1
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Mechanotransduction in tumor dynamics modeling. Phys Life Rev 2023; 44:279-301. [PMID: 36841159 DOI: 10.1016/j.plrev.2023.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, translating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in vitro and in vivo biological levels. Meanwhile, mathematical models attempt to determine laws to reproduce tumor dynamics. This review discusses biological mechanotransduction mechanisms and mathematical-biomechanical models together. The aim is to provide a common framework for the different approaches that have emerged in the literature from the perspective of tumor avascularity and to provide insight into emerging mechanotherapies that have attracted interest in recent years.
Collapse
|
4
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
5
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
6
|
Basak T, Ain R. Molecular regulation of trophoblast stem cell self-renewal and giant cell differentiation by the Hippo components YAP and LATS1. Stem Cell Res Ther 2022; 13:189. [PMID: 35526072 PMCID: PMC9080189 DOI: 10.1186/s13287-022-02844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background Trophoblast stem cells (TSCs), the precursors of trophoblast cells of placenta, possess the potential to differentiate into various trophoblastic subtypes in vitro. Establishment of extraembryonic trophoblastic lineage is preceded by the “outside versus inside” positional information in preimplantation embryos, critically synchronized by the Hippo components. Abundant expression of Hippo effector YAP in TSCs and differentiated cells with paucity of information on Hippo regulation of TSC proliferation/differentiation led us test the hypothesis that Hippo dynamics is one of the regulators of TSC proliferation/differentiation. Methods Blastocyst-derived murine TSCs were used. Dynamics of Hippo components were analyzed using immunofluorescence, western blotting, immunoprecipitation, qRT-PCR. Interaction studies were performed using full-length and deletion constructs. BrdU incorporation assay, flow cytometry-based polyploidy analysis and confocal microscopy were used to decipher the underlying mechanism. Results YAP translocates to the nucleus in TSCs and utilizes its WW2 domain to interact with the PPQY motif of the stemness factor, CDX2. YAP limits TSC proliferation with associated effect on CDX2 target CyclinD1. Trophoblast giant cells (TGC) differentiation is associated with cytoplasmic retention of YAP, heightened pYAPSer127, decrease in the level of the core Hippo component, LATS1, which thereby impedes LATS1-LIMK2 association. Decreased LATS1-LIMK2 complex formation in TGCs was associated with elevated pLIMK2Thr505 as well as its target pCOFILINSer3. Precocious overexpression of LATS1 during trophoblast differentiation decreased TGC marker, Prl2c2, diminished pLIMK2Thr505 and inactive COFILIN (pCOFILINSer3) while COFILIN-phosphatase, CHRONOPHIN remained unchanged. LATS1 overexpression inhibited trophoblast endoreduplication with smaller-sized TGC-nuclei, lower ploidy level and disintegrated actin filaments. Inhibition of LIMK2 activity recapitulated the effects of LATS1 overexpression in trophoblast cells. Conclusion These results unveil a multilayered regulation of trophoblast self-renewal and differentiation by the Hippo components. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02844-w.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
7
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Brindisi M, Frattaruolo L, Mancuso R, Palumbo Piccionello A, Ziccarelli I, Catto M, Nicolotti O, Altomare CD, Gabriele B, Cappello AR. Anticancer potential of novel α,β-unsaturated γ-lactam derivatives targeting the PI3K/AKT signaling pathway. Biochem Pharmacol 2021; 190:114659. [PMID: 34147489 DOI: 10.1016/j.bcp.2021.114659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Six recently synthesized alkyl (Z)-2-(2-oxopyrrolidin-3-ylidene)acetates were evaluated for their potential as cytotoxic and anticancer agents. All compounds were tested in the ERα positive MCF-7, triple negative MDA-MB-231, and Her2+ SKBR-3 breast cancer cell lines. The most lipophilic derivatives, bearing the 4-isopropylphenyl (2) or 4-tert-butylphenyl (3) group at the γ-lactam nitrogen, proved to be cytotoxic against all the cancer cell lines tested (IC50 values ranging from 18 to 63 μM), exerting their greatest activity in SKBR-3 cells, with IC50 values of 33 and 18 μM, respectively. Biological studies showed that the cytotoxic effects of 2 and 3 are accompanied by apoptotic death in breast cancer cells, and both compounds showed no significant toxicity on healthy cells (e.g., MCF-10A) and red blood cells. An in-depth mechanistic study based on molecular biology, immunoblotting analysis and in silico docking calculations suggested that α,β-unsaturated γ-lactam derivatives could interfere with the functioning of PI3K and PDK-1, two key enzymes in the PI3K/AKT signaling pathway, whose overactivation is related to the regulation of cell growth and survival in several malignancies.
Collapse
Affiliation(s)
- Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Science and Technology-STEBICEF, University of Palermo, Viale delle Scienze Ed.17, Palermo 90128, Italy
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona, 4, 70126 Bari, Italy.
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
9
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Jokela TA, LaBarge MA. Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states. CURRENT STEM CELL REPORTS 2020; 7:39-47. [PMID: 33777660 DOI: 10.1007/s40778-020-00182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Cancer stem cells (CSCs) are increasingly understood to play a central role in tumor progression. Growing evidence implicates tumor microenvironments as a source of signals that regulate or even impose CSC states on tumor cells. This review explores points of integration for microenvironment-derived signals that are thought to regulate CSCs in carcinomas. Recent findings CSC states are directly regulated by the mechanical properties and extra cellular matrix (ECM) composition of tumor microenvironments that promote CSC growth and survival, which may explain some modes of therapeutic resistance. CSCs sense mechanical forces and ECM composition through integrins and other cell surface receptors, which then activate a number of intracellular signaling pathways. The relevant signaling events are dynamic and context-dependent. Summary CSCs are thought to drive cancer metastases and therapeutic resistance. Cells that are in CSC states and more differentiated states appear to be reversible and conditional upon the components of the tumor microenvironment. Signals imposed by tumor microenvironment are of a combinatorial nature, ultimately representing the integration of multiple physical and chemical signals. Comprehensive understanding of the tumor microenvironment-imposed signaling that maintains cells in CSC states may guide future therapeutic interventions.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| |
Collapse
|
11
|
Khosravi A, Jafari SM, Asadi J. Knockdown of TAZ decrease the cancer stem properties of ESCC cell line YM-1 by modulation of Nanog, OCT-4 and SOX2. Gene 2020; 769:145207. [PMID: 33031893 DOI: 10.1016/j.gene.2020.145207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells are a rare population in tumors with high metastatic potential and resistance to treatment. Recent strategies in cancer treatment have focused on targeting important signaling pathways that have an important role in maintaining CSC populations. TAZ (transcriptional co-activator with PDZ-binding motif) is a key downstream of the Hippo pathway which plays a fundamental role in the survival of CSCs from different origins, however, no data on the role of TAZ in esophageal cancer are available. Our findings showed that esophageal CSCs enriched from the YM-1 cell line have stemness properties. We found that TAZ was strongly expressed in esophageal CSCs and knockdown of TAZ in esophageal CSCs results in reduced colony formation and cell migration. Moreover, this data indicated that TAZ knockdown reduces the expression of SOX-2, OCT-4, and Nanong in esophageal CSCs. Taken together, the results of the current study suggested that TAZ has a crucial role in the biology of esophageal CSCs.
Collapse
Affiliation(s)
- Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
12
|
Sammarco A, Gomiero C, Sacchetto R, Beffagna G, Michieletto S, Orvieto E, Cavicchioli L, Gelain ME, Ferro S, Patruno M, Zappulli V. Wnt/β-Catenin and Hippo Pathway Deregulation in Mammary Tumors of Humans, Dogs, and Cats. Vet Pathol 2020; 57:774-790. [PMID: 32807036 DOI: 10.1177/0300985820948823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammary cancer is a common neoplasm in women, dogs, and cats that still represents a therapeutic challenge. Wnt/β-catenin and Hippo pathways are involved in tumor progression, cell differentiation, and metastasis. The aim of this study was to evaluate mRNA and protein expression of molecules involved in these pathways in human (HBC), canine (CMT), and feline mammary tumors (FMT). Real-time quantitative polymerase chain reaction (qPCR) for β-catenin, CCND1, YAP, TAZ, CTGF, and ANKRD1, western blotting for YAP, TAZ, and β-catenin, and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), ERBB2, β-catenin, and YAP/TAZ were performed on mammary tumor tissues. The protein expression of active β-catenin was higher in tumors than in healthy tissues in all 3 species. The mRNA expression of the downstream gene CCND1 was increased in HBC ER+ and CMTs compared to healthy tissues. Membranous and cytoplasmic protein expression of β-catenin were strongly negatively correlated in all 3 species. Tumors showed an increased protein expression of YAP/TAZ when compared to healthy tissues. Notably, YAP/TAZ expression was higher in triple negative breast cancers when compared to HBC ER+ and in FMTs when compared to CMTs. The mRNA expression of β-catenin, YAP, TAZ, CTGF, and ANKRD1 was not different between tumors and healthy mammary gland in the 3 species. This study demonstrates deregulation of Wnt/β-catenin and Hippo pathways in mammary tumors, which was more evident at the protein rather than the mRNA level. Wnt/β-catenin and Hippo pathways seem to be involved in mammary carcinogenesis and therefore represent interesting therapeutic targets that should be further investigated.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Biomedical Sciences, 9308University of Padua, Italy.,Neuroscience Institute - Italian National Research Council (CNR), Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy.,Department of Cardio-Thoraco-Vascular Sciences and Public Health, 9308University of Padua, Italy
| | | | - Enrico Orvieto
- Department of Pathology, Azienda Ospedaliera di Padova, Padua, Italy.,Department of Pathology, 18674Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, 9308University of Padua, Italy
| |
Collapse
|
13
|
Ghahremani H, Nabati S, Tahmori H, Peirouvi T, Sirati-Sabet M, Salami S. Long-Term Glucose Restriction with or without β-Hydroxybutyrate Enrichment Distinctively Alters Epithelial-Mesenchymal Transition-Related Signalings in Ovarian Cancer Cells. Nutr Cancer 2020; 73:1708-1726. [PMID: 32799692 DOI: 10.1080/01635581.2020.1804947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The beneficial impacts of the ketogenic diet and metabolic reprograming were recently reported for ovarian cancer patients. In this study, the effects of glucose restriction with or without beta-hydroxybutyrate (bHB) enrichment were studied in drug-resistant CD133high A2780CP and CD133low SK-OV-3 ovarian cancer cells to scrutinize the impact of experimental ketosis on ATP production, epithelial to mesenchymal transition (EMT), and related signaling pathways including Wnt, Hippo, and Hedgehog. Cells were adapted and maintained for a month with restricted levels of glucose (250 mg/l) with or without the therapeutic concentration of bHB (5 mM). Quantitative PCR, Western blot analysis, flow cytometry, chemiluminescence, and wound healing assay were used in this study. Glucose restriction and bHB enrichment reduced the stemness marker and diminished In Vitro migration in both cell lines. Glucose restriction significantly reduced ATP levels in both cells, but bHB enrichment was partially compensated for the ATP levels solely in SK-OV-3 cells. Glucose restriction mainly inhibited the Wnt pathway in the CD133high A2780CP cells, but the Hedgehog pathway was the main target in CD133low SK-OV-3 cells. In Conclusion, Prior targeted evaluations of key genes' expression would help to predict the distinctive impacts of metabolic fuels and to optimize the efficacy of ketogenic diets.
Collapse
Affiliation(s)
- Hossein Ghahremani
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nabati
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tahmori
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmineh Peirouvi
- Departments of Histology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Sirati-Sabet
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Cell Death and Differentiation Signaling Research Lab, Clinical Biochemistry Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mi L, Kuang H. Melatonin Regulates Cisplatin Resistance and Glucose Metabolism Through Hippo Signaling in Hepatocellular Carcinoma Cells. Cancer Manag Res 2020; 12:1863-1874. [PMID: 32210629 PMCID: PMC7075351 DOI: 10.2147/cmar.s230466] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction and Aim Hepatocellular carcinoma (HCC) is a primary malignancy that occurs in the liver. Clinical cases have been recorded worldwide, particularly in the Saharan area and Asia. In the present work, we aimed to probe the characteristics of melatonin involved in human HCC development, especially in cisplatin resistance and glucose metabolism. Methods Two HCC cells, HepG2 and Hep3B cells, were treated with melatonin. Cell cycle test was then used to define the role of melatonin in cell progression while Western blotting and qPCR assay were applied to determine the associated proteins in the treatment. Annexin V/PI staining and MTT assay was used to probe the involvement of melatonin in cisplatin-induced cell apoptosis process. Successively, we assessed glucose consumption in melatonin treated cells along with Western blotting for detection of GLUT-3 expression level. Yes-associated protein (YAP), a key regulator of Hippo signaling pathway, was further examined to characterize the function of melatonin on adjusting GLUT3 and Bcl-2 expression. Results Melatonin enabled inhibition of HepG2 and Hep3B proliferation and cell cycle progression via affecting the cell cycle-associated proteins. Annexin V/PI staining and MTT assay results demonstrated that melatonin assisted cisplatin-induced apoptosis accompanied with upregulated caspase-3 and poly ADP-ribose polymerase (PARP) cleavage, as well as Bcl-2 expression. It revealed that melatonin inhibits glucose uptake and ATP production via downregulation of Glucose transporter 3 (GLUT3). In addition, YAP was downregulated by melatonin treatment. The YAP depletion in HepG2 and Hep3B cells suppressed mRNA and protein expression of Bcl-2 and GLUT3, whereas overexpression of YAP in melatonin treated cells partly reversed the melatonin-induced inhibition on proliferation, cisplatin-induced apoptosis, and GLUT3 and Bcl-2 expression. Conclusion Melatonin hindered HCC proliferation and aided cisplatin resistance via regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Lina Mi
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
15
|
Bruschini S, di Martino S, Pisanu ME, Fattore L, De Vitis C, Laquintana V, Buglioni S, Tabbì E, Cerri A, Visca P, Alessandrini G, Facciolo F, Napoli C, Trombetta M, Santoro A, Crescenzi A, Ciliberto G, Mancini R. CytoMatrix for a reliable and simple characterization of lung cancer stem cells from malignant pleural effusions. J Cell Physiol 2020; 235:1877-1887. [PMID: 31397494 PMCID: PMC6916247 DOI: 10.1002/jcp.29121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation with the properties of extensive self-renewal, capability to generate differentiated cancer cells and resistance to therapies. We have previously shown that malignant pleural effusions (MPEs) from patients with non-small-cell lung cancer (NSCLC) represent a valuable source of cancer cells that can be grown as three-dimensional (3D) spheroids enriched for stem-like features, which depend on the activation of the Yes-associated protein-transcriptional coactivator with PDZ-binding motif (YAP-TAZ)/Wnt-βcatenin/stearoyl-CoA desaturase 1 (SCD1) axis. Here, we describe a novel support, called CytoMatrix, for the characterization of limited amounts of cancer cells isolated from MPEs of patients with NSCLC. Our results show that this synthetic matrix allows an easy and fast characterization of several epithelial cellular markers. The use of CytoMatrix to study CSCs subpopulation confirms that SCD1 protein expression is enhanced in 3D spheroids when compared with 2D adherent cell cultures. YAP/TAZ nuclear-cytoplasmic distribution analysed by CytoMatrix in 3D spheroids is highly heterogeneous and faithfully reproduces what is observed in tumour biopsies. Our results confirm and extend the robustness of our workflow for the isolation and phenotypic characterization of primary cancer cells derived from the lung MPEs and underscore the role of SCD1.
Collapse
Affiliation(s)
- Sara Bruschini
- Department of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCatanzaroItaly
| | | | - Maria Elena Pisanu
- High Resolution NMR Unit, Core FacilitiesIstituto Superiore di SanitàRomeItaly
| | - Luigi Fattore
- Department of Clinical and Molecular Medicine, Sapienza University of RomeLaboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiRomeItaly
| | - Claudia De Vitis
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | | | | | - Eugenio Tabbì
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Andrea Cerri
- Preclinical Models and New Therapeutic Agents UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Paolo Visca
- Phatology UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | | | - Francesco Facciolo
- Thoracic Surgery UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational MedicineSapienza University of RomeRomeItaly
| | - Marcella Trombetta
- Tissue Engineering and Chemistry for Engineering Lab, Department of EngineeringUniversity Campus Bio‐MedicoRomeItaly
| | | | - Anna Crescenzi
- Section of PathologyUniversity Hospital Campus Bio‐Medico of RomeRomeItaly
| | - Gennaro Ciliberto
- Scientific DirectionIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Rita Mancini
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
16
|
Deng Z, Wang H, Guo G, Li X, Cai Y, Tang Y, Wang Y, Li J, Lu Z, Yu X, Li R, Li L. Next-Generation Sequencing Analysis of mRNA Profile in Cisplatin-Resistant Gastric Cancer Cell Line SGC7901. Med Sci Monit 2019; 25:2386-2396. [PMID: 30938333 PMCID: PMC6457324 DOI: 10.12659/msm.915866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cisplatin-resistant gastric cancer (GC) occurs in patients with GC treated with cisplatin-based chemotherapy, which results in disease progression and early recurrence during the treatment. MATERIAL AND METHODS To understand the initiation and developmental mechanism underlying cisplatin-resistant GC, we developed cisplatin-resistant SGC7901 cells (SGC7901/DDP) from the parental cells (SGC7901/S) by continuous exposure to increasing concentrations of cisplatin and subjected these 2 cell lines to RNA sequencing analysis. The data were verified by quantitative polymerase chain reaction and their functional role was evaluated by cell counting kit 8 assay and cell apoptosis and cell cycle flow cytometric analysis. Bioinformatics analysis was performed to classify the differentially-expressed genes (DEGs) involved in the development of cisplatin resistance. RESULTS In comparison with SGC7901/S cells, SGC7901/DDP cells showed a total of 3165 DEGs (2014 upregulated and 1151 downregulated, fold change ≥2, and adjusted P value <0.001). qRT-PCR confirmed the reliability of the RNA sequencing results. Depletion of the top 5 upregulated mRNAs reversed the resistant index, increased apoptotic SGC7901/DDP cells, and arrested the cells at G2/M phase. Gene ontology analysis revealed that the DEGs mainly regulate metabolic process, immune system, locomotion, cell adhesion, cell growth, cell death, cytoskeleton organization, cell binding, signal transducing activity, and antioxidant activity. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs were mainly involved in the PI3K-Akt signaling pathway, Rap1 signaling pathway, proteoglycans in cancer, regulation of actin cytoskeleton, and pathways in cancer. CONCLUSIONS The present study is the first to interrogate mRNAs profiles in human GC cells with cisplatin resistance using RNA sequencing, which may assist in discovering potential therapeutic targets for cisplatin-resistant GC patients.
Collapse
Affiliation(s)
- Zhenwei Deng
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Huaiming Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Gastrointestinal Institute of Gastroenterology, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Guohu Guo
- Department of General Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xiyao Li
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
- Department of General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yongchang Cai
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Yuxin Tang
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Yijun Wang
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Jiabao Li
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Zhibin Lu
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Xueqiao Yu
- Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ruiping Li
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Libo Li
- Department of General Surgery, Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| |
Collapse
|
17
|
Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H. LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 2019; 10:1014-1030. [PMID: 30800215 PMCID: PMC6383686 DOI: 10.18632/oncotarget.26583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs), which play important roles in tumor initiation and progression, are resistant to many types of therapies. However, the regulatory mechanisms underlying CSC-specific properties, including self-renewal, are poorly understood. Here, we found that LATS1/2, the core Hippo pathway-kinases, were highly expressed in the oral squamous cell carcinoma line SAS, which exhibits high capacity of CSCs, and that depletion of these kinases prevented SAS cells from forming spheres under serum-free conditions. Detailed examination of the expression and activation of LATS kinases and related proteins over a time course of sphere formation revealed that LATS1/2 were more highly expressed and markedly activated before initiation of self-renewal. Moreover, TAZ, SNAIL, CHK1/2, and Aurora-A were expressed in hierarchical, oscillating patterns during sphere formation, suggesting that the process consists of four sequential steps. Our results indicate that LATS1/2 trigger self-renewal of CSCs by regulating the Hippo pathway, the EMT, and cell division.
Collapse
Affiliation(s)
- Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Moe Fukuzawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | - Ayumi Okamoto
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya City, Aichi 464-8681, Japan
| | | | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Wang Y, Han Y, Guo Z, Yang Y, Ren T. Nuclear TAZ activity distinctly associates with subtypes of non-small cell lung cancer. Biochem Biophys Res Commun 2019; 509:828-832. [PMID: 30638934 DOI: 10.1016/j.bbrc.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
The transcription co-factor TAZ plays critical roles in the regulation of human carcinogenesis. However, the pathological role for TAZ in lung cancer has remained incompletely understood. TAZ expression was examined by immunohistochemistry for 163 NSCLC tissues. TAZ expression was also examined by western blotting for 20 frozen paired NSCLC and adjacent normal lung tissues. We report that TAZ is overexpressed in non-small cell lung cancer (NSCLC) tissues and correlates with shorter patient survival. Intriguingly, we find that TAZ is overexpressed primarily in lung squamous cell carcinomas (LUSC) but not lung adenocarcinomas (LUAD) compared to normal lung tissues, and that the expression levels of TAZ are significantly higher in LUSC than LUAD. The nuclear localization of TAZ correlates worse clinical outcomes in LUSC, but not LUAD, further suggesting a prognostic value for activated TAZ in LUSC. A meta-analysis of the public datasets from TCGA, Broad institute, and Oncomine shows that the TAZ gene (WWTR1) copy numbers are significantly increased in LUSC and correlate with the increase of TAZ mRNA expression, suggesting that TAZ is overexpressed in LUSC at least partly through gene amplifications. Collectively, our results suggest that TAZ expression distinctly associates with subtypes of NSCLC and may be useful for developing novel therapeutics treating LUSC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yang Han
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhongliang Guo
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA; Developmental Therapeutics and Cell Biology Programs, Cancer Center, Mayo Clinic, Rochester, MN 55905, USA.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
19
|
TAZ induces lung cancer stem cell properties and tumorigenesis by up-regulating ALDH1A1. Oncotarget 2018; 8:38426-38443. [PMID: 28415606 PMCID: PMC5503543 DOI: 10.18632/oncotarget.16430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/11/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in lung cancer and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Further RNA-seq and qRT-PCR analysis identified Aldh1a1, a well-established CSC marker, as critical TAZ downstream target and showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEAD. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis in the future.
Collapse
|
20
|
Yang C, Tan J, Zhu J, Wang S, Wei G. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma. Oncotarget 2018; 8:37154-37163. [PMID: 28415761 PMCID: PMC5514898 DOI: 10.18632/oncotarget.16209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
The transcriptional co-activator Yes-associated protein (YAP) is essential for Hippo pathway-driven tumorigenesis in various cancers. However, the expression and function of YAP in neuroblastoma remains elusive. Here, we show that YAP was highly expressed in Neuroblastoma (NB) and expression levels correlated with advanced tumor staging. Knockdown of YAP significantly impaired neuroblastoma proliferation, tumorigenesis, and invasion in vitro. Injection of the YAP inhibitor, Peptide 17, dramatically prevented neuroblastoma subcutaneous tumor growth by efficiently downregulating YAP expression in tumors. Additionally, less proliferative and more apoptotic cells were found in the Peptide 17 treatment group. Furthermore, YAP inhibition significantly inhibited cisplatin-resistant neuroblastoma proliferation, tumorigenesis, and invasion in vitro. The combination of Peptide 17 with low-dose cisplatin efficiently impaired cisplatin-resistant NB subcutaneous tumor growth, being as effective as high-dose cisplatin. Notably, the combination therapy caused lesser liver toxicity in mice compared to the high-dose cisplatin treatment group. Collectively, this work identifies YAP as a novel regulator of neuroblastoma proliferation, tumorigenesis, and invasion and indicates that YAP is a potential therapeutic target for cisplatin-resistant neuroblastoma.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Juan Tan
- Clinical Department of Children's Hospital of Chongqing Medical University, Lijia Campus, Chongqing, China
| | - Jun Zhu
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Pathology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
21
|
Paquet-Fifield S, Koh SL, Cheng L, Beyit LM, Shembrey C, Mølck C, Behrenbruch C, Papin M, Gironella M, Guelfi S, Nasr R, Grillet F, Prudhomme M, Bourgaux JF, Castells A, Pascussi JM, Heriot AG, Puisieux A, Davis MJ, Pannequin J, Hill AF, Sloan EK, Hollande F. Tight Junction Protein Claudin-2 Promotes Self-Renewal of Human Colorectal Cancer Stem-like Cells. Cancer Res 2018; 78:2925-2938. [PMID: 29510994 DOI: 10.1158/0008-5472.can-17-1869] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil-based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.Significance: Claudin-2-mediated regulation of YAP activity and miR-222-3p expression drives CSC renewal in colorectal cancer, making it a potential target for therapy. Cancer Res; 78(11); 2925-38. ©2018 AACR.
Collapse
Affiliation(s)
- Sophie Paquet-Fifield
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Shir Lin Koh
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Laura M Beyit
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Carolyn Shembrey
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Christina Mølck
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.,Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Marina Papin
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Meritxell Gironella
- Gastrointestinal and Pancreatic Oncology Group, Hospital Clínic of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sophie Guelfi
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Ramona Nasr
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Fanny Grillet
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | | | | | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Hospital Clínic of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jean-Marc Pascussi
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Alexander G Heriot
- Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | | | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julie Pannequin
- Centre National de la Recherche Scientifique (CNRS), UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Université Montpellier 1 et 2, Montpellier, France
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Australia
| | - Erica K Sloan
- Peter MacCallum Cancer Centre, Division of Cancer Surgery, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.,Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville Victoria, Australia.,Cousins Center for PNI, UCLA Semel Institute, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California
| | - Frédéric Hollande
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Zhang W, Dai Y, Hsu P, Wang H, Cheng L, Yang Y, Wang Y, Xu Z, Liu S, Chan G, Hu B, Li H, Jablons DM, You L. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med 2017; 21:2663-2676. [PMID: 28470935 PMCID: PMC5661117 DOI: 10.1111/jcmm.13182] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/04/2017] [Indexed: 12/28/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer that is resistant to current therapy. The poor prognosis of mesothelioma has been associated with elevated Yes-associated protein (YAP) activity. In this study, we evaluated the effect of targeting YAP in mesothelioma. First, we comprehensively studied YAP activity in five mesothelioma cell lines (211H, H2052, H290, MS-1 and H2452) and one normal mesothelial cell line (LP9). We found decreased phospho-YAP to YAP protein ratio and consistently increased GTIIC reporter activity in 211H, H2052 and H290 compared to LP9. The same three cell lines (IC50 s < 1 μM) were more sensitive than LP9 (IC50 = 3.5 μM) to the YAP/TEAD inhibitor verteporfin. We also found that verteporfin significantly reduced YAP protein level, mRNA levels of YAP downstream genes and GTIIC reporter activity in the same three cell lines, indicating inhibition of YAP signaling by verteporfin. Verteporfin also impaired invasion and tumoursphere formation ability of H2052 and H290. To validate the effect of specific targeting YAP in mesothelioma cells, we down-regulated YAP by siRNA. We found siYAP significantly decreased YAP transcriptional activity and impaired invasion and tumoursphere formation ability of H2052 and H290. Furthermore, forced overexpression of YAP rescued GTIIC reporter activity and cell viability after siYAP targeting 3'UTR of YAP. Finally, we found concurrent immunohistochemistry staining of ROCK2 and YAP (P < 0.05). Inhibition of ROCK2 decreased GTIIC reporter activity in H2052 and 211H suggesting that Rho/ROCK signaling also contributed to YAP activation in mesothelioma cells. Our results indicate that YAP may be a potential therapeutic target in mesothelioma.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Porphyrins/pharmacology
- Prognosis
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- TEA Domain Transcription Factors
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Verteporfin
- YAP-Signaling Proteins
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Wen‐Qian Zhang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - Yu‐Yuan Dai
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Ping‐Chih Hsu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic MedicineChang Gung Memorial HospitalLinkou, TaoyuanTaiwan
| | - Hui Wang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of RespirationThe Second Hospital of Shandong UniversityJinanChina
| | - Li Cheng
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of GastroenterologyShanghai General HospitalShang Jiao Tong UniversityShanghaiChina
| | - Yi‐Lin Yang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Yu‐Cheng Wang
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Zhi‐Dong Xu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Shu Liu
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Geraldine Chan
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Bin Hu
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - Hui Li
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital University of Medical ScienceBeijingChina
| | - David M. Jablons
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Liang You
- Thoracic Oncology LaboratoryDepartment of Surgery, Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
23
|
The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma. Oncotarget 2017; 8:58654-58667. [PMID: 28938586 PMCID: PMC5601682 DOI: 10.18632/oncotarget.17414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 12/05/2022] Open
Abstract
The long noncoding RNA HOTAIR promotes the development and progression of several tumors. Here, the clinical significance and role of HOTAIR in renal cell carcinoma (RCC) tumorigenesis were explored. The results showed that increased expression of HOTAIR predicted a poor prognosis of RCC after surgery. HOTAIR promoted RCC cell proliferation and growth in vitro and in vivo. The expressions of HOTAIR and Salvador homolog 1 (SAV1) were inversely correlated in clinical RCC samples. HOTAIR downregulated SAV1 by directly binding to the SAV1 protein and enhanced histone H3K27 methylation. Loss of function of SAV1 activated the Hippo pathway. HOTAIR could be a potential therapeutic target in RCC.
Collapse
|
24
|
The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary. PLoS One 2016; 11:e0160896. [PMID: 27505353 PMCID: PMC4978403 DOI: 10.1371/journal.pone.0160896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
The Hippo/MST signaling pathway is a critical player in controlling cell proliferation, self-renewal, differentiation, and apoptosis of most tissues and organs in diverse species. Previous studies have shown that Salvador homolog 1 (SAV1), a scaffolding protein which functions in the signaling system is expressed in mammalian ovaries and play a vital role in governing the follicle development. But the exact biological effects of chicken SAV1 in prehierarchical follicle development remain poorly understood. In the present study, we demonstrated that the SAV1 protein is predominantly expressed in the oocytes and undifferentiated granulosa cells in the various sized prehierarchical follicles of hen ovary, and the endogenous expression level of SAV1 mRNA appears down-regulated from the primordial follicles to the largest preovulatory follicles (F2-F1) by immunohistochemistry and real-time RT-PCR, respectively. Moreover, we found the intracellular SAV1 physically interacts with each of the pathway members, including STK4/MST1, STK3/MST2, LATS1 and MOB2 using western blotting. And SAV1 significantly promotes the phosphorylation of LATS1 induced by the kinase of STK4 or STK3 in vitro. Furthermore, SAV1 knockdown by small interfering RNA (siRNA) significantly increased proliferation of granulosa cells from the prehierarchical follicles (6-8 mm in diameter) by BrdU-incorporation assay, in which the expression levels of GDF9, StAR and FSHR mRNA was notably enhanced. Meanwhile, these findings were consolidated by the data of SAV1 overexpression. Taken together, the present results revealed that SAV1 can inhibit proliferation of the granulosa cells whereby the expression levels of GDF9, StAR and FSHR mRNA were negatively regulated. Accordingly, SAV1, as a member of the hippo/MST signaling pathway plays a suppressive role in ovarian follicle development by promoting phosphorylation and activity of the downstream LATS1, may consequently lead to prevention of the follicle selection during ovary development.
Collapse
|
25
|
Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D, Chellappan S. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells. Stem Cells 2016; 33:1705-18. [PMID: 25754111 DOI: 10.1002/stem.1993] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression.
Collapse
Affiliation(s)
- Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jonathan Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Deepak Perumal
- Department of Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
26
|
Hsu EC, Kulp SK, Huang HL, Tu HJ, Chao MW, Tseng YC, Yang MC, Salunke SB, Sullivan NJ, Chen WC, Zhang J, Teng CM, Fu WM, Sun D, Wicha MS, Shapiro CL, Chen CS. Integrin-linked kinase as a novel molecular switch of the IL-6-NF-κB signaling loop in breast cancer. Carcinogenesis 2016; 37:430-442. [PMID: 26905583 DOI: 10.1093/carcin/bgw020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence has clearly demonstrated the role of the IL-6-NF-κB signaling loop in promoting aggressive phenotypes in breast cancer. However, the exact mechanism by which this inflammatory loop is regulated remains to be defined. Here, we report that integrin-linked kinase (ILK) acts as a molecular switch for this feedback loop. Specifically, we show that IL-6 induces ILK expression via E2F1 upregulation, which, in turn, activates NF-κB signaling to facilitate IL-6 production. shRNA-mediated knockdown or pharmacological inhibition of ILK disrupted this IL-6-NF-κB signaling loop, and blocked IL-6-induced cancer stem cells in vitro and estrogen-independent tumor growth in vivo Together, these findings establish ILK as an intermediary effector of the IL-6-NF-κB feedback loop and a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- En-Chi Hsu
- Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy , The Ohio State University , Columbus, OH 43210 , USA
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy , The Ohio State University , Columbus, OH 43210 , USA
| | - Han-Li Huang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Huang-Ju Tu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Min-Wu Chao
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Chou Tseng
- Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy , The Ohio State University , Columbus, OH 43210 , USA
| | - Ming-Chen Yang
- Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy , The Ohio State University , Columbus, OH 43210 , USA
| | - Santosh B Salunke
- Division of Medicinal Chemistry and Pharmacognosy , College of Pharmacy , The Ohio State University , Columbus, OH 43210 , USA
| | - Nicholas J Sullivan
- Department of Molecular Virology , Immunology , and Medical Genetics , College of Medicine , The Ohio State University , Columbus , OH 43210 , USA
| | - Wen-Chung Chen
- Department of Pathology , College of Medicine , National Cheng Kung University , Tainan 701 , Taiwan
| | - Jianying Zhang
- Center for Biostatistics , College of Medicine , The Ohio State University , Columbus , OH 43210 , USA
| | - Che-Ming Teng
- Department of Pharmacology , College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Wen-Mei Fu
- Department of Pharmacology , College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Duxin Sun
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Michigan , Ann Arbor , MI 48109 , USA
| | - Max S Wicha
- Department of Internal Medicine , University of Michigan Medical School , University of Michigan Comprehensive Cancer Center , Ann Arbor, MI 48109 , USA
| | - Charles L Shapiro
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai Medical Center , New York, NY 10029 , USA and
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
A preliminary investigation of the role of the transcription co-activators YAP/TAZ of the Hippo signalling pathway in canine and feline mammary tumours. Vet J 2016; 207:105-111. [DOI: 10.1016/j.tvjl.2015.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/21/2022]
|
28
|
Lefort S, Joffre C, Kieffer Y, Givel AM, Bourachot B, Zago G, Bieche I, Dubois T, Meseure D, Vincent-Salomon A, Camonis J, Mechta-Grigoriou F. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy 2015; 10:2122-42. [PMID: 25427136 DOI: 10.4161/15548627.2014.981788] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The triple-negative breast cancer (TN BC) subtype is the most aggressive form of invasive BC. Despite intensive efforts to improve BC treatments, patients with TN BC continue to exhibit poor survival, with half developing resistance to chemotherapy. Here we identify autophagy as a key mechanism in the progression and chemoresistance of a subset of TN tumors. We demonstrate that LC3B, a protein involved in autophagosome formation, is a reliable marker of poor prognosis in TN BC, validating this prognostic value at both the mRNA and protein levels in several independent cohorts. We also show that LC3B has no prognostic value for other BC subtypes (Luminal or HER2 BC), thus revealing a specific impact of autophagy on TN tumors. Autophagy is essential for the proliferative and invasive properties in 3D of TN BC cells characterized by high LC3B levels. Interestingly, the activity of the transcriptional co-activator YAP1 (Yes-associated protein 1) is regulated by the autophagy process and we identify YAP1 as a new actor in the autophagy-dependent proliferative and invasive properties of high-LC3B TN BC. Finally, inhibiting autophagy by silencing ATG5 or ATG7 significantly impaired high-LC3B TN tumor growth in vivo. Moreover, using a patient-derived TN tumor transplanted into mice, we show that an autophagy inhibitor, chloroquine, potentiates the effects of chemotherapeutic agents. Overall, our data identify LC3B as a new prognostic marker for TN BC and the inhibition of autophagy as a promising therapeutic strategy for TN BC patients.
Collapse
Key Words
- 3-dimensional culture
- 3D, 3-dimensions
- AC, adriamycin and cyclophosphamide
- ACTB, actin, β
- AP2A1/adaptin, adaptor-related protein complex 2, α 1 subunit
- ATG, autophagy-related
- BC, breast cancer
- BECN1, Beclin 1, autophagy related
- BafA1, bafilomycin A1
- Ctrl, control
- DFS, disease-free survival
- EBSS, Earle's balanced salt solution
- ERBB2/HER2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HScore, histological scoring
- IHC, immunohistochemistry
- LC3B
- Lum, Luminal
- MAP1LC3B/LC3B, microtubule-associated protein one light chain 3 β
- OS, overall survival
- PDX, patient-derived xenografted tumor
- TCGA, The Cancer Genome Atlas
- TGI, tumor growth inhibition
- TN BC, triple-negative breast cancer
- YAP1
- YAP1, Yes-associated protein 1
- autophagy
- breast cancers
- i.p., intra-peritoneal
- prognosis
- response to treatment
- sem, standard error of mean
- three-MA, 3-methyladenine
Collapse
Affiliation(s)
- Sylvain Lefort
- a Laboratory of Stress and Cancer; Institut Curie ; Paris , France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH. The role of microRNAs in bone remodeling. Int J Oral Sci 2015. [PMID: 26208037 PMCID: PMC4582559 DOI: 10.1038/ijos.2015.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ge Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Le Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Hu Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein. Tumour Biol 2015; 36:8047-54. [PMID: 25971581 DOI: 10.1007/s13277-015-3539-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022] Open
Abstract
It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.
Collapse
|
31
|
The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol Oncol 2015; 9:1091-105. [PMID: 25704916 DOI: 10.1016/j.molonc.2015.01.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/18/2015] [Accepted: 01/29/2015] [Indexed: 01/02/2023] Open
Abstract
The Hippo pathway has emerged as a fundamental regulator in tissue growth, organ size and stem cell functions, and tumorigenesis when deregulated. However, its roles and associated molecular mechanisms underlying oral squamous cell carcinoma (OSCC) initiation and progression remain largely unknown. Here, we identified TAZ, the downstream effector of Hippo signaling, as a novel bona fide oncogene by promoting cell proliferation, migration/invasion and chemoresistance in OSCC. TAZ promoted epithelial-to-mesenchymal transition (EMT) and also was involved in TGF-β1-induced EMT in oral cancer cells. Furthermore, enriched TAZ sustained self-renewal, maintenance, tumor-seeding potential of oral cancer stem cells (CSCs). Remarkably, enforced TAZ overexpression conferred CSCs-like properties on differentiated non-CSCs and fueled phenotypic transition from non-CSCs to CSCs-like cells. Mechanistically, TAZ-TEADs binding and subsequent transcriptional activation of EMT mediators and pluripotency factors are presumably responsible for TAZ-mediated EMT and non-CSCs-to-CSCs conversion. Importantly, aberrant TAZ overexpression was found to be associated with tumor size, pathological grade and cervical lymph node metastasis, as well as unfavorable prognosis. Pharmacological repression of TAZ by simvastatin resulted in potent anti-cancer effects against OSCC. Taken together, our findings have revealed critical links between TAZ, EMT and CSCs in OSCC initiation and progression, and also established TAZ as a novel cancer biomarker and viable druggable target for OSCC therapeutics.
Collapse
|
32
|
Shi P, Feng J, Chen C. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin (Shanghai) 2015; 47:53-9. [PMID: 25467757 DOI: 10.1093/abbs/gmu114] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulated evidence suggests that the Hippo signaling pathway plays crucial roles in mammary gland development and breast cancer. Key components of the Hippo pathway regulate breast epithelial cell proliferation, migration, invasion, and stemness. Additionally, the Hippo pathway regulates breast tumor growth, metastasis, and drug resistance. It is expected that the Hippo pathway will provide novel therapeutic targets for breast cancer. This review will discuss and summarize the roles of several core components of the Hippo pathway in mammary gland development and breast cancer.
Collapse
Affiliation(s)
- Peiguo Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming 650223, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- Department of laboratory medicine & Central Laboratory, South Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming 650223, China
| |
Collapse
|
33
|
Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. Mol Cell Biol 2014; 34:1607-21. [PMID: 24550007 DOI: 10.1128/mcb.01346-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy.
Collapse
|
34
|
Okuda Y, Nakano K, Suzuki K, Sugita Y, Kubo K, Maeda H, Okafuji N, Hasegawa H, Kawakami T. Wnt signaling as a possible promoting factor of cell differentiation in pleomorphic adenomas. Int J Med Sci 2014; 11:971-8. [PMID: 25076852 PMCID: PMC4113590 DOI: 10.7150/ijms.9453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/25/2014] [Indexed: 01/29/2023] Open
Abstract
There are well known that Wnt signaling was some roles of cell differentiation at the development tissues, especially the oral and maxillofacial regions of some developmental stages. Therefore, to determine Wnt signaling in the pleomorphic adenoma tissues, we examined. The expression of Wnt1 and β-catenin as well as the distribution of various cytoskeletal proteins CK7 and CK13 was examined in 30 cases of pleomorphic adenoma by immunohistochemistry. Wnt1 was detected in almost all tumor cells. The peripheral columnar cells in squamous metaplasia and small cuboidal cells in duct-like structures were strongly positive to Wnt1. Although β-catenin was clearly localized on the cell membrane of tumor cells, nuclear translocation was observed in small cuboidal cells and in some basaloid cells. The immunofluorescent staining pattern of Wnt1 and CK7 as well as Wnt1 and CK13 was consistent with IHC results. Thus, in pleomorphic adenoma, Wnt is involved in tumor cell differentiation of peripheral columnar cells forming solid nests and small peripheral columnar cells forming duct-like structures. Moreover, among the three currently known Wnt pathways, β-catenin is the suggested pathway working during cell differentiation. Furthermore, peripheral columnar cells in solid tumor nests and in squamous metaplasia are governed by another Wnt pathway other than β-catenin. Therefore, Wnt signaling through β-catenin pathway may be involved in the 'mixed' differentiation characteristic of pleomorphic adenoma although another pathway may also be possibly working in other parts of the tumor tissue.
Collapse
Affiliation(s)
- Yukiko Okuda
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan ; 3. Department of Oral and Maxillofacial Surgery, Hyogo Prefectural Tsukaguchi Hospital, Amagasaki, Japan
| | - Keisuke Nakano
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan ; 4. Department of Oral Pathology, Matsumoto Dental University School of Dentistry, Shiojiri, Japan
| | - Koji Suzuki
- 2. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshihiko Sugita
- 2. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan ; 5. Center for Advanced Oral Science, Aichi Gakuin University, Nagoya, Japan
| | - Katsutoshi Kubo
- 2. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan ; 5. Center for Advanced Oral Science, Aichi Gakuin University, Nagoya, Japan
| | - Hatsuhiko Maeda
- 2. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan ; 5. Center for Advanced Oral Science, Aichi Gakuin University, Nagoya, Japan
| | - Norimasa Okafuji
- 6. Clinical Evaluation Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Hiromasa Hasegawa
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan ; 4. Department of Oral Pathology, Matsumoto Dental University School of Dentistry, Shiojiri, Japan
| | - Toshiyuki Kawakami
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| |
Collapse
|