1
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
2
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
3
|
Aparicio C, Belver M, Enríquez L, Espeso F, Núñez L, Sánchez A, de la Fuente MÁ, González-Vallinas M. Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. Int J Mol Sci 2021; 22:11781. [PMID: 34769211 PMCID: PMC8583883 DOI: 10.3390/ijms222111781] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health problem as it is the third most prevalent and the second most lethal cancer worldwide. Major efforts are underway to understand its molecular pathways as well as to define the tumour-associated antigens (TAAs) and tumour-specific antigens (TSAs) or neoantigens, in order to develop an effective treatment. Cell therapies are currently gaining importance, and more specifically chimeric antigen receptor (CAR)-T cell therapy, in which genetically modified T cells are redirected against the tumour antigen of interest. This immunotherapy has emerged as one of the most promising advances in cancer treatment, having successfully demonstrated its efficacy in haematological malignancies. However, in solid tumours, such as colon cancer, it is proving difficult to achieve the same results due to the shortage of TSAs, on-target off-tumour effects, low CAR-T cell infiltration and the immunosuppressive microenvironment. To address these challenges in CRC, new approaches are proposed, including combined therapies, the regional administration of CAR-T cells and more complex CAR structures, among others. This review comprehensively summarises the current landscape of CAR-T cell therapy in CRC from the potential tumour targets to the preclinical studies and clinical trials, as well as the limitations and future perspectives of this novel antitumour strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Margarita González-Vallinas
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), University of Valladolid (UVa)-CSIC, 47003 Valladolid, Spain; (C.A.); (M.B.); (L.E.); (F.E.); (L.N.); (A.S.); (M.Á.d.l.F.)
| |
Collapse
|
4
|
Cytokine-Induced Killer (CIK) Cells, In Vitro Expanded under Good Manufacturing Process (GMP) Conditions, Remain Stable over Time after Cryopreservation. Pharmaceuticals (Basel) 2020; 13:ph13050093. [PMID: 32408620 PMCID: PMC7281026 DOI: 10.3390/ph13050093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are advanced therapy medicinal products, so their production and freezing process has to be validated before their clinical use, to verify their stability as a drug formulation according to the good manufacturing practice (GMP) guidelines. We designed a stability program for our GMP-manufactured CIK cells, evaluating the viability, identity and potency of cryopreserved CIK cells at varying time periods from freezing, and compared them with fresh CIK cells. We evaluated the effects of the cryopreservation method, transportation, and the length of time of different process phases (pre-freezing, freezing and post-thawing) on the stability of CIK cells. This included a worst case for each stage. The expanded CIK cells were viable for up to 30 min from the addition of the freezing solution, when transported on dry ice within 48 h once frozen, within 60 min from thawing and from 12 months of freezing while preserving their cytotoxic effects. The reference samples, cryopreserved simultaneously in tubes and following the same method, were considered representative of the batch and useful in the case of further analysis. Data obtained from this drug stability program can inform the accurate use of CIK cells in clinical settings.
Collapse
|
5
|
Xing X, Zou Z, He C, Hu Z, Liang K, Liang W, Wang Y, Du X. Enhanced antitumor effect of cytotoxic T lymphocytes induced by dendritic cells pulsed with colorectal cancer cell lysate expressing α-Gal epitopes. Oncol Lett 2019; 18:864-871. [PMID: 31289564 DOI: 10.3892/ol.2019.10376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of gastrointestinal malignancy. Traditional therapeutic options for CRC exhibit a limited effect. Adoptive cellular therapy has emerged as a new treatment strategy for CRC. Dendritic cells (DCs) are potent antigen-presenting cells. Specific cytotoxic T lymphocytes (CTLs) activated by DCs pulsed with tumor lysate have been reported to be a safe and promising treatment approach for CRC. However, the antitumor effect of specific CTLs remains limited. The low immunogenicity of tumor-associated antigens (TAAs) is the main reason for this limited therapeutic effect. In the present study, α-gal epitopes were synthesized on the CRC cell line SW620 to increase the immunogenicity of TAAs. DCs were pulsed with α-gal-expressing tumor lysate and CTLs were activated by these DCs. The cytotoxicity of CTLs was measured in vitro. The results demonstrated that DCs pulsed with α-gal-expressing tumor lysate can increase the frequency of CD3+CD8+ CTLs and natural killer T cells, increase the level of tumor necrosis factor-α produced by CTLs and enhance the cytotoxicity of CTLs against tumor cells. Therefore, this novel approach may be an effective treatment strategy for patients with CRC.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100853, P.R. China
| | - Changzheng He
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zilong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Kai Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wentao Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yufeng Wang
- Department of Patient Admission Management, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaohui Du
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
6
|
Matsuda T, Miyauchi E, Hsu YW, Nagayama S, Kiyotani K, Zewde M, Park JH, Kato T, Harada M, Matsui S, Ueno M, Fukuda K, Suzuki N, Hazama S, Nagano H, Takeuchi H, Vigneswaran WT, Kitagawa Y, Nakamura Y. TCR sequencing analysis of cancer tissues and tumor draining lymph nodes in colorectal cancer patients. Oncoimmunology 2019; 8:e1588085. [PMID: 31069156 DOI: 10.1080/2162402x.2019.1588085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor draining lymph nodes (TDLNs) are located in the routes of lymphatic drainage from a primary tumor and have the highest risk of metastasis in various types of solid tumors. TDLNs are also considered as a tissue to activate the antitumor immunity, where antigen-specific effector T cells are generated. However, T cell receptor (TCR) repertoires in TDLNs have not been well characterized. We collected 23 colorectal cancer tumors with 203 lymph nodes with/without metastatic cancer cells (67 were metastasis-positive and the remaining 136 were metastasis-negative) and performed TCR sequencing. Metastasis-positive TDLNs showed a significantly lower TCR diversity and shared TCR clonotypes more frequently with primary tumor tissues compared to metastasis-negative TDLNs. Principal component analysis indicated that TDLNs with metastasis showed similar TCR repertoires. These findings suggest that cancer-reactive T cell clones could be enriched in the metastasis-positive TDLNs.
Collapse
Affiliation(s)
- Tatsuo Matsuda
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eisaku Miyauchi
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yu-Wen Hsu
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makda Zewde
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Taigo Kato
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Makiko Harada
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Shimpei Matsui
- Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masashi Ueno
- Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Wickii T Vigneswaran
- Department of Thoracic and Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
8
|
Castiglia S, Adamini A, Rustichelli D, Castello L, Mareschi K, Pinnetta G, Leone M, Mandese A, Ferrero I, Mesiano G, Fagioli F. Cytokines induced killer cells produced in good manufacturing practices conditions: identification of the most advantageous and safest expansion method in terms of viability, cellular growth and identity. J Transl Med 2018; 16:237. [PMID: 30157948 PMCID: PMC6116438 DOI: 10.1186/s12967-018-1613-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Cytokine-induced killer (CIK) cells are a very promising cell population raising growing interest in the field of cellular antitumor therapy. The aim of our study was to validate the most advantageous expansion method for this advanced therapy medicinal product (ATMP) and to translate it from preclinical field to good manufacturing practices (GMP). GMP ensures that ATMP are consistently produced and controlled to the quality standards required to their intended use. For this reason, the use of the xenogenic sera tended to be minimized by GMP for their high variability and the associated risk of transmitting infectious agents. Results We decided to replace Fetal Bovine Serum (FBS), largely used as medium supplement for CIKs expansion, with other culture media. Firstly, Human Serum (HS) and Human Pool Plasma (HPP) were tested as medium supplements giving not compliant results to acceptance criteria, established for CIKs, probably for the great batch to batch variability. Consequently, we decided to test three different serum free expansion media: X-VIVO 15, (largely used by other groups) and Tex Macs and Cell Genix GMP SCGM: two GMP manufactured media. We performed a validation consisting in three run-sand even if the small number of experiments didn’t permit us to obtained statistical results we demonstrated that both X-VIVO 15 and Tex Macs fulfilled the quality standards in terms of cellular growth, viability and identity while Cell Genix GMP SCGM resulted not compliant as it caused some technical problems such as high mortality. Conclusion In conclusion, these preclinical validation data lay the bases for a GMP-compliant process to improve the CIKs expansion method.
Collapse
Affiliation(s)
- Sara Castiglia
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy.
| | - Aloe Adamini
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Deborah Rustichelli
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Laura Castello
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Katia Mareschi
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | - Giuseppe Pinnetta
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Marco Leone
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Alessandra Mandese
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy
| | - Ivana Ferrero
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| | | | - Franca Fagioli
- City of Health and Science Hospital of Turin, Pediatric Oncoematology, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, 10126, Turin, Italy
| |
Collapse
|
9
|
Du J, Wei J, Yang Y, Su S, Shao J, Chen F, Meng F, Zou Z, Liu B. Disappearance of bone metastases in chemotherapy-resistant gastric cancer treated with antigen peptide-pulsed dendritic cell-activated cytotoxic T lymphocyte immunotherapy: A case report. Oncol Lett 2018; 16:875-881. [PMID: 29963158 PMCID: PMC6019880 DOI: 10.3892/ol.2018.8781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The adoptive transfer of cytotoxic T lymphocytes (CTLs) stimulated by specific tumor antigen peptide-pulsed dendritic cells (DCs) is one of the most promising immunotherapeutic strategies currently available for patients with gastric cancer (GC). The present case report describes a patient with chemotherapy-resistant stage IV GC with multiple bone metastases, who had been treated with antigen peptide-pulsed DC-CTLs. DCs and CTLs were transfused into the patient subcutaneously and intravenously with simultaneous oral administration of low-dose cyclophosphamide. Following 3 cycles of combination therapy, marked remission regarding the number of metastatic bone lesions was achieved, confirmed by the use of enhanced computerized tomography, computerized tomography and magnetic resonance imaging. After 1 year, 8 cycles of adoptive immunotherapy were administered, and a further decrease in the number of metastatic bone lesions was observed in addition to a marked improvement in the patient's quality of life. Therefore, personalized antigen peptide-pulsed DC-CTLs combined with oral administration of low-dose cyclophosphamide may serve as a promising anticancer therapy to eradicate tumor cells, and therefore this approach is recommended for future cases of a similar nature.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
10
|
Gutting T, Burgermeister E, Härtel N, Ebert MP. Checkpoints and beyond - Immunotherapy in colorectal cancer. Semin Cancer Biol 2018; 55:78-89. [PMID: 29716829 DOI: 10.1016/j.semcancer.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Immunotherapy is the latest revolution in cancer therapy. It continues to show impressive results in malignancies like melanoma and others. At least so far, effects are modest in colorectal cancer (CRC) and only a subset of patients benefits from already approved checkpoint inhibitors. In this review, we discuss major hurdles of immunotherapy like the immunosuppressive niche and low immunogenicity of CRC next to current achievements of checkpoint inhibitors, interleukin treatment and adoptive cell transfer (dendritic cells/cytokine induced killer cells, tumor infiltrating lymphocytes, chimeric antigen receptor cells, T cell receptor transfer) in pre-clinical models and clinical trials. We intensively examine approaches to overcome low immunogenicity by combination of different therapies and address future strategies of therapy as well as the need of predictive factors in this emerging field of precision medicine.
Collapse
Affiliation(s)
- Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Heilig-Geist Hospital Bensheim, Rodensteinstraße 94, 64625 Bensheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
11
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
12
|
Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A 2017; 114:E5900-E5909. [PMID: 28674001 DOI: 10.1073/pnas.1706559114] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent development of immunotherapy as a cancer treatment has proved effective over recent years, but the precise dynamics between the tumor microenvironment (TME), nontumor microenvironment (NTME), and the systemic immune system remain elusive. Here, we interrogated these compartments in hepatocellular carcinoma (HCC) using high-dimensional proteomic and transcriptomic analyses. By time-of-flight mass cytometry, we found that the TME was enriched in regulatory T cells (Tregs), tissue resident memory CD8+ T cells (TRMs), resident natural killer cells (NKRs), and tumor-associated macrophages (TAMs). This finding was also validated with immunofluorescence staining on Foxp3+CD4+ and PD-1+CD8+ T cells. Interestingly, Tregs and TRMs isolated from the TME expressed multiple markers for T-cell exhaustion, including PD-1, Lag-3, and Tim-3 compared with Tregs and TRMs isolated from the NTME. We found PD-1+ TRMs were the predominant T-cell subset responsive to anti-PD-1 treatment and significantly reduced in number with increasing HCC tumor progression. Furthermore, T-bet was identified as a key transcription factor, negatively correlated with PD-1 expression on memory CD8+ T cells, and the PD-1:T-bet ratio increased upon exposure to tumor antigens. Finally, transcriptomic analysis of tumor and adjacent nontumor tissues identified a chemotactic gradient for recruitment of TAMs and NKRs via CXCR3/CXCL10 and CCR6/CCL20 pathways, respectively. Taken together, these data confirm the existence of an immunosuppressive gradient across the TME, NTME, and peripheral blood in primary HCC that manipulates the activation status of tumor-infiltrating leukocytes and renders them immunocompromised against tumor cells. By understanding the immunologic composition of this gradient, more effective immunotherapeutics for HCC may be designed.
Collapse
|
13
|
Signorini L, Delbue S, Ferrante P, Bregni M. Review on the immunotherapy strategies against metastatic colorectal carcinoma. Immunotherapy 2017; 8:1245-61. [PMID: 27605072 DOI: 10.2217/imt-2016-0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies throughout the world and the leading cause of cancer-related mortality in Western countries. Recent progress in CRC treatment options, such as surgery, chemotherapy, radiotherapy and target therapy, has improved the prognosis, but advanced disease with recurrence or distant metastasis is usually incurable and has an unfavorable prognosis. The introduction of immunotherapy-associated strategies, both active and passive, to the treatment of CRC aims to overcome the limits of classical treatments. We review the state of the art for CRC with respect to different immunotherapeutic approaches, such as the use of cancer vaccines and/or adoptive cellular therapy, their most current advances and limitations and perspectives for further improvements.
Collapse
Affiliation(s)
- Lucia Signorini
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Marco Bregni
- Ospedale di Circolo di Busto Arsizio, Via A. Da Brescia, 1, 21052 Busto Arsizio VA, Italy
| |
Collapse
|
14
|
T Cell Genesis: In Vitro Veritas Est? Trends Immunol 2016; 37:889-901. [PMID: 27789110 DOI: 10.1016/j.it.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for the large-scale production and genetic manipulation of T cells. In this review, we discuss recent strategies for the generation of T cells from human HSPCs and PSCs in vitro. Continued advancement in the generation of human T cells in vitro will expand their benefits and therapeutic potential in the clinic.
Collapse
|