1
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Șerbănescu MS, Bungărdean RM, Georgiu C, Crișan M. Nodular and Micronodular Basal Cell Carcinoma Subtypes Are Different Tumors Based on Their Morphological Architecture and Their Interaction with the Surrounding Stroma. Diagnostics (Basel) 2022; 12:diagnostics12071636. [PMID: 35885545 PMCID: PMC9323345 DOI: 10.3390/diagnostics12071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most frequent cancer of the skin and comprises low-risk and high-risk subtypes. We selected a low-risk subtype, namely, nodular (N), and a high-risk subtype, namely, micronodular (MN), with the aim to identify differences between them using a classical morphometric approach through a gray-level co-occurrence matrix and histogram analysis, as well as an approach based on deep learning semantic segmentation. From whole-slide images, pathologists selected 216 N and 201 MN BCC images. The two groups were then manually segmented and compared based on four morphological areas: center of the BCC islands (tumor, T), peripheral palisading of the BCC islands (touching tumor, TT), peritumoral cleft (PC) and surrounding stroma (S). We found that the TT pattern varied the least, while the PC pattern varied the most between the two subtypes. The combination of two distinct analysis approaches yielded fresh insights into the characterization of BCC, and thus, we were able to describe two different morphological patterns for the T component of the two subtypes.
Collapse
Affiliation(s)
- Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Raluca Maria Bungărdean
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Correspondence:
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Son J, Lee SY. Emetine exerts anticancer effects in U2OS human osteosarcoma cells via activation of p38 and inhibition of ERK, JNK, and β-catenin signaling pathways. J Biochem Mol Toxicol 2021; 35:e22868. [PMID: 34338395 DOI: 10.1002/jbt.22868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
Osteosarcoma (OS) is a primary bone neoplasm that is highly malignant. As advances in chemotherapy for the treatment of OS have stagnated, discovery of new reagents is required. Emetine is a phytochemical which can be isolated from a medicinal herb Cephaelis ipecacuanha and is traditionally used for amoebicides. Previous studies have demonstrated that emetine can possibly be repositioned for use in anticancer reagents. However, any anticancer effects and underlying mechanisms of emetine on human OS are not yet well understood. In this study, we analyzed the anticancer effects and involved cellular mechanisms after treatment with emetine to U2OS human OS cells. Emetine significantly reduced both the viability and proliferation, and induced apoptosis via activation of caspase-3 and caspase-7 in U2OS cells. Emetine effectively inhibited the migration and invasion of U2OS cells. Gelatinase activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were reduced by emetine. MMP-9 was transcriptionally inhibited, while MMP-2 was posttranscriptionally repressed, via the reduced expression of membrane-type I-matrix metalloproteinase (MT1-MMP). p38, which is closely related with induction of apoptosis, was stimulated by emetine. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and β-catenin, which are linked with expression of MMPs, were downregulated. Emetine exerted anticancer effects on MG63 human OS cells as well. Taken together, our study demonstrated the anticancer and antimetastatic potential of emetine in treating human OS for the first time. It is expected that emetine may be a promising drug candidate to be repositioned for chemotherapy of OS.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Korea
| |
Collapse
|
4
|
Valianou M, Filippidou N, Johnson DL, Vogel P, Zhang EY, Liu X, Lu Y, Yu JJ, Bissler JJ, Astrinidis A. Rapalog resistance is associated with mesenchymal-type changes in Tsc2-null cells. Sci Rep 2019; 9:3015. [PMID: 30816188 PMCID: PMC6395747 DOI: 10.1038/s41598-019-39418-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 01/26/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) are caused by inactivating mutations in TSC1 or TSC2, leading to mTORC1 hyperactivation. The mTORC1 inhibitors rapamycin and analogs (rapalogs) are approved for treating of TSC and LAM. Due to their cytostatic and not cytocidal action, discontinuation of treatment leads to tumor regrowth and decline in pulmonary function. Therefore, life-long rapalog treatment is proposed for the control of TSC and LAM lesions, which increases the chances for the development of acquired drug resistance. Understanding the signaling perturbations leading to rapalog resistance is critical for the development of better therapeutic strategies. We developed the first Tsc2-null rapamycin-resistant cell line, ELT3-245, which is highly tumorigenic in mice, and refractory to rapamycin treatment. In vitro ELT3-245 cells exhibit enhanced anchorage-independent cell survival, resistance to anoikis, and loss of epithelial markers. A key alteration in ELT3-245 is increased β-catenin signaling. We propose that a subset of cells in TSC and LAM lesions have additional signaling aberrations, thus possess the potential to become resistant to rapalogs. Alternatively, when challenged with rapalogs TSC-null cells are reprogrammed to express mesenchymal-like markers. These signaling changes could be further exploited to induce clinically-relevant long-term remissions.
Collapse
Affiliation(s)
- Matthildi Valianou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Natalia Filippidou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Daniel L Johnson
- Office of Research Molecular Bioinformatics Core, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Erik Y Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Xiaolei Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yiyang Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jane J Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John J Bissler
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA.,Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aristotelis Astrinidis
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA. .,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA. .,Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
5
|
Limsakul P, Peng Q, Wu Y, Allen ME, Liang J, Remacle AG, Lopez T, Ge X, Kay BK, Zhao H, Strongin AY, Yang XL, Lu S, Wang Y. Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface. Cell Chem Biol 2018; 25:370-379.e4. [PMID: 29396288 DOI: 10.1016/j.chembiol.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/01/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022]
Abstract
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells.
Collapse
Affiliation(s)
- Praopim Limsakul
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Molly E Allen
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Albert G Remacle
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alex Y Strongin
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Thiagarajan D, O’ Shea K, Sreejit G, Ananthakrishnan R, Quadri N, Li Q, Schmidt AM, Gabbay K, Ramasamy R. Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion. PLoS One 2017; 12:e0188981. [PMID: 29190815 PMCID: PMC5708684 DOI: 10.1371/journal.pone.0188981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Aldose reductase (AR: human, AKR1B1; mouse, AKR1B3), the first enzyme in the polyol pathway, plays a key role in mediating myocardial ischemia/reperfusion (I/R) injury. In earlier studies, using transgenic mice broadly expressing human AKR1B1 to human-relevant levels, mice devoid of Akr1b3, and pharmacological inhibitors of AR, we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects the heart from I/R injury. In this study, our objective was to investigate if AR modulates the β-catenin pathway and consequent activation of mesenchymal markers during I/R in the heart. To test this premise, we used two different experimental models: in vivo, Akr1b3 null mice and wild type C57BL/6 mice (WT) were exposed to acute occlusion of the left anterior descending coronary artery (LAD) followed by recovery for 48 hours or 28 days, and ex-vivo, WT and Akr1b3 null murine hearts were perfused using the Langendorff technique (LT) and subjected to 30 min of global (zero-flow) ischemia followed by 60 min of reperfusion. Our in vivo results reveal reduced infarct size and improved functional recovery at 48 hours in mice devoid of Akr1b3 compared to WT mice. We demonstrate that the cardioprotection observed in Akr1b3 null mice was linked to acute activation of the β-catenin pathway and consequent activation of mesenchymal markers and genes linked to fibrotic remodeling. The increased activity of the β-catenin pathway at 48 hours of recovery post-LAD was not observed at 28 days post-infarction, thus indicating that the observed increase in β-catenin activity was transient in the mice hearts devoid of Akr1b3. In ex vivo studies, inhibition of β-catenin blocked the cardioprotection observed in Akr1b3 null mice hearts. Taken together, these data indicate that AR suppresses acute activation of β-catenin and, thereby, blocks consequent induction of mesenchymal markers during early reperfusion after myocardial ischemia. Inhibition of AR might provide a therapeutic opportunity to optimize cardiac remodeling after I/R injury.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Karen O’ Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Gopalkrishna Sreejit
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Qing Li
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Kenneth Gabbay
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
8
|
Scherbakov AM, Levina IS, Kulikova LE, Fedyushkina IV, Skvortsov VS, Veselovsky AV, Kuznetsov YV, Zavarzin IV. Cytotoxic activity and molecular modeling of progestins, pregna-D′-pentaranes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Scherbakov AM, Levina IS, Kulikova LE, Fedyushkina IV, Skvortsov VS, Veselovsky AV, Kuznetsov YV, Zavarzin IV. [Cytotoxic activity and molecular modeling of progestins - pregna-D'-pentarans]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:290-4. [PMID: 27420621 DOI: 10.18097/pbmc20166203290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytotoxic activity of synthetic progestins (pregna-D'-pentaranes) II-V full agonists of the progesterone receptor (PR) for PR-positive and PR-negative cells of human breast carcinoma was studied. These compounds were more active in the PR-positive MCF-7 cells than in the PR-negative MDA-MB-453 cells. Cytotoxic effects of tested compounds against normal epithelial MDCK cells were not found. Molecular modeling of studied steroids with PR showed that all progestins with close energy values can bind to the ligand binding domain (LBD) of PR and the magnitude of the energy exceeds the value estimated for the progesterone molecule. Thus, the studied progestins are active against different molecular subtypes of breast cancer and represent a promising class of chemical compounds for oncology.
Collapse
Affiliation(s)
| | - I S Levina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - L E Kulikova
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - I V Fedyushkina
- Institute of Biomedical Chemistry, Moscow, Russia; SRI of Physical-Chemical Medicine Federal Medical and Biological Agency, Moscow, Russia
| | | | | | - Y V Kuznetsov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - I V Zavarzin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
MT1-MMP Inhibits the Activity of Bst-2 via Their Cytoplasmic Domains Dependent Interaction. Int J Mol Sci 2016; 17:ijms17060818. [PMID: 27240342 PMCID: PMC4926352 DOI: 10.3390/ijms17060818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/30/2023] Open
Abstract
Bst-2 (bone marrow stromal cell antigen 2) is a type II membrane protein, and it acts as a tetherin to inhibit virion releasing from infectious cells. Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease. It plays a pivotal role in cellular growth and migration by activating proMMP-2 into active MMP2. Our results here elaborate that MT1-MMP inhibits the tetherin activity of Bst-2 by interacting with Bst-2, and the cytoplasmic domains of both Bst-2 and MT1-MMP play critical roles within this interaction. Based on our experimental data, the assays for virion release and co-immunoprecipitation have clearly demonstrated that the activity of Bst-2 is markedly inhibited by MT1-MMP via their interaction; and both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are important in the interaction. Immunostaining and Confocal Microscopy assay shows that MT1-MMP interacts with Bst-2 to form granular particles trafficking into cytoplasm from membrane and, finally, results in Bst-2 and MT1-MMP both being inhibited. In addition, mutant experiments elucidate that the N-terminal domain of Bst-2 is not only important in relating to the activity of Bst-2 itself, but is important for inhibiting the MT1-MMP/proMMP2/MMP2 pathway. These findings suggest that MT1-MMP is a novel inhibitor of Bst-2 in MT1-MMP expressed cell lines and also indicate that both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are crucial in down-regulation.
Collapse
|
11
|
Chang JH, Huang YH, Cunningham CM, Han KY, Chang M, Seiki M, Zhou Z, Azar DT. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol 2015; 61:478-97. [PMID: 26647161 DOI: 10.1016/j.survophthal.2015.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christy M Cunningham
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Motoharu Seiki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
12
|
Zhang Y, Wahl LM. Cytokine-induced monocyte MMP-1 is negatively regulated by GSK-3 through a p38 MAPK-mediated decrease in ERK1/2 MAPK activation. J Leukoc Biol 2015; 97:921-927. [PMID: 25714802 DOI: 10.1189/jlb.3a0413-235r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 01/02/2015] [Accepted: 01/30/2015] [Indexed: 12/28/2022] Open
Abstract
Elucidation of the signal transduction events leading to the production of MMPs by monocytes/macrophages may provide insights into the mechanisms involved in the destruction of connective tissue associated with chronic inflammatory lesions. Here, we show that GSK-3 is a negative regulator of cytokine-induced MMP-1 production by monocytes. Inhibition of monocyte GSK-3 pharmacologically with SB216763 or GSK-3β siRNA caused a significant enhancement of MMP-1 by TNF-α- and GM-CSF-activated monocytes, indicating that induction of MMP-1 by TNF-α and GM-CSF involved phosphorylation/inactivation of GSK-3. TNF-α- and GM-CSF-induced phosphorylation of GSK-3 and subsequent MMP-1 production was blocked with the PKC inhibitor Gö6976 but not by the AKT1/2 inhibitor AKT VIII, showing that cytokine phosphorylation of GSK-3 occurs primarily through a PKC pathway. Inhibition of GSK-3 resulted in decreased phosphorylation of p38 MAPK with a corresponding increase in phosphorylation of ERK1/2 MAPK. Enhanced MMP-1 production by treatment with SB216763 was a result of increased ERK1/2 activation, as demonstrated by inhibition of MMP-1 by PD98059, a specific ERK1/2 inhibitor. Conversely, the p38 MAPK inhibitor SB203580 enhanced cytokine activation of ERK1/2 and the production of MMP-1 similar to that of SB216763. These findings demonstrate that the degree of cytokine-mediated phosphorylation/inhibition of GSK-3 determines the level of MMP-1 production through a mechanism involving decreased activation of p38 MAPK, a negative regulator of ERK1/2 required for cytokine-induced production of MMP-1 by monocytes.
Collapse
Affiliation(s)
- Yahong Zhang
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Larry M Wahl
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Thang ND, Yajima I, Kumasaka MY, Kato M. Bidirectional functions of arsenic as a carcinogen and an anti-cancer agent in human squamous cell carcinoma. PLoS One 2014; 9:e96945. [PMID: 24816914 PMCID: PMC4016145 DOI: 10.1371/journal.pone.0096945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/13/2014] [Indexed: 11/18/2022] Open
Abstract
Bidirectional cancer-promoting and anti-cancer effects of arsenic for cancer cells have been revealed in previous studies. However, each of these effects (cancer-promoting or anti-cancer) was found in different cells at different treated-concentration of arsenic. In this study, we for the first time indicated that arsenic at concentration of 3 µM, equal to average concentration in drinking water in cancer-prone areas in Bangladesh, simultaneously expressed its bidirectional effects on human squamous cell carcinoma HSC5 cells with distinct pathways. Treatment with 3 µM of arsenic promoted cell invasion via upregulation of expression of MT1-MMP and downregulation of expression of p14ARF and simultaneously induced cell apoptosis through inhibition of expression of N-cadherin and increase of expression of p21(WAF1/CIP1) at both transcript and protein levels in HSC5 cells. We also showed that inhibition of MT1-MMP expression by NSC405020 resulted in decrease of arsenic-mediated invasion of HSC5 cells involving decrease in phosphorylated extracellular signal-regulated kinases (pERK). Taken together, our biological and biochemical findings suggested that arsenic expressed bidirectional effects as a carcinogen and an anti-cancer agent in human squamous cell carcinoma HSC5 cells with distinct pathways. Our results might play an important scientific evident for further studies to find out a better way in treatment of arsenic-induced cancers, especially in squamous cell carcinoma.
Collapse
Affiliation(s)
- Nguyen Dinh Thang
- Department of Biochemistry and Plant Physiology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- * E-mail:
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| | - Mayuko Y. Kumasaka
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
14
|
Lu H, Hu L, Yu L, Wang X, Urvalek AM, Li T, Shen C, Mukherjee D, Lahiri SK, Wason MS, Zhao J. KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene 2013; 33:2909-17. [PMID: 23812425 PMCID: PMC3929536 DOI: 10.1038/onc.2013.247] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/24/2013] [Accepted: 05/19/2013] [Indexed: 12/13/2022]
Abstract
Krüppel-like factor 8 (KLF8) regulates critical gene transcription associated with cancer. The underlying mechanisms, however, remain largely unidentified. We have recently demonstrated that KLF8 expression enhances the activity but not expression of matrix metalloproteinase-2 (MMP2), the target substrate of MMP14. Here, we report a novel KLF8 to MMP14 signaling that promotes human breast cancer invasion and metastasis. Using cell lines for inducible expression and knockdown of KLF8, we demonstrate that KLF8 promotes MMP14 expression at the transcriptional level. Knocking down KLF8 expression inhibited the breast cancer cell invasion both in vitro and in vivo as well as the lung metastasis in mice, which could be rescued by ectopic expression of MMP14. Promoter reporter assays and oligonucleotide and chromatin immunoprecipitations determined that KLF8 activates the human MMP14 gene promoter by both directly acting on the promoter and indirectly via promoting the nuclear translocation of β-catenin, the expression of T-cell factor-1 (TCF1) and subsequent activation of the promoter by the β-catenin/TCF1 complex. Inhibition of focal adhesion kinase (FAK) using pharmacological inhibitor, RNA interference or knockout showed that the cell surface presentation of active MMP14 downstream of KLF8 depends on FAK expression and activity. Taken together, this work identified novel signaling mechanisms by which KLF8 and FAK work together to promote the extracellular activity of MMP14 critical for breast cancer metastasis.
Collapse
Affiliation(s)
- H Lu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - L Hu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - L Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - X Wang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - A M Urvalek
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - T Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - C Shen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - D Mukherjee
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - S K Lahiri
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - M S Wason
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - J Zhao
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
15
|
Dong Z, Xu X, Du L, Yang Y, Cheng H, Zhang X, Li Z, Wang L, Li J, Liu H, Qu X, Wang C. Leptin-mediated regulation of MT1-MMP localization is KIF1B dependent and enhances gastric cancer cell invasion. Carcinogenesis 2013; 34:974-83. [PMID: 23354307 DOI: 10.1093/carcin/bgt028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leptin overexpression is closely correlated with gastric cancer (GC) invasion, but its exact effect and the underlying mechanism in tumorigenesis remain poorly understood. Membrane type 1-matrix metalloproteinase (MT1-MMP), a surface-anchored 'master switch' proteinase, is overexpressed and plays crucial roles in tumor invasion. Here, we characterized the influence of leptin on the generation and surface localization of MT1-MMP in GC and elucidated its molecular mechanisms. Our results revealed that leptin promoted GC cell invasion in vitro by upregulating MT1-MMP expression. Furthermore, cell surface biotinylation assay and flow cytometry demonstrated that the surface expression of MT1-MMP was also enhanced by leptin, and knockdown of kinesin family member 1B (KIF1B, a microtubule plus end-directed monomeric motor protein) by small interference RNA inhibited this process. Notably, coimmunoprecipitation analysis indicated that leptin enhanced the interaction of MT1-MMP with KIF1B in a time-dependent manner, which consequently contributed to GC cell invasion. Moreover, leptin increased MT1-MMP or KIF1B expression by the protein kinase B (AKT) pathway and extracellular signal-regulated kinase 1/2 partially participated in this process. However, only AKT was implicated in the leptin-mediated membrane localization of MT1-MMP. Immunohistochemistry analysis revealed that leptin, MT1-MMP and KIF1B are overexpressed in GC tissues, and they positively correlated with clinical stage and lymph node metastasis. These observations indicate that this regulatory network exists in vivo. Taken together, our findings suggest that leptin is an effective intracellular stimulator of MT1-MMP and that leptin-enhanced cell surface localization of MT1-MMP is dependent on KIF1B, which consequently plays a critical role in GC invasion.
Collapse
Affiliation(s)
- Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 2012; 288:141-51. [PMID: 23152495 DOI: 10.1074/jbc.m112.431411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60622, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gu G, Zhao D, Yin Z, Liu P. BST-2 binding with cellular MT1-MMP blocks cell growth and migration via decreasing MMP2 activity. J Cell Biochem 2012; 113:1013-21. [PMID: 22065321 DOI: 10.1002/jcb.23433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MT1-MMP (membrane type 1-matrix metalloproteinase) plays important roles in cell growth and tumor invasion via mediating cleavage of MMP2/gelatinase A and a variety of substrates including type I collagen. BST-2 (bone marrow stromal cell antigen 2) is a membrane tetherin whose expression dramatically reduces the release of a broad range of enveloped viruses including HIV from infected cells. In this study, we provided evidence that both transient and IFN-α induced BST-2 could decrease the activity of MMP2 via binding to cellular MT1-MMP on its C-terminus and inhibiting its proteolytic activity; and finally block cell growth and migration. Zymography gel and Western blot experiments demonstrated that BST-2 decreased MMP2 activity, but no effect on the expression of MMP2 and MT1-MMP genes. Confocal and immunoprecipitation data showed that BST-2 co-localized and interacted with MT1-MMP. This interaction inhibited the proteolytic enzyme activity of MT1-MMP, and blocked the activation of proMMP2. Experimental results of C-terminus deletion mutant of MT1-MMP showed that activity of MMP2 was no change and also no interaction existed between the mutant and BST-2 after co-transfection with the mutant and BST-2. It meant that C-terminus of MT1-MMP played a key role in the interaction with BST-2. In addition, cell growth in 3D type I collagen gel lattice and cell migration were all inhibited by BST-2. Taken together, BST-2, as a membrane protein and a tetherin of enveloped viruses, was a novel inhibitor of MT1-MMP and could be considerable as an inhibitor of cancer cell growth and migration on clinic.
Collapse
Affiliation(s)
- Gongping Gu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210097, PR China
| | | | | | | |
Collapse
|
18
|
Chang TC, Liu CC, Hsing EW, Liang SM, Chi YH, Sung LY, Lin SP, Shen TL, Ko BS, Yen BL, Yet SF, Wu KK, Liou JY. 14-3-3σ regulates β-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3β. PLoS One 2012; 7:e40193. [PMID: 22768254 PMCID: PMC3387134 DOI: 10.1371/journal.pone.0040193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. SIGNIFICANCE Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion.
Collapse
Affiliation(s)
- Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chia Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - En-Wei Hsing
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - B. Linju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K. Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (JYL); (KKW)
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (JYL); (KKW)
| |
Collapse
|
19
|
Oh ST, Kim HS, Yoo NJ, Lee WS, Cho BK, Reichrath J. Increased immunoreactivity of membrane type-1 matrix metalloproteinase (MT1-MMP) and β-catenin in high-risk basal cell carcinoma. Br J Dermatol 2012; 165:1197-204. [PMID: 21729023 DOI: 10.1111/j.1365-2133.2011.10506.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although various immunohistological markers have been investigated to assess the aggressive characteristics of basal cell carcinoma (BCC), the role of membrane type-1 matrix metalloproteinase (MT1-MMP) has not been well established. OBJECTIVES To clarify the precise role of MT1-MMP in BCC, MT1-MMP expression was studied in various histological subtypes of BCC. MATERIALS AND METHODS High-risk subtypes of BCC were compared by assessing the expression of β-catenin and MT1-MMP. The tissue microarray technique was used for immunohistochemical staining. Fifty-eight samples were divided into six subtypes (10 nodular, 12 mixed, nine infiltrative, eight morphoeiform, 10 micro-nodular and nine basosquamous). Overall, the 10 nodular BCC samples were classified as low-risk BCC and the remaining 48 samples were classified as high-risk BCCs. RESULTS β-Catenin immunoreactivity was increased in the high-risk BCCs compared with the low-risk (nodular) BCC (P < 0·001). Nuclear β-catenin immunoreactivity was increased at the invading front of mixed BCC tumour islands compared with the upper portion of the lesion (P < 0·01). For the mixed BCC (P < 0·01), infiltrative BCC (P < 0·001), morphoeiform BCC (P < 0·001), micronodular BCC (P < 0·001) and basosquamous (P < 0·001) carcinoma, β-catenin immunoreactivity was increased at the invading front compared with nodular BCC. MT1-MMP immunoreactivity was increased in the high-risk BCCs compared with the low-risk (nodular) BCC (P < 0·01). The membranous MT1-MMP immunoreactivity was increased at the invading front of mixed BCC tumour islands compared with the upper portion of the lesions (P < 0·01). For the mixed (P < 0·01), infiltrative (P < 0·05), morphoeiform (P < 0·05), micronodular (P > 0·05) and basosquamous (P < 0·05) BCC, MT1-MMP immunoreactivity was also increased at the invading front compared with nodular BCC. CONCLUSIONS The results of this study suggest that MT1-MMP might be a novel marker for high-risk BCC. In addition, expression of both β-catenin and MT1-MMP was increased in high-risk BCC tumour cells, indicating that these two proteins may play an important role in locally invasive and highly destructive growth behaviour of high-risk BCCs.
Collapse
Affiliation(s)
- S T Oh
- Department of Dermatology, The Catholic University of Korea, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
20
|
He H, Ding F, Li Y, Luo A, Chen H, Wu C, Liu Z. Migfilin Regulates Esophageal Cancer Cell Motility through Promoting GSK-3β–Mediated Degradation of β-Catenin. Mol Cancer Res 2012; 10:273-81. [DOI: 10.1158/1541-7786.mcr-11-0419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|