1
|
Kim S, Park J, Ho JN, Kim D, Lee S, Jeon JS. 3D vascularized microphysiological system for investigation of tumor-endothelial crosstalk in anti-cancer drug resistance. Biofabrication 2023; 15:045016. [PMID: 37567223 DOI: 10.1088/1758-5090/acef99] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Despite the advantages of microfluidic system in drug screening, vascular systems responsible for the transport of drugs and nutrients have been hardly considered in the microfluidic-based chemotherapeutic screening. Considering the physiological characteristics of highly vascularized urinary tumors, we here investigated the chemotherapeutic response of bladder tumor cells using a vascularized tumor on a chip. The microfluidic chip was designed to have open-top region for tumor sample introduction and hydrophilic rail for spontaneous hydrogel patterning, which contributed to the construction of tumor-hydrogel-endothelium interfaces in a spatiotemporal on-demand manner. Utilizing the chip where intravascularly injected cisplatin diffuse across the endothelium and transport into tumor samples, chemotherapeutic responses of cisplatin-resistant or -susceptible bladder tumor cells were evaluated, showing the preservation of cellular drug resistance even within the chip. The open-top structure also enabled the direct harvest of tumor samples and post analysis in terms of secretome and gene expressions. Comparing the cisplatin efficacy of the cisplatin-resistant tumor cells in the presence or absence of endothelium, we found that the proliferation rates of tumor cells were increased in the vasculature-incorporated chip. These have suggested that our vascularized tumor chip allows the establishment of vascular-gel-tumor interfaces in spatiotemporal manners and further enables investigations of chemotherapeutic screening.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Danhyo Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat Commun 2021; 12:4872. [PMID: 34381052 PMCID: PMC8358048 DOI: 10.1038/s41467-021-24998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B’s necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis. UNC5B is a Netrin-1 receptor expressed in endothelial cells that in the absence of ligand induces apoptosis. Here the authors identify an UNC5B splicing isoform that is insensitive to the pro-survival ligand Netrin-1 and is required for apoptosis-dependent blood vessel development.
Collapse
|
3
|
Kim S, Park J, Kim J, Jeon JS. Microfluidic Tumor Vasculature Model to Recapitulate an Endothelial Immune Barrier Expressing FasL. ACS Biomater Sci Eng 2021; 7:1230-1241. [PMID: 33586426 DOI: 10.1021/acsbiomaterials.0c01542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fas ligand (FasL, CD178) is known to bind to its receptor (Fas, CD95) and mediate cellular apoptosis to maintain immune homeostasis. Recently, it has been recognized that tumor cells and their microenvironments allow an adjacent vascular endothelium to express the FasL on its cell membrane, utilizing the endothelium as an immune barrier to kill antitumor cytotoxic T cells. Here, a microfluidic tumor vasculature model is presented, which enables the recapitulation of an endothelial immune barrier expressing FasL. The in vitro three-dimensional model replicates enhanced endothelial FasL expression under the hypoxic tumor microenvironment. Apoptosis rates of FasL-susceptible target cells are augmented under the microenvironment with upregulated FasL but are consequently abrogated by administrations of pharmacological inhibitions, FasL-Fas blockades. The microfluidic system suggests its promising applications in elucidating complex immunosuppressive mechanisms of the tumor microenvironment and screening of cell-mediated immunotherapies as a preclinical model.
Collapse
Affiliation(s)
- Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeongsik Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Er Saw P, Jon S. Understanding of the Entry Mechanism of Nanoparticles into Tumors Determines the Future Direction of Nanomedicine Development. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Korea
| |
Collapse
|
5
|
Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. Applications of Nanotechnology in Daily Life. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00004-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Jayaraman A, Kumar P, Marin S, de Atauri P, Mateo F, M. Thomson T, J. Centelles J, F. Graham S, Cascante M. Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS One 2018; 13:e0192175. [PMID: 29466368 PMCID: PMC5821452 DOI: 10.1371/journal.pone.0192175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Tumour angiogenesis is an important hallmark of cancer and the study of its metabolic adaptations, downstream to any cellular change, can reveal attractive targets for inhibiting cancer growth. In the tumour microenvironment, endothelial cells (ECs) interact with heterogeneous tumour cell types that drive angiogenesis and metastasis. In this study we aim to characterize the metabolic alterations in ECs influenced by the presence of tumour cells with extreme metastatic abilities. Human umbilical vein endothelial cells (HUVECs) were subjected to different microenvironmental conditions, such as the presence of highly metastatic PC-3M and highly invasive PC-3S prostate cancer cell lines, in addition to the angiogenic activator vascular endothelial growth factor (VEGF), under normoxia. Untargeted high resolution liquid chromatography-mass spectrometry (LC-MS) based metabolomics revealed significant metabolite differences among the various conditions and a total of 25 significantly altered metabolites were identified including acetyl L-carnitine, NAD+, hypoxanthine, guanine and oleamide, with profile changes unique to each of the experimental conditions. Biochemical pathway analysis revealed the importance of fatty acid oxidation and nucleotide salvage pathways. These results provide a global metabolic preview that could help in selectively targeting the ECs aiding in either cancer cell invasion or metastasis in the heterogeneous tumour microenvironment.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Praveen Kumar
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro de Atauri
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesca Mateo
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Timothy M. Thomson
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
| | - Josep J. Centelles
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Stewart F. Graham
- Beaumont Health System, Beaumont Research Institute, Royal Oak, Michigan, United States of America
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
8
|
Zhang Y, Fang N, You J, Zhou Q. [Advances in the relationship between tumor cell metabolism and tumor metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:812-8. [PMID: 25404272 PMCID: PMC6000352 DOI: 10.3779/j.issn.1009-3419.2014.11.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Intracellular nutrients and the rate of energy flowing in tumor cells are often higher than that in normal cells due to the prolonged stress of tumor-specific microenvironment. In this context, the metabolism of tumor cells provides the fuel of bio-synthesis and energy required for tumor metastasis. Consistent with this, the abnormal metabolism such as extremely active glucose metabolism and excessive accumulating of fatty acid is also discovered in metastatic tumors. Previous Studies have confirmed that the regulation of tumor metabolism can affect the tumor metastasis, and some of these have been successfully applied in clinical effective, positive way. Thus, targeting metabolism of tumor cells might be an effectively positive way to prevent the metastasis of tumor. So, our review is focused on the research development of the relationship between tumor metabolism and metastasis as well as the underlying mechanism.
Collapse
Affiliation(s)
- Yalong Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Nianzhen Fang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiacong You
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
9
|
Menon NV, Chuah YJ, Cao B, Lim M, Kang Y. A microfluidic co-culture system to monitor tumor-stromal interactions on a chip. BIOMICROFLUIDICS 2014; 8:064118. [PMID: 25553194 PMCID: PMC4257957 DOI: 10.1063/1.4903762] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/26/2014] [Indexed: 05/08/2023]
Abstract
The living cells are arranged in a complex natural environment wherein they interact with extracellular matrix and other neighboring cells. Cell-cell interactions, especially those between distinct phenotypes, have attracted particular interest due to the significant physiological relevance they can reveal for both fundamental and applied biomedical research. To study cell-cell interactions, it is necessary to develop co-culture systems, where different cell types can be cultured within the same confined space. Although the current advancement in lab-on-a-chip technology has allowed the creation of in vitro models to mimic the complexity of in vivo environment, it is still rather challenging to create such co-culture systems for easy control of different colonies of cells. In this paper, we have demonstrated a straightforward method for the development of an on-chip co-culture system. It involves a series of steps to selectively change the surface property for discriminative cell seeding and to induce cellular interaction in a co-culture region. Bone marrow stromal cells (HS5) and a liver tumor cell line (HuH7) have been used to demonstrate this co-culture model. The cell migration and cellular interaction have been analyzed using microscopy and biochemical assays. This co-culture system could be used as a disease model to obtain biological insight of pathological progression, as well as a tool to evaluate the efficacy of different drugs for pharmaceutical studies.
Collapse
Affiliation(s)
- Nishanth V Menon
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Mayasari Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Yuejun Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
10
|
CHEN YESHAN, ZHANG SHENG, PENG GANG, YU JING, LIU TAO, MENG RUI, LI ZHENYU, ZHAO YANXIA, WU GANG. Endothelial NO synthase and reactive oxygen species mediated effect of simvastatin on vessel structure and function: Pleiotropic and dose-dependent effect on tumor vascular stabilization. Int J Oncol 2013; 42:1325-36. [DOI: 10.3892/ijo.2013.1833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/18/2013] [Indexed: 11/06/2022] Open
|
11
|
ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One 2013; 8:e54125. [PMID: 23326583 PMCID: PMC3543320 DOI: 10.1371/journal.pone.0054125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/06/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2) release remain unclear. PRINCIPAL FINDINGS Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox), Jak2, STAT3, and cPLA(2) markedly reduced ATPγS-induced COX-2 expression and PGE(2) production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox) translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2) production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2) signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.
Collapse
|
12
|
Blackburn G, Scott TG, Bayer IS, Ghosh A, Biris AS, Biswas A. Bionanomaterials for bone tumor engineering and tumor destruction. J Mater Chem B 2013; 1:1519-1534. [DOI: 10.1039/c3tb00536d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 2012; 13:10697-10721. [PMID: 23109817 PMCID: PMC3472709 DOI: 10.3390/ijms130910697] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/02/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Due to the growing importance of cellular signaling mediated by reactive oxygen species (ROS), proteins that are reversibly modulated by these reactant molecules are of high interest. In this context, protein kinases and phosphatases, which act coordinately in the regulation of signal transduction through the phosphorylation and dephosphorylation of target proteins, have been described to be key elements in ROS-mediated signaling events. The major mechanism by which these proteins may be modified by oxidation involves the presence of key redox-sensitive cysteine residues. Protein kinase C (PKC) is involved in a variety of cellular signaling pathways. These proteins have been shown to contain a unique structural feature that is susceptible to oxidative modification. A large number of scientific studies have highlighted the importance of ROS as a second messenger in numerous cellular processes, including cell proliferation, gene expression, adhesion, differentiation, senescence, and apoptosis. In this context, the goal of this review is to discuss the mechanisms by which PKCs are modulated by ROS and how these processes are involved in the cellular response.
Collapse
Affiliation(s)
- Daniela Cosentino-Gomes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2562-6781; Fax: +55-21-2270-8647
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; E-Mails: (N.R.-M.); (J.R.M.-F.)
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Aranda J, Motiejunaite R, Im E, Kazlauskas A. Diabetes disrupts the response of retinal endothelial cells to the angiomodulator lysophosphatidic acid. Diabetes 2012; 61:1225-33. [PMID: 22415872 PMCID: PMC3331768 DOI: 10.2337/db11-1189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objectives of this study were to investigate how diabetes mellitus (DM) influences responsiveness of retinal neovessels to lysophosphatidic acid (LPA) and to elucidate the underlying mechanism. To this end, we used an ex vivo assay in which neovessels sprouted from retinal explants (isolated from either control or DM mice) when cultured between two layers of collagen and in the presence of vascular endothelial growth factor-A. While DM had no effect on the formation of neovessels, it prevented LPA-induced regression. High-glucose (HG) treatment of retinal explants mimicked the DM phenotype. Similarly, primary retinal endothelial cells (RECs), which were subjected to HG treatment, organized into tubes that were resistant to LPA. HG caused LPA resistance within RECs by elevating ROS, which activated Src-family kinases that stimulated the extracellular signal-related kinase (Erk) pathway, which antagonized LPA-mediated signaling events that were required for regression. This ROS/Src/Erk pathway mechanism appeared to be the same route by which DM induced LPA resistance of retinal neovessels. We conclude that DM/HG reprograms signaling pathways in RECs to induce a state of LPA resistance.
Collapse
Affiliation(s)
- Jorge Aranda
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Ruta Motiejunaite
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Biochemistry and Biophysics, Vilnius University, Vilnius, Lithuania
| | - Eunok Im
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Andrius Kazlauskas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Corresponding author: Andrius Kazlauskas,
| |
Collapse
|
15
|
Shiraki A, Oyama JI, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K, Sakamoto Y, Kotooka N, Hirase T, Node K. The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012; 221:375-82. [PMID: 22284365 DOI: 10.1016/j.atherosclerosis.2011.12.039] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Glucagon-like peptide 1 (GLP-1), one of the incretin hormones, has been reported to increase positive inotropic activity in cardiac myocytes and protect against myocardial injury. However, the effects upon endothelial cells and the mechanisms involved are not fully understood. We assessed the hypothesis that GLP-1 has protective effects against inflammation and oxidative stress on human endothelial cells. METHODS AND RESULTS The effects of the GLP-1 analog liraglutide upon TNF-α-induced injury of the human umbilical vein endothelial cells (HUVECs) were evaluated. First, ROS induced by TNF-α was measured by staining with CM-H(2)DCFDA. Intracellular ROS production of HUVECs was significantly decreased in a dose-dependent manner until 30 nM while liraglutide inhibited the induction of gp91(phox) and p22(phox), subunit of NADPH oxidase, by TNF-α. In addition, protein levels of SOD-2, catalase and GPx were significantly increased by liraglutide. Second, rapid translocation of PKC-α into the membrane following TNF-α was evident. Liraglutide significantly inhibited this very rapid TNF-α-induced translocation of PKC-α into membrane at 2.5 min. Third, liraglutide significantly inhibited NF-κB activation and upregulated I-κB family while phosphorylation of IKK-α/β, which is upstream of NF-κB signaling, was also downregulated after 15 min of TNF-α treatment. Finally, liraglutide inhibited apoptosis of HUVEC and expression of Pentraxin-3 induced by TNF-α. CONCLUSION Liraglutide exerts marked anti-oxidative and anti-inflammatory effects on endothelial cells with inhibition of PKC-α, NADPH oxidase, NF-κB signaling and upregulation of protective anti-oxidative enzymes.
Collapse
Affiliation(s)
- Aya Shiraki
- Saga University Faculty of Medicine Department of Cardiovascular and Renal Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011; 12:39-50. [PMID: 22193407 DOI: 10.1038/nrc3180] [Citation(s) in RCA: 825] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis accounts for the vast majority of cancer deaths. The unique challenges for treating metastases include their small size, high multiplicity and dispersion to diverse organ environments. Nanoparticles have many potential benefits for diagnosing and treating metastatic cancer, including the ability to transport complex molecular cargoes to the major sites of metastasis, such as the lungs, liver and lymph nodes, as well as targeting to specific cell populations within these organs. This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.
Collapse
Affiliation(s)
- Avi Schroeder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
All human cells, including cancer cells, need oxygen and nutrients to survive. A widely used strategy to combat cancer is therefore the starvation of tumor cells by cutting off the blood supply of tumors. Clinical experience indeed shows that tumor progression can be delayed by anti-angiogenic agents. However, emerging evidence indicates that in certain experimental conditions, hypoxia as a result of pruning of the tumor microvasculature can promote tumor invasion and metastasis, although these findings are contextual and debated. Genetic studies in mice unveiled that vascular-targeting strategies that avoid aggravation of tumor hypoxia or even promote tumor oxygenation might prevent such an invasive metastatic switch. In this article, we will discuss the emerging link between hypoxia signaling and the various steps of metastasis.
Collapse
|