a more mature myeloid phenotype. The first phase was characterized by high levels of ERKs activated by phosphorylation, and these decreased as the cells entered the second phase, while the levels of p27/Kip1 increased at that time. Serum-starved or PD98059-treated HL60 cells had reduced growth rate and slower differentiation, but the G1 block also coincided with decreased levels of activated ERK1/2. The data suggest that the MEK/ERK pathway maintains cell proliferation during 1,25D3-induced monocytic differentiation of HL60 cells, but that ERK1/2 activity becomes suppressed during the later stages of differentiation, and the consequent G1 block leads to "terminal" differentiation.
Collapse
Affiliation(s)
- X Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | | |
Collapse
|
6
|
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. THE HISTOCHEMICAL JOURNAL 1996; 28:531-75. [PMID: 8894660 DOI: 10.1007/bf02331377] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper is a continuation of parts I (history, methods and cell kinetics) and II (clinical applications and carcinogenesis) published previously (Dolbeare, 1995 Histochem. J. 27, 339, 923). Incorporation of bromodeoxyuridine (BrdUrd) into DNA is used to measure proliferation in normal, diseased and injured tissue and to follow the effect of growth factors. Immunochemical detection of BrdUrd can be used to determine proliferative characteristics of differentiating tissues and to obtain birth dates for actual differentiation events. Studies are also described in which BrdUrd is used to follow the order of DNA replication in specific chromosomes, DNA replication sites in the nucleus and to monitor DNA repair. BrdUrd incorporation has been used as a tool for in situ hybridization experiments.
Collapse
Affiliation(s)
- F Dolbeare
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, University of California 94551-9900, USA
| |
Collapse
|
7
|
Brigati C, Ferrari N, Megna M, Roncella S, Cutrona G, Tosetti F, Vidali G. A retinoic acid resistant HL-60 cell clone sensitive to N-(4-hydroxyphenyl) retinamide-mediated clonal growth inhibition. Leuk Lymphoma 1995; 17:175-80. [PMID: 7773156 DOI: 10.3109/10428199509051719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Among the Retinoic Acid (RA) derivatives, retinamides, and in particular N-(4-hydroxyphenyl) retinamide (4-HPR), are currently being investigated in selected cases of cancer chemoprevention. The cellular target range, however, seems to be limited, as cells of hemopoietic origin are virtually incapable of terminal differentiation upon addition of the compound. We have reconsidered the effect of 4-HPR on HL-60 cells by taking advantage of a mutant clone, generated in our laboratory, unresponsive to RA but highly responsive to dimethylsulfoxide (DMSO). We show here that this clone, upon addition of 4-HPR, although unable of undergoing full differentiation, shows considerable reduction of clonal growth. Moreover, the combination of 4-HPR and RA resulted in a much greater effect than the administration of 4-HPR alone. We suggest that 4-HPR and RA, at least in terms of mediating growth inhibition, may follow different metabolic pathways.
Collapse
Affiliation(s)
- C Brigati
- Molecular Biology Laboratory, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Biagetti M, Della Fazia MA, Servillo G, Viola-Magni MP. Changes in oncogene expression in ascite tumour cells during ageing. Cell Prolif 1994; 27:191-200. [PMID: 10465014 DOI: 10.1111/j.1365-2184.1994.tb01416.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The expression of two oncogenes, c-myc and c-fos, was studied in an ascitic tumour (ATPC+) at different times after implantation. The specific mRNA synthesis was analysed by Northern blot analysis. The presence of the oncogene proteins was shown by immunofluorescence using flow cytometry and referred to the distribution of the cells in the different cell phases. The results show that both oncogenes are expressed by ATPC+ tumour cells. c-myc is expressed 5, 8 and 12 days after implantation, although with a different intensity, and the protein is mainly present in S or S+G2 phase cells. The c-fos oncogene is expressed only 12 days after tumour implantation and the cells labelled with the specific antibody are mainly in G1 phase. We conclude that c-myc is principally correlated with proliferative activity, whereas c-fos is expressed by non-cycling cells.
Collapse
Affiliation(s)
- M Biagetti
- Institute of General Pathology, University of Perugia, Italy
| | | | | | | |
Collapse
|
9
|
Yen A, Forbes ME, Varvayanis S, Tykocinski ML, Groger RK, Platko JD. C-FMS dependent HL-60 cell differentiation and regulation of RB gene expression. J Cell Physiol 1993; 157:379-91. [PMID: 8227169 DOI: 10.1002/jcp.1041570222] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The dependence of induced myelomonocytic cell differentiation, and regulation of the RB tumor suppressor gene during this process, on the c-fms gene product, the CSF-1 lymphokine receptor, was determined in HL-60 promyelocytic leukemia cells. Adding a monoclonal antibody with specificity for the c-fms gene product to cells treated with various inducers of myelomonocytic or macrophage differentiation, including retinoic acid and 1,25-dihydroxy vitamin D3, inhibited the rate of differentiation. During the period of inducer treatment usually preceding onset of differentiation, longer periods of antibody exposure caused greater inhibition of differentiation. In a stable HL-60 transfectant overexpressing the CSF-1 receptor at the cell surface due to a constitutively driven c-fms trans gene, the rate of differentiation was enhanced compared to the wild type cell, consistent with a positive regulatory role for the CSF-1 receptor. The anti-fms antibody caused much less inhibition of differentiation in the transfectants than in wild type cells, consistent with a larger number of receptors causing reduced sensitivity. During the induced metabolic cascade leading to differentiation, the typical early down regulation of RB gene expression was inhibited by the antibody. The antibody itself caused an increase in RB expression per cell, which offset the decrease normally caused by differentiation inducers (1,25-dihydroxy vitamin D3 and retinoic acid). The changes in RB expression preceded changes in the RB protein to the hypophosphorylated state. Most of the RB protein in proliferating cells was phosphorylated and no significant accumulation of hypophosphorylated RB protein occurred until after onset of G0 arrest. Thus the metabolic cascade leading to myelomonocytic differentiation of HL-60 cells appears to be driven by a function of the c-fms protein. Inhibiting that process by attacking this receptor impedes differentiation and also compromises the early down regulation of RB tumor suppressor gene expression which normally precedes differentiation. These findings provide additional support for a potential role for down regulating RB expression in promoting cell differentiation, and suggest the possibility that RB may be either a target or intermediate mediator of CSF-1 actions.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity
- Blotting, Western
- Calcitriol/pharmacology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Retinoblastoma/genetics
- Genes, Retinoblastoma/physiology
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Macrophages/chemistry
- Macrophages/pathology
- Macrophages/ultrastructure
- Monocytes/chemistry
- Monocytes/pathology
- Monocytes/ultrastructure
- Receptor, Macrophage Colony-Stimulating Factor/analysis
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/physiology
- Time Factors
- Transfection
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Yen
- Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | | | | | | | |
Collapse
|
10
|
Yen A, Coles M, Varvayanis S. 1,25-Dihydroxy vitamin D3 and 12-O-tetradecanoyl phorbol-13-acetate synergistically induce monocytic cell differentiation: FOS and RB expression. J Cell Physiol 1993; 156:198-203. [PMID: 8314857 DOI: 10.1002/jcp.1041560126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1,25-dihydroxy vitamin D3 and 12-O-tetradecanoyl phorbol-13-acetate (TPA) interact synergistically to induce monocytic differentiation of U937 histiocytic lymphoma cells. Addition of TPA causes an otherwise ineffective dose of 1,25-dihydroxy vitamin D3 to induce differentiation. The induced differentiation depends on the simultaneous (vs. sequential) presence of both agents. The kinetics of induced differentiation are consistent with a G1 specific cellular response to initiate the metabolic cascade culminating in cell differentiation. The induced differentiation occurs with down-regulation of c-fos protein and an accompanying up-regulation of RB protein expression, consistent with a possible need for up-regulated RB expression to maintain a given differentiated phenotype and suppress transcriptional activators that might typically be associated with proliferation.
Collapse
Affiliation(s)
- A Yen
- Cancer Biology Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|