1
|
Colvin EK, Howell VM, Mok SC, Samimi G, Vafaee F. Expression of long noncoding RNAs in cancer-associated fibroblasts linked to patient survival in ovarian cancer. Cancer Sci 2020; 111:1805-1817. [PMID: 32058624 PMCID: PMC7226184 DOI: 10.1111/cas.14350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor microenvironment and are responsible for producing the desmoplastic reaction that is a poor prognostic factor in ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to play important roles in cancer. However, very little is known about the role of lncRNAs in the tumor microenvironment. We aimed to identify lncRNAs expressed in ovarian CAFs that were associated with patient survival and used computational approaches to predict their function. Increased expression of 9 lncRNAs and decreased expression of 1 lncRNA in ovarian CAFs were found to be associated with poorer overall survival. A "guilt-by-association" approach was used to predict the function of these lncRNAs. In particular, MIR155HG was predicted to play a role in immune response. Further investigation revealed high MIR155HG expression to be associated with higher infiltrates of immune cell subsets. In conclusion, these data indicate expression on several lncRNAs in CAFs are associated with patient survival and are likely to play an important role in regulating CAF function.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Sydney, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Samuel C Mok
- Division of Surgery, Department of Gynecologic Oncology and Reproductive Medicine Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Goli Samimi
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
3
|
Vafaee F, Colvin EK, Mok SC, Howell VM, Samimi G. Functional prediction of long non-coding RNAs in ovarian cancer-associated fibroblasts indicate a potential role in metastasis. Sci Rep 2017; 7:10374. [PMID: 28871211 PMCID: PMC5583324 DOI: 10.1038/s41598-017-10869-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to the poor prognosis of ovarian cancer. Unlike in tumour cells, DNA mutations are rare in CAFs, raising the likelihood of other mechanisms that regulate gene expression such as long non-coding RNAs (lncRNAs). We aimed to identify lncRNAs that contribute to the tumour-promoting phenotype of CAFs. RNA expression from 67 ovarian CAF samples and 10 normal ovarian fibroblast (NOF) samples were analysed to identify differentially expressed lncRNAs and a functional network was constructed to predict those CAF-specific lncRNAs involved in metastasis. Of the 1,970 lncRNAs available for analysis on the gene expression array used, 39 unique lncRNAs were identified as differentially expressed in CAFs versus NOFs. The predictive power of differentially expressed lncRNAs in distinguishing CAFs from NOFs were assessed using multiple multivariate models. Interrogation of known transcription factor-lncRNA interactions, transcription factor-gene interactions and construction of a context-specific interaction network identified multiple lncRNAs predicted to play a role in metastasis. We have identified novel lncRNAs in ovarian cancer that are differentially expressed in CAFs compared to NOFs and are predicted to contribute to the metastasis-promoting phenotype of CAFs.
Collapse
Affiliation(s)
- Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia. .,Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.,Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
| | - Goli Samimi
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Jeong J, Bae H, Lim W, Bazer FW, Song G. Diethylstilbestrol regulates expression of avian apolipoprotein D during regression and recrudescence of the oviduct and epithelial-derived ovarian carcinogenesis. Domest Anim Endocrinol 2015; 52:82-9. [PMID: 25929245 DOI: 10.1016/j.domaniend.2015.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/08/2015] [Accepted: 03/27/2015] [Indexed: 01/02/2023]
Abstract
Apolipoprotein D (APOD) is a glycoprotein which is widely expressed in mammalian tissues. It is structurally and functionally similar to the lipocalins which are multiple lipid-binding proteins that transport hydrophobic ligands and other small hydrophobic molecules, including cholesterol and several steroid hormones. Although multiple functions for APOD in various tissues have been reported, its expression, biological function, and hormonal regulation in the female reproductive system are not known. Thus, in this study, we focused on correlations between APOD and estrogen during development, differentiation, regression, and regeneration of the oviduct in chickens and in the development of ovarian carcinogenesis in laying hens. Results of the present study indicated that APOD messenger RNA (mRNA) expression increased (P < 0.001) in the luminal and glandular (GE) epithelia of the chicken oviduct in response to diethylstilbestrol (a nonsteroidal synthetic estrogen). In addition, the expression of APOD mRNA and protein decreased (P < 0.001) as the oviduct regressed during induced molting, and gradually increased (P < 0.001) with abundant expression in GE of the oviduct during recrudescence after molting. Furthermore, APOD mRNA and protein were predominantly localized in GE of cancerous, but not normal ovaries from laying hens. Collectively, results of the present study suggest that APOD is a novel estrogen-stimulated gene in the chicken oviduct which likely regulates growth, differentiation, and remodeling of the oviduct during oviposition cycles. Moreover, up-regulated expression of APOD in epithelial cell-derived ovarian cancerous tissue suggests that it could be a candidate biomarker for early detection and treatment of ovarian cancer in laying hens and in women.
Collapse
Affiliation(s)
- J Jeong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - H Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - W Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - F W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, USA
| | - G Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Lim W, Song G. Pivotal roles for hormonally regulated expression of the HEP21 gene in the reproductive tract of chickens for oviduct development and in ovarian carcinogenesis. Domest Anim Endocrinol 2014; 48:136-44. [PMID: 24906939 DOI: 10.1016/j.domaniend.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/22/2014] [Accepted: 03/29/2014] [Indexed: 01/11/2023]
Abstract
Hen egg protein (HEP21) is a 21-kDa secreted protein and has a single copy of the Ly6/uPAR domain. Although HEP21 is expressed primarily in the chicken oviduct, its biological function(s) in the reproductive system of chickens is not known. Thus, in the present study, we investigated expression patterns of HEP21 with respect to hormonal regulation, oviduct development, changes in expression in laying hens undergoing induced molting, and in the development of ovarian carcinogenesis in laying hens. Results of present study indicated that HEP21 messenger RNA (mRNA) expression increased (P < 0.001) in the chicken oviduct in response to estrogen. In situ hybridization analyses revealed expression of HEP21 mRNA predominantly in glandular (GE) and luminal epithelia of the magnum of the chicken oviduct in response to estrogen. The expression of HEP21 mRNA decreased (P < 0.001) as the oviduct regressed during induced molting and increased (P < 0.001) with recrudescence of the oviduct following molting. HEP21 mRNA was most abundant in GE of the oviduct during recrudescence, but not during oviduct regression following induced molting. Moreover, we found abundant expression of HEP21 in GE of cancerous ovaries, but not in normal ovaries of hens. Collectively, results of present study suggest that HEP21 is an estrogen-responsive gene in the oviduct of hens that likely regulates development of the chicken oviduct, and egg production and formation. Furthermore, there is increased expression of HEP21 in epithelial-derived ovarian cancer suggesting that HEP21 could be used for diagnosis and monitoring carcinogenesis in laying hens and in women.
Collapse
Affiliation(s)
- W Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - G Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lim CH, Lim W, Jeong W, Lee JY, Bae SM, Kim J, Han JY, Bazer FW, Song G. Avian WNT4 in the female reproductive tracts: potential role of oviduct development and ovarian carcinogenesis. PLoS One 2013; 8:e65935. [PMID: 23843947 PMCID: PMC3699571 DOI: 10.1371/journal.pone.0065935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/02/2013] [Indexed: 12/21/2022] Open
Abstract
The wingless-type MMTV integration site family of proteins (WNTs) is highly conserved secreted lipid-modified signaling molecules that play a variety of pivotal roles in developmental events such as embryogenesis, tissue homeostasis and cell polarity. Although, of these proteins, WNT4 is known to be involved in genital development in fetuses of mammalian species, its role is unknown in avian species. Therefore, in this study, we investigated expression profiles, as well as hormonal and post-transcriptional regulation of WNT4 expression in the reproductive tract of female chickens. Results of this study demonstrated that WNT4 is most abundant in the stromal and luminal epithelial cells of the isthmus and shell gland of the oviduct, respectively. WNT4 is also most abundant in the glandular epithelium of the shell gland of the oviduct of laying hens at 3 h post-ovulation during the laying cycle. In addition, treatment of young chicks with diethylstilbestrol (DES, a synthetic estrogen agonist) stimulated WNT4 only in the glandular epithelial cells of the isthmus and shell gland of the oviduct. Moreover, results of our study demonstrated that miR-1786 influences WNT4 expression via specific binding sites in its 3'-UTR. On the other hand, our results also indicate that WNT4 is expressed predominantly in the glandular epithelium of cancerous ovaries, but not in normal ovaries of hens. Collectively, these results indicate cell-specific expression of WNT4 in the reproductive tract of chickens and that it likely has crucial roles in development and function of oviduct as well as initiation of ovarian carcinogenesis in laying hens.
Collapse
Affiliation(s)
- Chul-Hong Lim
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Whasun Lim
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Wooyoung Jeong
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Lee
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seung-Min Bae
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinyoung Kim
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jae Yong Han
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Fuller W. Bazer
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Gwonhwa Song
- WCU Biomodultion Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Nakayama I, Shibazaki M, Yashima-Abo A, Miura F, Sugiyama T, Masuda T, Maesawa C. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int J Oncol 2013; 43:63-71. [PMID: 23670532 DOI: 10.3892/ijo.2013.1935] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/05/2013] [Indexed: 11/05/2022] Open
Abstract
Small and large non-coding RNAs (ncRNAs) contribute to the acquisition of aggressive tumor behavior in diverse human malignancies. Two types of ncRNAs, miRNA‑10b (miR-10b) and homemobox (HOX) transcript antisense RNA (HOTAIR), can suppress the translation of the HOXD10 gene, an mRNA encoding a transcriptional repressor that inhibits the expression of cell migration/invasion-associated genes. Using epithelial ovarian cancer cell lines and primary tumors, we investigated whether miR‑10b and/or HOTAIR can regulate the expression of HOXD10, and whether it permits gain of pro‑metastatic gene products, matrix metallopeptidase 14 (MMP14) and ras homolog family member C (RHOC). Overexpression of miR-10b induced a decrease in HOXD10 protein expression, and upregulated the migration and invasion abilities in ovarian cancer cell lines (P<0.05). In these cells, a significant increase of MMP14 and RHOC protein was observed. No significant upregulation of the HOXD10 protein was observed in cells with the treatment of HOTAIR-siRNA. Positive signals for HOXD10 and MMP14 proteins were observed in 47 (69%) and 25 (37%) of 68 patients with epithelial ovarian cancers. An inverse correlation between HOXD10 and MMP14 immunoreactivities was observed (P<0.05), and miR-10b expression was also inversely correlated with HOXD10 protein expression (P<0.05). These results suggested that downregulation of HOXD10 expression by miR-10b overexpression may induce an increase of pro-metastatic gene products, such as MMP14 and RHOC, and contribute to the acquisition of metastatic phenotypes in epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Ikue Nakayama
- Department of Tumor Biology, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ford CE, Jary E, Ma SSQ, Nixdorf S, Heinzelmann-Schwarz VA, Ward RL. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS One 2013; 8:e54362. [PMID: 23326605 PMCID: PMC3543420 DOI: 10.1371/journal.pone.0054362] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022] Open
Abstract
Aberrant Wnt signalling is implicated in numerous human cancers, and understanding the effects of modulation of pathway members may lead to the development of novel therapeutics. Expression of secreted frizzled related protein 4 (SFRP4), an extracellular modulator of the Wnt signalling pathway, is progressively lost in more aggressive ovarian cancer phenotypes. Here we show that recombinant SFRP4 (rSFRP4) treatment of a serous ovarian cancer cell line results in inhibition of β-catenin dependent Wnt signalling as measured by TOP/FOP Wnt reporter assay and decreased transcription of Wnt target genes, Axin2, CyclinD1 and Myc. In addition, rSFRP4 treatment significantly increased the ability of ovarian cancer cells to adhere to collagen and fibronectin, and decreased their ability to migrate across an inflicted wound. We conclude that these changes in cell behaviour may be mediated via mesenchymal to epithelial transition (MET), as rSFRP4 treatment also resulted in increased expression of the epithelial marker E-cadherin, and reduced expression of Vimentin and Twist. Combined, these results indicate that modulation of a single upstream gatekeeper of Wnt signalling can have effects on downstream Wnt signalling and ovarian cancer cell behaviour, as mediated through epithelial to mesenchymal plasticity (EMP). This raises the possibility that SFRP4 may be used both diagnostically and therapeutically in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Caroline E Ford
- Wnt Signalling & Metastasis Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Distinct expression pattern and post-transcriptional regulation of cell cycle genes in the glandular epithelia of avian ovarian carcinomas. PLoS One 2012; 7:e51592. [PMID: 23236518 PMCID: PMC3517539 DOI: 10.1371/journal.pone.0051592] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/05/2012] [Indexed: 12/23/2022] Open
Abstract
The cell cycle system is controlled in a timely manner by three groups of cyclins, cyclin dependent kinases and cyclin dependent kinase inhibitors. Abnormal alterations of cell cycle regulatory mechanisms are a common feature of many diseases including numerous tumor types such as ovarian cancer. Although a variety of cell cycle regulatory genes are well known in mammalian species including human and mice, they are not well studied in avian species, especially in laying hens which are recognized as an excellent animal model for research relevant to human ovarian carcinogenesis. Therefore, in the present study, we focused on comparative expression and regulation of expression of candidate genes which might be involved in the cell cycle program in surface epithelial ovarian cancer in laying hens. Our current results indicate that expression levels of cell cycle gene transcripts are greater in cancerous as compared to normal ovaries. In particular, cyclin A2 (CCNA2), CCND1, CCND2, CCND3, CCNE2, cyclin dependent kinase 1 (CDK1), CDK3, CDK5, cyclin dependent kinases inhibitor 1A (CDKN1A) and CDKN1B were upregulated predominantly in the glandular epithelia of cancerous ovaries from laying hens. Further, several microRNAs (miRs), specifically miR-1798, miR-1699, miR-223 and miR-1744 were discovered to influence expression of CCND1, CCNE2, CDK1, and CDK3 mRNAs, respectively, via their 3′-UTR which suggests that post-transcriptional regulation of gene expression influences their expression in laying hens. Moreover, miR-1626 influenced CDKN1A expression and miR-222, miR-1787 and miR-1812 regulated CDKN1B expression via their 3′-UTR regions. Collectively, results of the present study demonstrate increased expression of cell cycle-related genes in cancerous ovaries of laying hens and indicate that expression of these genes is post-transcriptionally regulated by specific microRNAs.
Collapse
|
10
|
LI MIN, YIN JIE, MAO NING, PAN LINGYA. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep 2012; 29:58-66. [DOI: 10.3892/or.2012.2078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
|
11
|
D'Andrilli G, Bovicelli A, Paggi MG, Giordano A. New insights in endometrial carcinogenesis. J Cell Physiol 2012; 227:2842-6. [PMID: 22105917 DOI: 10.1002/jcp.24016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endometrial carcinoma is the most common cancer of the female genital tract in Europe and in the United States. Despite advances in defining the biology of endometrial carcinomas, there has been poor progress in determining markers that distinguish preinvasive endometrial proliferations. The aim of this review is to highlight the most recent studies regarding the molecular markers involved in endometrial adenocarcinoma pathogenesis and carcinogenesis. We focus on studies that describe markers with potential to progress from endometrial hyperplasia to invasive disease.
Collapse
Affiliation(s)
- Giuseppina D'Andrilli
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, PA 19122, USA
| | | | | | | |
Collapse
|
12
|
Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep 2012; 27:1238-44. [PMID: 22246341 PMCID: PMC3583406 DOI: 10.3892/or.2012.1625] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/24/2011] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) has been found to be associated with a variety of diseases, including epithelial ovarian cancer (EOC). Recently, miR-100 was reported to be downregulated in human ovarian carcinoma, however, the clinical significance and functional roles of miR-100 expression in human EOC are unclear. TaqMan real-time quantitative RT-PCR assay was performed to detect the expression of miR-100 in 98 EOC tissues and 15 adjacent normal epithelial tissues. The relationship between miR-100 expression and clinicopathological factors in 98 EOC patients was statistically analyzed. The effect of miR-100 expression on patient survival was determined. Finally, the role of miR-100 in EOC cell growth and its possible mechanisms were analyzed with miR-100 precursor or inhibitor-transfected cells. We showed that the level of miR-100 was significantly lower in EOC tissues compared to adjacent normal tissues. Low miR-100 expression was found to be closely correlated with advanced FIGO stage, higher serum CA125 expression level and lymph node involvement. Also, low miR-100 expression was correlated with shorter overall survival of EOC patients, and multivariate analysis showed that the status of miR-100 expression was an independent predictor of overall survival in EOC. Additionally, miR-100 could affect the growth of EOC cells by post-transcriptionally regulating polo-like kinase 1 (PLK1) expression. Together, these results suggest that low miR-100 expression may be an independent poor prognostic factor and miR-100 can function as a tumor suppressor by targeting PLK1 in human EOCs.
Collapse
Affiliation(s)
- Dong-Xian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, PR China.
| | | | | | | | | |
Collapse
|
13
|
Hiss D. Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. JOURNAL OF ONCOLOGY 2012; 2012:737981. [PMID: 22481932 PMCID: PMC3306947 DOI: 10.1155/2012/737981] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/24/2011] [Indexed: 12/18/2022]
Abstract
The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects, but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted treatment rationales.
Collapse
Affiliation(s)
- Donavon Hiss
- Molecular Oncology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
14
|
Delie F, Allemann E, Cohen M. Nanocarriers for ovarian cancer active drug targeting. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50068-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|