1
|
Hu X, Zhang YA, Chen B, Jin Z, Lin ML, Li M, Mei HX, Lu JC, Gong YQ, Jin SW, Zheng SX. Protectin DX promotes the inflammatory resolution via activating COX-2/L-PGDS-PGD 2 and DP 1 receptor in acute respiratory distress syndrome. Int Immunopharmacol 2022; 102:108348. [PMID: 34920958 PMCID: PMC8578004 DOI: 10.1016/j.intimp.2021.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is characterized by uncontrollable inflammation. Cyclooxygenase-2(COX-2) and its metabolite prostaglandins are known to promote the inflammatory resolution of ARDS. Recently, a newly discovered endogenous lipid mediator, Protectin DX (PDX), was also shown to mediate the resolution of inflammation. However, the regulatory of PDX on the pro-resolving COX-2 in ARDS remains unknown. MATERIAL AND METHODS PDX (5 μg/kg) was injected into rats intravenously 12 h after the lipopolysaccharide (LPS, 3 mg/kg) challenge. Primary rat lung fibroblasts were incubated with LPS (1 μg/ml) and/or PDX (100 nM). Lung pathological changes examined using H&E staining. Protein levels of COX-2, PGDS and PGES were evaluated using western blot. Inflammatory cytokines were tested by qPCR, and the concentration of prostaglandins measured by using ELISA. RESULTS Our study revealed that, COX-2 and L-PGDS has biphasic activation characteristics that LPS could induce induced by LPS both in vivo and in vitro.. The secondary peak of COX-2, L-PGDS-PGD2 promoted the inflammatory resolution in ARDS model with the DP1 receptor being activated and PDX up-regulated the inflammatory resolutionvia enhancing the secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. CONCLUSION PDX promoted the resolution of inflammation of ARDS model via enhancing the expression of secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. PDX shows promising therapeutic potential in the clinical management of ARDS.
Collapse
Affiliation(s)
- Xin Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ye-An Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ben Chen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zi Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Mei-Lin Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jia-Chao Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yu-Qiang Gong
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| |
Collapse
|
2
|
Ni S, Li D, Wei H, Miao KS, Zhuang C. PPAR γ Attenuates Interleukin-1 β-Induced Cell Apoptosis by Inhibiting NOX2/ROS/p38MAPK Activation in Osteoarthritis Chondrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5551338. [PMID: 34055194 PMCID: PMC8112933 DOI: 10.1155/2021/5551338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/28/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Reactive oxygen species (ROS) induced by extracellular cytokines trigger the expression of inflammatory mediators in osteoarthritis (OA) chondrocyte. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts an anti-inflammatory effect. The aim of this study was to elucidate the role of PPARγ in interleukin-1β- (IL-1β-) induced cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) expression through ROS generation in OA chondrocytes. METHODS IL-1β-induced ROS generation and chondrocyte apoptosis were determined by flow cytometry. Contents of NADPH oxidase (NOX), caspase-3, and caspase-9 were evaluated by biochemical detection. The involvement of NOX2 and mitogen-activated protein kinases (MAPKs) in IL-1β-induced COX-2 and PGE2 expression was investigated using pharmacologic inhibitors and further analyzed by western blotting. Activation of PPARγ was performed by using a pharmacologic agonist and was analyzed by western blotting. RESULTS IL-1β-induced COX-2 and PGE2 expression was mediated through NOX2 activation/ROS production, which could be attenuated by N-acetylcysteine (NAC; a scavenger of ROS), GW1929 (PPARγ agonist), DPI (diphenyleneiodonium chloride, NOX2 inhibitor), SB203580 (p38MAPK inhibitor), PD98059 (extracellular signal-regulated kinase, ERK inhibitor), and SP600125 (c-Jun N-terminal kinase, JNK inhibitor). ROS activated p38MAPK to enter the nucleus, which was attenuated by PPARγ. CONCLUSION In OA chondrocytes, IL-1β induced COX-2 and PGE2 expression via activation of NOX2, which led to ROS production and MAPK activation. The activation of PPARγ exerted protective roles in the pathogenesis of OA.
Collapse
Affiliation(s)
- Su Ni
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Hui Wei
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Kai-Song Miao
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
3
|
Chistyakov DV, Astakhova AA, Sergeeva MG. Resolution of inflammation and mood disorders. Exp Mol Pathol 2018; 105:190-201. [PMID: 30098318 DOI: 10.1016/j.yexmp.2018.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Relationship between mood disorders and inflammation is now well-documented, although molecular mechanisms are not understood. Previously mostly pro-inflammatory cytokines of immune system (IL-6, TNF, etc.) were taken into account. However, recent understanding of resolution of inflammation as an active process drew attention to mediators of resolution, which include both proteins and ω-3 and ω-6 polyunsaturated fatty acids derivatives (resolvins, cyclopentenone prostaglandins, etc.). This review takes into account new data on resolution of inflammation and action of mediators of resolution in models of depression. New facts and ideas about mechanisms of chronic inflammation onset are considered in relation to mood disorders. Basic control mechanisms of inflammation at the cellular level and the role of resolution substances in regulation of depression and other mood disorders are discussed. Signaling systems of innate immunity located in non-immune cells and their ability to generate substances that affect an onset of depression are reviewed. A novel hypothesis of depression as a type of abnormal resolution is proposed.
Collapse
Affiliation(s)
- Dmiry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Gao Y, Zhang H, Luo L, Lin J, Li D, Zheng S, Huang H, Yan S, Yang J, Hao Y, Li H, Gao Smith F, Jin S. Resolvin D1 Improves the Resolution of Inflammation via Activating NF-κB p50/p50-Mediated Cyclooxygenase-2 Expression in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2043-2054. [PMID: 28794232 PMCID: PMC5583748 DOI: 10.4049/jimmunol.1700315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe illness characterized by uncontrolled inflammation. The resolution of inflammation is a tightly regulated event controlled by endogenous mediators, such as resolvin D1 (RvD1). Cyclooxygenase-2 (COX-2) has been reported to promote inflammation, along with PGE2, in the initiation of inflammation, as well as in prompting resolution, with PGD2 acting in the later phase of inflammation. Our previous work demonstrated that RvD1 enhanced COX-2 and PGD2 expression to resolve inflammation. In this study, we investigated mechanisms underlying the effect of RvD1 in modulating proresolving COX-2 expression. In a self-limited ARDS model, an LPS challenge induced the biphasic activation of COX-2, and RvD1 promoted COX-2 expression during the resolution phase. However, it was significantly blocked by treatment of a NF-κB inhibitor. In pulmonary fibroblasts, NF-κB p50/p50 was shown to be responsible for the proresolving activity of COX-2. Additionally, RvD1 potently promoted p50 homodimer nuclear translocation and robustly triggered DNA-binding activity, upregulating COX-2 expression via lipoxin A4 receptor/formyl peptide receptor 2. Finally, the absence of p50 in knockout mice prevented RvD1 from promoting COX-2 and PGD2 expression and resulted in excessive pulmonary inflammation. In conclusion, RvD1 expedites the resolution of inflammation through activation of lipoxin A4 receptor/formyl peptide receptor 2 receptor and NF-κB p50/p50-COX-2 signaling pathways, indicating that RvD1 might have therapeutic potential in the management of ARDS.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Lingchun Luo
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jing Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Dan Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Sisi Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hua Huang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Songfan Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jingxiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
- Institute of Inflammation and Ageing, College of Medical and Dental Science, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| |
Collapse
|
5
|
Terrin L, Agostini M, Ruvoletto M, Martini A, Pucciarelli S, Bedin C, Nitti D, Pontisso P. SerpinB3 upregulates the Cyclooxygenase-2 / β-Catenin positive loop in colorectal cancer. Oncotarget 2017; 8:15732-15743. [PMID: 28178650 PMCID: PMC5362519 DOI: 10.18632/oncotarget.14997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer is characterized by aberrant Cyclooxigenase-2 (COX-2) and β-Catenin pathways. Recently, the protease inhibitor SerpinB3 has been described overexpressed in more advanced stages of this tumor. Aim of the study was to explore the possible relationship between these molecules in this setting. We evaluated colorectal cancer specimens from 105 patients and a positive correlation between SerpinB3, COX-2 and β-Catenin expression was observed, with higher levels in tumor than in adjacent tissue. The highest levels were associated with pathologic parameters of poor prognosis, including vascular invasion, lymph node metastasis and perineural invasion. The molecular and protein profiles of COX-2 and β-Catenin were analyzed in cell lines with different expression of SerpinB3. In those with high expression of SerpinB3, COX-2 and β-Catenin were higher than in controls. Cells with high levels of SerpinB3 showed higher proliferation and invasion compared to controls. In conclusion, in colorectal cancer SerpinB3, COX-2 and β-Catenin are positively correlated and associated with more advanced tumor stage. The in vitro experimental results support a driving role of SerpinB3 in the upregulation of COX-2/ β-Catenin positive loop, associated with a more aggressive cellular phenotype.
Collapse
Affiliation(s)
| | - Marco Agostini
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy.,Nano-Inspired Biomedicine Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | | | | | - Salvatore Pucciarelli
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Chiara Bedin
- Nano-Inspired Biomedicine Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Donato Nitti
- Surgery Branch, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | | |
Collapse
|
6
|
Pereira RC, Scaranari M, Benelli R, Strada P, Reis RL, Cancedda R, Gentili C. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng Part A 2013; 19:1476-88. [PMID: 23360471 DOI: 10.1089/ten.tea.2012.0225] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Platelet-rich plasma (PRP), a cocktail of platelet growth factors and bioactive proteins, has been proposed as a therapeutic agent to restore damaged articular cartilage. We report the biological effect of the platelet lysate (PL), a PRP derivative, on primary human articular chondrocytes cultured under both physiological and inflammatory conditions. When added to the culture medium, PL induced a strong mitogenic response in the chondrocytes. The in vitro expanded cell population maintained a chondrogenic redifferentiation potential as revealed by micromass culture in vitro and ectopic cartilage formation in vivo. Further, in chondrocytes cultured in the presence of the proinflammatory cytokine interleukin-1α (IL-1α), the PL induced a drastic enhancement of the synthesis of the cytokines IL-6 and IL-8 and of neutrophil-gelatinase associated lipocalin, a lipocalin expressed during chondrocyte differentiation and inflammation. These events were mediated by the p38 MAP kinase and NF-κB pathways. We observed that inflammatory stimuli activated phospo-MAP kinase-activated protein kinase 2, a direct target of p38. The proinflammatory effect of the PL was a transient phenomenon; after an initial upregulation, we observed significant reduction of the NF-κB activity together with the repression of the inflammatory enzyme cyclooxygenase-2. Moreover, the medium of chondrocytes cultured in the simultaneous presence of PL and IL-1α, showed a significant enhancement of the chemoattractant activity versus untreated chondrocytes. Our findings support the concept that the platelet products have a direct beneficial effect on articular chondrocytes and could drive in sequence a transient activation and the resolution of the inflammatory process, thus providing a rational for their use as therapeutic agents in cartilage inflammation and damage.
Collapse
Affiliation(s)
- Rui Cruz Pereira
- Dipartimento di Medicina Sperimentale, Universita' di Genova, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Costa D, Lazzarini E, Canciani B, Giuliani A, Spanò R, Marozzi K, Manescu A, Cancedda R, Tavella S. Altered bone development and turnover in transgenic mice over-expressing lipocalin-2 in bone. J Cell Physiol 2013; 228:2210-21. [PMID: 23606520 DOI: 10.1002/jcp.24391] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 04/10/2013] [Indexed: 11/06/2022]
Abstract
Lipocalin-2 (LCN2) is a protein largely expressed in many tissues, associated with different biological phenomena such as cellular differentiation, inflammation and cancer acting as a survival/apoptotic signal. We found that LCN2 was expressed during osteoblast differentiation and we generated transgenic (Tg) mice over-expressing LCN2 in bone. Tg mice were smaller and presented bone microarchitectural changes in both endochondral and intramembranous bones. In particular, Tg bones displayed a thinner layer of cortical bone and a decreased trabecular number. Osteoblast bone matrix deposition was reduced and osteoblast differentiation was slowed-down. Differences were also observed in the growth plate of young transgenic mice where chondrocyte displayed a more immature phenotype and a lower proliferation rate. In bone marrow cell cultures from transgenic mice, the number of osteoclast progenitors was increased whereas in vivo it was increased the number of mature osteoclasts expressing tartrate-resistant acid phosphatase (TRAP). Finally, while osteoprotegerin (OPG) levels remained unchanged, the expression of the conventional receptor activator of nuclear factor-κB ligand (RANKL) and of the IL-6 was enhanced in Tg mice. In conclusion, we found that LCN2 plays a role in bone development and turnover having both a negative effect on bone formation, by affecting growth plate development and interfering with osteoblast differentiation, and a positive effect on bone resorption by enhancing osteoclast compartment.
Collapse
Affiliation(s)
- Delfina Costa
- Dipartimento di Medicina Sperimentale, Universita' di Genova & IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramer R, Walther U, Borchert P, Laufer S, Linnebacher M, Hinz B. Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. J Lipid Res 2013; 54:3116-29. [PMID: 23943857 DOI: 10.1194/jlr.m042283] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Among different structurally related COX-2 inhibitors, only celecoxib was found to cause apoptosis and cell death of human lung cancer cells (IC₅₀ values of 19.96 µM [A549], 12.48 µM [H460], and 41.39 µM [H358]) that was paralleled by a time- and concentration-dependent upregulation of COX-2 and peroxisome proliferator-activated receptor γ (PPARγ) at mRNA and protein levels. Apoptotic death of celecoxib-treated cancer cells was suppressed by the PPARγ antagonist GW9662 and by siRNA targeting PPARγ and, surprisingly, also by the selective COX-2 inhibitor NS-398 and siRNA targeting COX-2. NS-398 (1 µM) was shown to suppress celecoxib-induced COX-2 activity. Among the COX-2-dependent prostaglandins (PG) induced upon celecoxib treatment, PGD₂ and 15-deoxy-Δ¹²,¹⁴-PGJ₂ were found to induce a cytosol-to-nucleus translocation of PPARγ as well as a PPARγ-dependent apoptosis. Celecoxib-elicited PPARγ translocation was inhibited by NS-398. Finally, a COX-2- and PPARγ-dependent cytotoxic action of celecoxib was proven for primary human lung tumor cells. Together, our data demonstrate a proapoptotic mechanism of celecoxib involving initial upregulation of COX-2 and PPARγ and a subsequent nuclear translocation of PPARγ by COX-2-dependent PGs.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Nebbaki SS, El Mansouri FE, Afif H, Kapoor M, Benderdour M, Pelletier JP, Martel-Pelletier J, Fahmi H. Expression of peroxisome proliferator-activated receptors α, β, γ, and H- and L-prostaglandin D synthase during osteoarthritis in the spontaneous hartley guinea pig and experimental dog models. J Rheumatol 2013; 40:877-90. [PMID: 23547214 DOI: 10.3899/jrheum.120738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the expression of peroxisome proliferator-activated receptors (PPAR) α, β, and γ, and hematopoietic and lipocalin-type prostaglandin D synthase (H- and L-PGDS) over the course of osteoarthritis (OA) in the spontaneous Hartley guinea pig and the anterior cruciate ligament transection dog models. METHODS Guinea pigs were sacrificed at 2 (control group), 4, 8, and 12 months of age (n = 5 per group). Non-operated (control) and operated dogs were sacrificed at 4, 8, and 12 weeks postsurgery. Cartilage was evaluated histologically using the Osteoarthritis Research Society International (OARSI) guidelines. The expression of PPAR-α, β, γ, and H- and L-PGDS was evaluated by real-time PCR and immunohistochemistry. The nonparametric Spearman test was used for correlation analysis. RESULTS PPAR-α, β, and γ were detected in medial tibial plateau from control animals in both the spontaneous and surgical models. Levels of PPAR-α and β did not change over the course of OA, whereas PPAR-γ levels decreased during progression of disease. We also observed that the expression of H-PGDS remained unchanged, whereas L-PGDS increased over the course of OA. PPAR-γ levels correlated negatively, whereas L-PGDS levels correlated positively, with the histological score of OA. CONCLUSION The level of PPAR-γ decreased, whereas level of L-PGDS increased during the progression of OA. These data suggest that reduced expression of PPAR-γ may contribute to the pathogenesis of OA, whereas enhanced expression of L-PGDS may be part of a reparative process.
Collapse
Affiliation(s)
- Sarah-Salwa Nebbaki
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Notre-Dame Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
KOEBERLE ANDREAS, WERZ OLIVER. Microsomal Prostaglandin E2 Synthase-1. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prostanoids and leukotrienes (LTs) formed from arachidonic acid (AA) via the cyclooxygenase (COX)-1/2 and 5-lipoxygenase (5-LO) pathway, respectively, mediate inflammatory responses, chronic tissue remodelling, cancer, asthma and autoimmune disorders, but also possess homeostatic functions in the gastrointestinal tract, uterus, brain, kidney, vasculature and host defence. Based on the manifold functions of these eicosanoids, the clinical use of non-steroidal anti-inflammatory drugs (NSAIDs), a class of drugs that block formation of all prostanoids, is hampered by severe side-effects including gastrointestinal injury, renal irritations and cardiovascular risks. Therefore, anti-inflammatory agents interfering with eicosanoid biosynthesis require a well-balanced pharmacological profile to minimize these on-target side-effects. Current anti-inflammatory research aims at identifying compounds that can suppress the massive formation of pro-inflammatory prostaglandin (PG)E2 without affecting homeostatic PGE2 and PGI2 synthesis. The inducible microsomal prostaglandin E2 synthase-1 (mPGES-1) is one promising target enzyme. We will give an overview about the structure, regulation and function of mPGES-1 and then present novel inhibitors of mPGES-1 that may possess a promising pharmacological profile.
Collapse
Affiliation(s)
- ANDREAS KOEBERLE
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| | - OLIVER WERZ
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy University Jena Philosophenweg 14, D-07743 Jena Germany
| |
Collapse
|
11
|
Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine 2011; 56:435-41. [PMID: 21855366 DOI: 10.1016/j.cyto.2011.07.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
Lipocalin 2 is a protein that has garnered a great deal of interest in multidisciplinary fields over the last two decades since its discovery. However, its exact function in metabolic processes remains to be completely characterized. More recently, it has come to light as a highly upregulated protein in the setting of injury and infection. This review focuses on lipocalin 2 regulation and its relationship to cytokine and endocrine signaling pathways.
Collapse
|
12
|
Ulivi V, Lenti M, Gentili C, Marcolongo G, Cancedda R, Descalzi Cancedda F. Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway. Arthritis Res Ther 2011; 13:R92. [PMID: 21682897 PMCID: PMC3218907 DOI: 10.1186/ar3367] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/20/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023] Open
Abstract
Introduction The mono- and digalactosyldiacylglycerol (MGDG and DGDG) galactolipids have been purified from the thermophilic blue-green alga Phormidium sp. ETS-05 that colonizes the therapeutic thermal mud of Abano Terme and Montegrotto Terme, Italy. Both compounds present a marked composition in polyunsaturated fatty acids, mainly omega-3. The therapeutic thermal mud is applied mainly to osteoarthritic cartilage patients. In the present study the effect of MGDG treatment on proteins and factors expressed by human articular cartilage cells in culture and on pathways activated in inflammatory conditions was studied. Methods Primary cultures of human articular chondrocytes were used at cell passage number 1 (P1). Cells were treated in serum-free medium with inflammatory cytokines in the presence and in the absence of MGDG. Western blot was performed on collected medium and on cell layers. At least three different experiments were performed on primary cultures. The quantitation of the MGDG effect was performed by densitometric scanning of Western blots. p38 Mitogen Activated Protein Kinase (p38) activation, Nuclear Factor-kappaB (NF-kB) activation and Prostaglandin E2 (PGE2) quantitation were performed by commercially available assays. Results are given as the mean values ± SD. All statistical analyses were performed using GraphPad software. The two-tailed Student's t -test was performed. Results We report that MGDG: 1) represses the expression of interleukin-6 (IL-6) and interleukin-8 (IL-8) induced by interleukin-1alpha (IL-1α) or IL-1α + tumor necrosis factor α (TNFα) interfering with the p38 and NF-kB pathways; 2) is not toxic for the cells and does not affect the cell phenotype; 3) strongly enhances COX-2 expression induced by IL-1α or IL-1α + TNFα; 4) represses mPGES expression induced by IL-1α and the synthesis of PGE2 and induces the synthesis of 15-deoxy-Δ 12,14-prostaglandin J2 (15ΔPGJ2). In addition, the COX-2 product 15ΔPGJ2 added to the cells: 1) strongly represses IL-6 and IL-8 induced by IL-1α; 2) represses mPGES expression induced by IL-1α and the synthesis of PGE2. Conclusions All together these data suggest that MGDG has an anti-inflammatory activity in human articular cartilage and possibly activates an anti-inflammatory loop triggered by COX-2 via 15ΔPGJ2 production, indicating a possible role of COX-2 in resolution of inflammation. The purified compound is a novel anti-inflammatory agent potentially active for human articular cartilage pathologies related to inflammation.
Collapse
Affiliation(s)
- Valentina Ulivi
- Dipartimento di Oncologia Traslazionale, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Kim TH, Ko SS, Park C, Park SE, Hong SH, Kim BW, Choi YH. Anti-Inflammmatiry Effects of Nerium indicum Ethanol Extracts through Suppression of NF-kappaB Activation. ACTA ACUST UNITED AC 2010. [DOI: 10.5352/jls.2010.20.8.1221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 2010; 5:145-65. [PMID: 20477063 DOI: 10.1586/1744666x.5.2.145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eicosanoids, a family of oxygenated metabolites of eicosapolyenoic fatty acids, such as arachidonic acid, formed via the lipoxygenase, cyclooxygenase (COX) and epoxygenase pathways, play an important role in the regulation of various pathophysiological processes, including inflammation and cancer. COX-2, the inducible isoform of COX, has emerged as the key enzyme regulating inflammation, and promises to play a considerable role in cancer. Although NSAIDs have been in use for centuries, the COX-2 selective inhibitors - coxibs - have emerged as potent anti-inflammatory drugs with fewer gastric side effects. As COX-2 plays a major role in neoplastic transformation and cancer growth, by downregulating apoptosis and promoting angiogenesis, invasion and metastasis, coxibs have a potential role in the prevention and treatment of cancer. Recent studies indicate their possible application in overcoming drug resistance by downregulating the expression of MDR-1. However, the cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects. This review will focus on the role of COX-2 in inflammation and cancer, with an emphasis on novel approaches to the development of COX-2 inhibitors without side effects.
Collapse
Affiliation(s)
- Smita Agarwal
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | |
Collapse
|
15
|
Knopfová L, Smarda J. The use of Cox-2 and PPARγ signaling in anti-cancer therapies. Exp Ther Med 2010; 1:257-264. [PMID: 22993537 DOI: 10.3892/etm_00000040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023] Open
Abstract
Increased production of the pro-inflammatory enzyme cyclooxygenase-2 (Cox-2) and altered expression and activity of peroxisome proliferator-activated receptor γ (PPARγ) have been observed in many malignancies. Both the PPARγ ligands and the Cox-2 inhibitors possess anti-inflammatory and anti-neoplastic effects in vitro and have been assessed for their therapeutic potential in several pre-clinical and clinical studies. Recently, multiple interactions between PPARγ and Cox-2 signaling pathways have been revealed. Understanding of the cross-talk between PPARγ and Cox-2 might provide important novel strategies for the effective treatment and/or prevention of cancer. This article summarizes recent achievements involving the functional interactions between the PPARγ and Cox-2 signaling pathways and discusses the implications of such interplay for clinical use.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | | |
Collapse
|
16
|
Aleshin S, Grabeklis S, Hanck T, Sergeeva M, Reiser G. Peroxisome proliferator-activated receptor (PPAR)-gamma positively controls and PPARalpha negatively controls cyclooxygenase-2 expression in rat brain astrocytes through a convergence on PPARbeta/delta via mutual control of PPAR expression levels. Mol Pharmacol 2009; 76:414-24. [PMID: 19483106 DOI: 10.1124/mol.109.056010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) transcription factors are pharmaceutical drug targets for treating diabetes, atherosclerosis, and inflammatory degenerative diseases. The possible mechanism of interaction between the three PPAR isotypes (alpha, beta/delta, and gamma) is not yet clear. However, this is important both for understanding transcription factor regulation and for the development of new drugs. The present study was designed to compare the effects of combinations of synthetic agonists of PPARalpha [2-[4-[2-[4-cyclohexylbutyl (cyclohexylcarbamoyl)amino]ethyl]phenyl] sulfanyl-2-methylpropanoic acid (GW7647)], PPARbeta/delta [4-(3-(2-propyl-3-hydroxy-4-acetyl)phenoxy)propyloxyphenoxy acetic acid, (L-165041)], and PPARgamma (rosiglitazone, ciglitazone) on inflammatory gene regulation in rat primary astrocytes. We measured cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) synthesis in lipopolysaccharide (LPS)-stimulated cells. PPARalpha, PPARbeta/delta, and PPARgamma knockdown models served to delineate the contribution of each PPAR isotype. Thiazolidinediones enhanced the LPS-induced COX-2 expression via PPARgamma-dependent pathway, whereas L-165041 and GW7647 had no influence. However, the addition of L-165041 potentiated the effect of PPARgamma activation through PPARbeta/delta-dependent mechanism. On the contrary, PPARalpha activation (GW7647) suppressed the effect of the combined L-165041/rosiglitazone application. The mechanism of the interplay arising from combined applications of PPAR agonists involves changes in PPAR expression levels. A PPARbeta/delta overexpression model confirmed that PPARbeta/delta expression level is the point at which PPARgamma and PPARalpha pathways converge in control of COX-2 gene expression. Thus, we discovered that in primary astrocytes, PPARgamma has a positive influence and PPARalpha has a negative influence on PPARbeta/delta expression and activity. A positive/negative-feedback loop is formed by PPARbeta/delta-dependent increase in PPARalpha expression level. These findings elucidate a novel principle of regulation in the signaling by synthetic PPAR agonists that involves modulating the interaction between PPARalpha,-beta/delta, and -gamma isoforms on the level of their expression.
Collapse
Affiliation(s)
- Stepan Aleshin
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Magdeburg, Germany
| | | | | | | | | |
Collapse
|