1
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Chakraborty C, Bhattacharya M, Alshammari A, Albekairi TH. Blueprint of differentially expressed genes reveals the dynamic gene expression landscape and the gender biases in long COVID. J Infect Public Health 2024; 17:748-766. [PMID: 38518681 DOI: 10.1016/j.jiph.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Long COVID has appeared as a significant global health issue and is an extra burden to the healthcare system. It affects a considerable number of people throughout the globe. However, substantial research gaps have been noted in understanding the mechanism and genomic landscape during the long COVID infection. A study has aimed to identify the differentially expressed genes (DEGs) in long COVID patients to fill the gap. METHODS We used the RNA-seq GEO dataset acquired through the GPL20301 Illumina HiSeq 4000 platform. The dataset contains 36 human samples derived from PBMC (Peripheral blood mononuclear cells). Thirty-six human samples contain 13 non-long COVID individuals' samples and 23 long COVID individuals' samples, considered the first direction analysis. Here, we performed two-direction analyses. In the second direction analysis, we divided the dataset gender-wise into four groups: the non-long COVID male group, the long COVID male group, the non-long COVID female group, and the long COVID female group. RESULTS In the first analysis, we found no gene expression. In the second analysis, we identified 250 DEGs. During the DEG profile analysis of the non-long COVID male group and the long COVID male group, we found three upregulated genes: IGHG2, IGHG4, and MIR8071-2. Similarly, the analysis of the non-long COVID female group and the long COVID female group reveals eight top-ranking genes. It also indicates the gender biases of differentially expressed genes among long COVID individuals. We found several DEGs involved in PPI and co-expression network formation. Similarly, cluster enrichment and gene list enrichment analysis were performed, suggesting several genes are involved in different biological pathways or processes. CONCLUSIONS This study will help better understand the gene expression landscape in long COVID. However, it might help the discovery and development of therapeutics for long COVID.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
5
|
Abstract
Although differential transcription drives the development of multicellular organisms, the ultimate readout of a protein-coding gene is ribosome-dependent mRNA translation. Ribosomes were once thought of as uniform molecular machines, but emerging evidence indicates that the complexity and diversity of ribosome biogenesis and function should be given a fresh look in the context of development. This Review begins with a discussion of different developmental disorders that have been linked with perturbations in ribosome production and function. We then highlight recent studies that reveal how different cells and tissues exhibit variable levels of ribosome production and protein synthesis, and how changes in protein synthesis capacity can influence specific cell fate decisions. We finish by touching upon ribosome heterogeneity in stress responses and development. These discussions highlight the importance of considering both ribosome levels and functional specialization in the context of development and disease.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
7
|
Cytosolic and mitochondrial ribosomal proteins mediate the locust phase transition via divergence of translational profiles. Proc Natl Acad Sci U S A 2023; 120:e2216851120. [PMID: 36701367 PMCID: PMC9945961 DOI: 10.1073/pnas.2216851120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phase transition from solitary to gregarious locusts is crucial in outbreaks of locust plague, which threaten agricultural yield and food security. Research on the regulatory mechanisms of phase transition in locusts has focused primarily on the transcriptional or posttranslational level. However, the translational regulation of phase transition is unexplored. Here, we show a phase-dependent pattern at the translation level, which exhibits different polysome profiles between gregarious and solitary locusts. The gregarious locusts exhibit significant increases in 60S and polyribosomes, while solitary locusts possess higher peaks of the monoribosome and a specific "halfmer." The polysome profiles, a molecular phenotype, respond to changes in population density. In gregarious locusts, ten genes involved in the cytosolic ribosome pathway exhibited increased translational efficiency (TE). In solitary locusts, five genes from the mitochondrial ribosome pathway displayed increased TE. The high expression of large ribosomal protein 7 at the translational level promotes accumulation of the free 60S ribosomal subunit in gregarious locusts, while solitary locusts employ mitochondrial small ribosomal protein 18c to induce the assembly of mitochondrial ribosomes, causing divergence of the translational profiles and behavioral transition. This study reveals the translational regulatory mechanism of locust phase transition, in which the locusts employ divergent ribosome pathways to cope with changes in population density.
Collapse
|
8
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|
9
|
Wang R, Amoyel M. mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Front Mol Biosci 2022; 9:863885. [PMID: 35433828 PMCID: PMC9008482 DOI: 10.3389/fmolb.2022.863885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells preserve tissue homeostasis by replacing the cells lost through damage or natural turnover. Thus, stem cells and their daughters can adopt two identities, characterized by different programs of gene expression and metabolic activity. The composition and regulation of these programs have been extensively studied, particularly by identifying transcription factor networks that define cellular identity and the epigenetic changes that underlie the progressive restriction in gene expression potential. However, there is increasing evidence that post-transcriptional mechanisms influence gene expression in stem cells and their progeny, in particular through the control of mRNA translation. Here, we review the described roles of translational regulation in controlling all aspects of stem cell biology, from the decision to enter or exit quiescence to maintaining self-renewal and promoting differentiation. We focus on mechanisms controlling global translation rates in cells, mTOR signaling, eIF2ɑ phosphorylation, and ribosome biogenesis and how they allow stem cells to rapidly change their gene expression in response to tissue needs or environmental changes. These studies emphasize that translation acts as an additional layer of control in regulating gene expression in stem cells and that understanding this regulation is critical to gaining a full understanding of the mechanisms that underlie fate decisions in stem cells.
Collapse
Affiliation(s)
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
11
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
12
|
Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 2018; 13:e0207531. [PMID: 30517151 PMCID: PMC6281188 DOI: 10.1371/journal.pone.0207531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Abstract
Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Reynders K, Wauters E, Moisse M, Decaluwé H, De Leyn P, Peeters S, Lambrecht M, Nackaerts K, Dooms C, Janssens W, Vansteenkiste J, Lambrechts D, De Ruysscher D. RNA-sequencing in non-small cell lung cancer shows gene downregulation of therapeutic targets in tumor tissue compared to non-malignant lung tissue. Radiat Oncol 2018; 13:131. [PMID: 30016964 PMCID: PMC6050654 DOI: 10.1186/s13014-018-1075-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/10/2018] [Indexed: 12/03/2022] Open
Abstract
Background Gene expression of specific therapeutic targets in non-malignant lung tissue might play an important role in optimizing targeted therapies. This study aims to identify different expression patterns of fifteen genes important for targeted therapy in non-small cell lung cancer (NSCLC). Methods We prospectively collected tissue of NSCLC and non-malignant lung tissue from 25 primary resected patients. RNA-sequencing and 450 K methylation array profiling was applied to both NSCLC and non-malignant lung tissue and data were analyzed for 14 target genes. We analyzed differential expression and methylation as well as expression according to patient characteristics like smoking status, histology, age, chronic obstructive pulmonary disease, C-reactive protein (CRP) and gender. TCGA data served as a validation set. Results Nineteen men and 6 women were included. Important targets like PD-L2 (p = 0.035), VEGFR2 (p < 0.001) and VEGFR3 (p < 0.001) were downregulated (respective fold changes = 1.8, 3.1, 2.7, 3.5) in tumor compared to non-malignant lung tissue. The TCGA set confirmed these findings almost universally. PD-L1 (p < 0.001) became also significantly downregulated in the TCGA set. In NSCLC, MUC1 (p = 0.003) showed a higher expression in patients with a CRP < 5 mg/L compared to > 5 mg/L. In the TCGA data but not in our primary data, PD-L1 & 2 were both borderline more expressed in tumors of active smokers vs. tumors of ex-smokers (p = 0.044 and 0.052). Conclusions Our results suggest a lower PD-L1 & 2 and VEGFR expression in NSCLC vs. non-malignant lung tissue. Specific patient characteristics did not seem to change the overall expression differences as they were in line with the overall results. This information may contribute to the optimization of targeted treatments. Electronic supplementary material The online version of this article (10.1186/s13014-018-1075-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kobe Reynders
- Experimental Radiation Oncology, Department of Oncology, KU Leuven, Leuven, Belgium. .,Radiation Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium. .,Lab of Experimental Radiotherapy, UH-Gasthuisberg, CDG-8th floor-box 815, Herestraat 49 - 3000, Leuven, Belgium.
| | - Els Wauters
- Respiratory Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Vesalius Research Center (VRC), VIB, KU Leuven, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Herbert Decaluwé
- Department of Thoracic surgery, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Paul De Leyn
- Department of Thoracic surgery, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Stéphanie Peeters
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| | - Maarten Lambrecht
- Radiation Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Kristiaan Nackaerts
- Respiratory Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Christophe Dooms
- Respiratory Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Respiratory Division, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Johan Vansteenkiste
- Respiratory Oncology Department, University Hospitals Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, KU Leuven, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Experimental Radiation Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW, Maastricht, The Netherlands
| |
Collapse
|