1
|
Perkins RS, Singh R, Abell AN, Krum SA, Miranda-Carboni GA. The role of WNT10B in physiology and disease: A 10-year update. Front Cell Dev Biol 2023; 11:1120365. [PMID: 36814601 PMCID: PMC9939717 DOI: 10.3389/fcell.2023.1120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/β-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rishika Singh
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amy N. Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gustavo A. Miranda-Carboni
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States,Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Gustavo A. Miranda-Carboni,
| |
Collapse
|
2
|
Kawami M, Ojima T, Yumoto R, Takano M. Role of integrin α2 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Toxicol Res 2022; 38:449-458. [PMID: 36277370 PMCID: PMC9532481 DOI: 10.1007/s43188-022-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Methotrexate (MTX) is widely used to treat various diseases. However, it induces adverse reactions like serious lung injury, including pulmonary fibrosis. Increasing evidence suggests that epithelial-mesenchymal transition (EMT) in injured alveolar epithelium contributes to the development of the pathophysiological state of the lung. We demonstrated that MTX induced EMT in cultured alveolar epithelial cell lines. Integrin-mediated signaling is considered a significant factor in recognizing the EMT process. However, the relationship between MTX-induced EMT and integrin family members is poorly understood. In the present study, we aimed to clarify the role of integrin in MTX-induced EMT in A549 and NCI-H1299 (H1299) cells by focusing on the integrin alpha 2 (ITGA2) subunit, selected based on our microarray analysis. MTX treatment for 72 h significantly increased the mRNA and cell surface expression of ITGA2 in both cell lines. However, this upregulation by MTX was suppressed by co-treatment with SB431542 and folic acid, which are inhibitors of MTX-induced EMT in A549 cells. The mRNA expression levels of EMT-related genes were more affected in the MTX-treated A549 cells with high ITGA2 expression than in those with low ITGA2 expression. Finally, E7820, an ITGA2 inhibitor, suppressed MTX-induced EMT-related phenotypic changes, such as morphology and mRNA and protein expression of α-smooth muscle actin, a representative EMT marker. These findings suggest that ITGA2 may play a key role in MTX-induced EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Takamichi Ojima
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| |
Collapse
|
3
|
Zhang YL, Liu L, Su YW, Xian CJ. miR-6315 Attenuates Methotrexate Treatment-Induced Decreased Osteogenesis and Increased Adipogenesis Potentially through Modulating TGF-β/Smad2 Signalling. Biomedicines 2021; 9:biomedicines9121926. [PMID: 34944742 PMCID: PMC8698410 DOI: 10.3390/biomedicines9121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) treatment for childhood malignancies has shown decreased osteogenesis and increased adipogenesis in bone marrow stromal cells (BMSCs), leading to bone loss and bone marrow adiposity, for which the molecular mechanisms are not fully understood. Currently, microRNAs (miRNAs) are emerging as vital mediators involved in bone/bone marrow fat homeostasis and our previous studies have demonstrated that miR-6315 was upregulated in bones of MTX-treated rats, which might be associated with bone/fat imbalance by directly targeting Smad2. However, the underlying mechanisms by which miR-6315 regulates osteogenic and adipogenic differentiation require more investigations. Herein, we further explored and elucidated the regulatory roles of miR-6315 in osteogenesis and adipogenesis using in vitro cell models. We found that miR-6315 promotes osteogenic differentiation and it alleviates MTX-induced increased adipogenesis. Furthermore, our results suggest that the involvement of miR-6315 in osteogenesis/adipogenesis regulation might be partially through modulating the TGF-β/Smad2 signalling pathway. Our findings indicated that miR-6315 may be important in regulating osteogenesis and adipogenesis and might be a therapeutic target for preventing/attenuating MTX treatment-associated bone loss and marrow adiposity.
Collapse
|
4
|
Zhang Y, Liu L, Pillman KA, Hayball J, Su YW, Xian CJ. Differentially expressed miRNAs in bone after methotrexate treatment. J Cell Physiol 2021; 237:965-982. [PMID: 34514592 DOI: 10.1002/jcp.30583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-β signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.
Collapse
Affiliation(s)
- Yali Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Liang Liu
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, South Australia, Australia
| | - John Hayball
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cory J Xian
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Hassanshahi M, Su YW, Khabbazi S, Fan CM, Tang Q, Wen X, Fan J, Chen KM, Xian CJ. Retracted: Icariin attenuates methotrexate chemotherapy-induced bone marrow microvascular damage and bone loss in rats. J Cell Physiol 2019; 234:16549-16561. [PMID: 30784063 DOI: 10.1002/jcp.28326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Qian Tang
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xuesen Wen
- Institute of Pharmacognosy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Li WY, Li XY, Tian YH, Chen XR, Zhou J, Zhu BY, Xi HR, Gao YH, Xian CJ, Chen KM. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway. Bioelectromagnetics 2018; 39:569-584. [PMID: 30350869 DOI: 10.1002/bem.22150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
Microgravity is one of the main threats to the health of astronauts. Pulsed electromagnetic fields (PEMFs) have been considered as one of the potential countermeasures for bone loss induced by space flight. However, the optimal therapeutic parameters of PEMFs have not been obtained and the action mechanism is still largely unknown. In this study, a set of optimal therapeutic parameters for PEMFs (50 Hz, 0.6 mT 50% duty cycle and 90 min/day) selected based on high-throughput screening with cultured osteoblasts was used to prevent bone loss in rats induced by hindlimb suspension, a commonly accepted animal model to simulate the space environment. It was found that hindlimb suspension for 4 weeks led to significant decreases in femoral and vertebral bone mineral density (BMD) and their maximal loads, severe deterioration in bone micro-structure, and decreases in levels of bone formation markers and increases in bone resorption markers. PEMF treatment prevented about 50% of the decreased BMD and maximal loads, preserved the microstructure of cancellous bone and thickness of cortical bone, and inhibited decreases in bone formation markers. Histological analyses revealed that PEMFs significantly alleviated the reduction in osteoblast number and inhibited the increase in adipocyte number in the bone marrow. PEMFs also blocked decreases in serum levels of parathyroid hormone and its downstream signal molecule cAMP, and maintained the phosphorylation levels of protein kinase A (PKA) and cAMP response element-binding protein (CREB). The expression level of soluble adenylyl cyclases (sAC) was also maintained. It therefore can be concluded that PEMFs partially prevented the bone loss induced by weightless environment by maintaining bone formation through signaling of the sAC/cAMP/PKA/CREB pathway. Bioelectromagnetics. 39:569-584, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Yuan Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.,Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xue-Yan Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yong-Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xin-Ru Chen
- College of Life Sciences, Northwest A & F University, Yanglin, China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Bao-Ying Zhu
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Hui-Rong Xi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| |
Collapse
|
7
|
Lee AMC, Bowen JM, Su YW, Plews E, Chung R, Keefe DMK, Xian CJ. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. J Cell Biochem 2018; 120:4180-4191. [PMID: 30260048 DOI: 10.1002/jcb.27705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/27/2018] [Indexed: 11/09/2022]
Abstract
Cancer treatments with cytotoxic drugs have been shown to cause bone loss. However, effects on bone are less clear for ErbB-targeting tyrosine kinase inhibitors or their combination use with cytotoxic drugs. This study examined the effects of individual or combination treatments with breast cancer drugs lapatinib (a dual ErbB1/ErbB2 inhibitor) and paclitaxel (a microtubule-stabilizing cytotoxic agent) on bone and bone marrow of rats. Wistar rats received lapatinib (240 mg/kg) daily, paclitaxel (12 mg/kg) weekly, or their combination for 4 weeks, and effects on bone/bone marrow were examined at the end of week 4. Microcomputed tomographical structural analyses showed a reduction in trabecular bone volume in tibia following the lapatinib, paclitaxel or their combination treatments ( P < 0.05). Histomorphometry analyses revealed marked increases in bone marrow adipocyte contents in all treatment groups. Reverse transcription polymerase chain reaction gene expression studies with bone samples and cell culture studies with isolated bone marrow stromal cells showed that the all treatment groups displayed significantly reduced levels of osterix expression and osteogenic differentiation potential but increased expression levels of adipogenesis transcription factor peroxisome proliferator-activated receptor γ. In addition, these treatments suppressed the expression of Wnt10b and/or increased expression of Wnt antagonists (secreted frizzled-related protein 1, Dickkopf-related protein 1 and/or sclerostin). Furthermore, all treatment groups showed increased numbers of bone-resorbing osteoclasts on trabecular bone surfaces, although only the lapatinib group displayed increased levels of osteoclastogenic signal (receptor activator of nuclear factor κΒ ligand/osteoclastogenesis inhibitor osteoprotegrin expression ratio) in the bones. Thus, inhibiting ErbB1 and ErbB2 by lapatinib or blocking cell division by paclitaxel or their combination causes significant trabecular bone loss and bone marrow adiposity involving a switch in osteogenesis/adipogenesis potential, altered expression of some major molecules of the Wnt/β-catenin signalling pathway, and increased recruitment of bone-resorbing osteoclasts.
Collapse
Affiliation(s)
- Alice M C Lee
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Erin Plews
- Physiology Discipline, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| | - Dorothy M K Keefe
- SA Cancer Service, SA Cancer Clinical Network, SA Health, Adelaide, South Australia, Australia.,Centre of Cancer Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, UniSA Institute for Cancer Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Brum AM, van de Peppel J, Nguyen L, Aliev A, Schreuders-Koedam M, Gajadien T, van der Leije CS, van Kerkwijk A, Eijken M, van Leeuwen JPTM, van der Eerden BCJ. Using the Connectivity Map to discover compounds influencing human osteoblast differentiation. J Cell Physiol 2018; 233:4895-4906. [PMID: 29194609 DOI: 10.1002/jcp.26298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. Identification of factors influencing osteoblast differentiation and bone formation is very important. Previously, we identified parbendazole to be a novel compound that stimulates osteogenic differentiation of human mesenchymal stromal cells (hMSCs), using gene expression profiling and bioinformatic analyzes, including the Connectivity Map (CMap), as an in-silico approach. The aim for this paper is to identify additional compounds affecting osteoblast differentiation using the CMap. Gene expression profiling was performed on hMSCs differentiated to osteoblasts using Illumina microarrays. Our osteoblast gene signature, the top regulated genes 6 hr after induction by dexamethasone, was uploaded into CMap (www.broadinstitute.org/cmap/). Through this approach we identified compounds with gene signatures positively correlating (withaferin-A, calcium folinate, amylocaine) or negatively correlating (salbutamol, metaraminol, diprophylline) to our osteoblast gene signature. All positively correlating compounds stimulated osteogenic differentiation, as indicated by increased mineralization compared to control treated cells. One of three negatively correlating compounds, salbutamol, inhibited dexamethasone-induced osteoblastic differentiation, while the other two had no effect. Based on gene expression data of withaferin-A and salbutamol, we identified HMOX1 and STC1 as being strongly differentially expressed . shRNA knockdown of HMOX1 or STC1 in hMSCs inhibited osteoblast differentiation. These results confirm that the CMap is a powerful approach to identify positively compounds that stimulate osteogenesis of hMSCs, and through this approach we can identify genes that play an important role in osteoblast differentiation and could be targets for novel bone anabolic therapies.
Collapse
Affiliation(s)
- Andrea M Brum
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Linh Nguyen
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Abidin Aliev
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Tarini Gajadien
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | - B C J van der Eerden
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Su YW, Chen KM, Hassanshahi M, Tang Q, Howe PR, Xian CJ. Childhood cancer chemotherapy-induced bone damage: pathobiology and protective effects of resveratrol and other nutraceuticals. Ann N Y Acad Sci 2017; 1403:109-117. [PMID: 28662275 DOI: 10.1111/nyas.13380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Intensive cancer chemotherapy causes significant bone loss, for which the mechanisms remain unclear and effective treatments are lacking. This is a significant issue particularly for childhood cancers, as the most common ones have a >75% cure rate following chemotherapy; there is an increasing population of survivors who live with chronic bone defects. Studies suggest that these defects are the result of reduced bone from increased marrow fat formation and increased bone resorption following chemotherapy. These changes probably result from altered expression/activation of regulatory molecules or pathways regulating skeletal cell formation and activity. Treatment with methotrexate, an antimetabolite commonly used in childhood oncology, has been shown to increase levels of proinflammatory/pro-osteoclastogenic cytokines (e.g., enhanced NF-κB activation), leading to increased osteoclast formation and bone resorption, as well as to attenuate Wnt signaling, leading to both decreased bone and increased marrow fat formation. In recent years, understanding the mechanisms of action and potential health benefits of selected nutraceuticals, including resveratrol, genistein, icariin, and inflammatory fatty acids, has led to preclinical studies that, in some cases, indicate efficacy in reducing chemotherapy-induced bone defects. We summarize the supporting evidence.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou, PR China
| | - Mohammadhossein Hassanshahi
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Qian Tang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, New South Wales, Australia
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Abstract
INTRODUCTION Methotrexate (MTX) is one of the most commonly used disease modifying drugs administered for wide spectrum of conditions. Through the expansion of the indications of MTX use, an increasing number of patients nowadays attend orthopaedic departments receiving this pharmacological agent. The aim of this manuscript is to present our current understanding on the effect of MTX on bone and wound healing. Areas covered: The authors offer a comprehensive review of the existing literature on the experimental and clinical studies analysing the effect of MTX on bone and wound healing. The authors also analyse the available literature and describe the incidence of complications after elective orthopaedic surgery in patients receiving MTX. Expert opinion: The available experimental data and clinical evidence are rather inadequate to allow any safe scientific conclusions on the effect of MTX on bone healing. Regarding wound healing, in vitro and experimental animal studies suggest that MTX can adversely affect wound healing, whilst the clinical studies show that lose-dose MTX is safe and does not affect the incidence of postoperative wound complications.
Collapse
Affiliation(s)
- Ippokratis Pountos
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom
| | - Peter V Giannoudis
- a Academic Department of Trauma & Orthopaedics, School of Medicine , University of Leeds , Leeds , United Kingdom.,b NIHR Leeds Biomedical Research Unit , Chapel Allerton Hospital , Leeds , UK
| |
Collapse
|
11
|
Lee AMC, Shandala T, Soo PP, Su YW, King TJ, Chen KM, Howe PR, Xian CJ. Effects of Resveratrol Supplementation on Methotrexate Chemotherapy-Induced Bone Loss. Nutrients 2017; 9:nu9030255. [PMID: 28282956 PMCID: PMC5372918 DOI: 10.3390/nu9030255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five-day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX-treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects.
Collapse
Affiliation(s)
- Alice M C Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Pei Pei Soo
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Yu-Wen Su
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Tristan J King
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| |
Collapse
|
12
|
The role of R-spondins and their receptors in bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:93-100. [DOI: 10.1016/j.pbiomolbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|
13
|
Liu Y, Xu Y, Zhao Y, Jia Y. Effect of ionic concentration on drug release from polyelectrolyte hydrogel carriers analyzed via triphasic mechanism model. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|