1
|
Brizuela L, Buchet R, Bougault C, Mebarek S. Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. Int J Mol Sci 2025; 26:2896. [PMID: 40243480 PMCID: PMC11988852 DOI: 10.3390/ijms26072896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Links between cathepsin K and the pathophysiology of osteoarthritis (OA) can be established, not least because of the overabundance of cathepsin K in the serum of OA patients and the upregulation of cathepsin K in degraded cartilage in animal models of OA. Chondrocytes, chondroclasts, or osteoclasts contribute to the accumulated cathepsin K at the diseased osteochondral junction. After a general presentation of OA and cartilage physiology, as well as its degradation processes, we describe the function of cathepsin K and its effect on cartilage degradation via type II collagen cleavage. An overview of the most promising cathepsin K inhibitors is then presented, together with their in vitro effects. Although intensive research on cathepsin K inhibitors initially focused on bone resorption, there is growing interest in the potential of these drugs to prevent cartilage degradation. In this review, we summarize the pre-clinical and clinical trials that support the use of cathepsin K inhibitors in the treatment of OA. To date, no molecules of this type are commercially available, although a few have undergone clinical trials, but we believe that the development of cathepsin K inhibitors could broaden the therapeutic arsenal for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | - Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Université Lyon 1, UMR CNRS 5246, 69 622 Villeurbanne Cedex, France
| |
Collapse
|
2
|
Jones R, Gilbert SJ, Christofides SR, Mason DJ. Osteocytes contribute to sex-specific differences in osteoarthritic pain. Front Endocrinol (Lausanne) 2024; 15:1480274. [PMID: 39574959 PMCID: PMC11579924 DOI: 10.3389/fendo.2024.1480274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Osteoarthritic (OA) pain affects 18% of females and 9.6% of males aged over 60 worldwide, with 62% of all OA patients being women. The molecular drivers of sex-based differences in OA are unknown. Bone is intricately coupled with the sensory nervous system and one of the only joint tissues known to show changes that correlate with patient pain in OA. There are fundamental sex differences in pain sensation and bone biology which may be intrinsic to OA disease progression, however these differences are vastly under researched. We have utilised three data sets to investigate the hypothesis that potential mediators responsible for sex dependent pain mechanisms displayed in OA are derived from mechanically stimulated osteocytes. Our published dataset of the in vitro human osteocyte mechanosome was independently compared with published data from, sex-based gene expression differences in human long bone, the sex-based gene expression differences during the skeletal maturation of the mouse osteocyte transcriptome and sex specific OA risk factors and effector genes in a large human GWAS. 80 of the 377 sex-specific genes identified in the mouse osteocyte transcriptome were mechanically regulated in osteocytes with enrichment associated with neural crest migration and axon extension, and DISEASES analysis enrichment for the rheumatoid arthritis pathway. 3861 mechanically regulated osteocytic genes displayed sex-specific differences in human long bone with enrichment for genes associated with the synapse, sensory perception of pain, axon guidance, immune responses, distal peripheral sensory neuropathy, sensory neuropathy, and poor wound healing. 32 of 77 effector genes and 1 of 3 female specific OA risk factor genes identified in the human GWAS were differentially expressed in the osteocyte mechanosome and male and female bone. This analysis lends support to the hypothesis that mechanically regulated genes in osteocytes could influence sex specific differences in osteoarthritic pain and highlights pain pathways with approved drugs that could potentially treat elevated pain susceptibility in females with OA.
Collapse
Affiliation(s)
| | | | | | - Deborah J. Mason
- Biomechanics and Bioengineering Research Centre Versus Arthritis, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage 2024; 32:1220-1234. [PMID: 38876436 DOI: 10.1016/j.joca.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
4
|
Chen C, Xu G, Chen J, Wu C, Zhang J, Jiang J, Hong H, Cui Z. Decreased FoxO1 expression contributes to facet joint osteoarthritis pathogenesis by impairing chondrocyte migration and extracellular matrix synthesis. Cell Signal 2024; 113:110942. [PMID: 37890685 DOI: 10.1016/j.cellsig.2023.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Facet joint osteoarthritis (FJOA), a condition commonly observed in individuals of middle to old age, has been relatively under-researched compared to other subtypes of osteoarthritis (OA). This study investigated the role of transcription factor FoxO1 in FJOA using a Col2a1-creERT knock-in mouse model. It was found that FoxO1 deletion led to severe osteoarthritic changes, indicating that FoxO1 played a critical role in cartilage homeostasis. Transcriptome sequencing was performed on degenerated cartilage from FoxO1-deleted mice. This process identified differentially expressed genes (DEGs), offering insights into the molecular mechanisms underlying FJOA. Bioinformatics analysis, including Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis, identified Itgb3, Itga1, Itga6, Itga7, Itga8, Itga10, Col1a1, and Il6, as potential key contributors to FJOA after FoxO1 deletion. Importantly, overexpression of Itgb3 and inhibition of Il6 counteracted FoxO1 knockdown-induced impairments in chondrocyte migration and extracellular matrix synthesis, respectively. This study discovered FoxO1 as a key regulator of the pathogenesis of FJOA, helped unravel the complex molecular mechanisms underlying FJOA, and contributed to the development of promising therapeutic avenues toward FJOA.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Spinal Degenerative Disease, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiawei Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China; Spinal Degenerative Disease, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
5
|
Hildebrandt A, Dietrich T, Weber J, Günderoth MM, Zhou S, Fleckenstein FN, Jiang S, Winkler T, Duda GN, Tsitsilonis S, Keller J, Maleitzke T. The dual pro-inflammatory and bone-protective role of calcitonin gene-related peptide alpha in age-related osteoarthritis. Arthritis Res Ther 2023; 25:244. [PMID: 38102666 PMCID: PMC10722726 DOI: 10.1186/s13075-023-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The vasoactive neuropeptide calcitonin gene-related peptide alpha (αCGRP) enhances nociception in primary knee osteoarthritis (OA) and has been shown to disrupt cartilage and joint integrity in experimental rheumatoid arthritis (RA). Little is known about how αCGRP may alter articular structures in primary OA. We investigated whether αCGRP modulates local inflammation and concomitant cartilage and bone changes in a murine model of age-dependent OA. METHODS Sixteen- to 18-month-old αCGRP-deficient mice (αCGRP-/-aged) were compared to, first, age-matched wild type (WTaged) and, second, young 4- to 5-month-old non-OA αCGRP-deficient (αCGRP-/-CTRL) and non-OA WT animals (WTCTRL). αCGRP levels were measured in serum. Knee and hip joint inflammation, cartilage degradation, and bone alterations were assessed by histology (OARSI histopathological grading score), gene expression analysis, and µ-computed tomography. RESULTS WTaged mice exhibited elevated αCGRP serum levels compared to young WTCTRL animals. Marked signs of OA-induced cartilage destruction were seen in WTaged animals, while αCGRP-/-aged mice were mostly protected from this effect. Age-dependent OA was accompanied by an increased gene expression of pro-inflammatory Tnfa, Il1b, and Il6 and catabolic Mmp13, Adamts5, Ctsk, Tnfs11 (Rankl), and Cxcl12/Cxcr4 in WTaged but not in αCGRP-/-aged mice. αCGRP-deficiency however further aggravated subchondral bone sclerosis of the medial tibial plateau and accelerated bone loss in the epi- and metaphyseal trabecular tibial bone in age-dependent OA. CONCLUSIONS Similar to its function in experimental RA, αCGRP exerts a dual pro-inflammatory and bone-protective function in murine primary OA. Although anti-CGRP treatment was previously not successful in reducing pain in OA clinically, these data underline a crucial pathophysiological role of αCGRP in age-related OA.
Collapse
Affiliation(s)
- Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Mara Meyer Günderoth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Sijia Zhou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian N Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Bourne LE, Hesketh A, Sharma A, Bucca G, Bush PG, Staines KA. The effects of physiological and injurious hydrostatic pressure on murine ex vivo articular and growth plate cartilage explants: an RNAseq study. Front Endocrinol (Lausanne) 2023; 14:1278596. [PMID: 38144567 PMCID: PMC10740163 DOI: 10.3389/fendo.2023.1278596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Chondrocytes are continuously exposed to loads placed upon them. Physiological loads are pivotal to the maintenance of articular cartilage health, while abnormal loads contribute to pathological joint degradation. Similarly, the growth plate cartilage is subject to various loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influencers on chondrocytes and has been shown to play an important role in the mechano-regulation of cartilage. Methods Herein, we conducted RNAseq analysis of ex vivo hip cap (articular), and metatarsal (growth plate) cartilage cultures subjected to physiological (5 MPa) and injurious (50 MPa) hydrostatic pressure, using the Illumina platform (n = 4 replicates). Results Several hundreds of genes were shown to be differentially modulated by hydrostatic pressure, with the majority of these changes evidenced in hip cap cartilage cultures (375 significantly upregulated and 322 downregulated in 5 MPa versus control; 1022 upregulated and 724 downregulated in 50 MPa versus control). Conversely, fewer genes were differentially affected by hydrostatic pressure in the metatarsal cultures (5 significantly upregulated and 23 downregulated in 5 MPa versus control; 7 significantly upregulated and 19 downregulated in 50 MPa versus control). Using Gene Ontology annotations for Biological Processes, in the hip cap data we identified a number of pathways that were modulated by both physiological and injurious hydrostatic pressure. Pathways upregulated in response to 50 MPa versus control, included those involved in the generation of precursor metabolites and cellular respiration. Biological processes that were downregulated in this tissue included ossification, connective tissue development, and chondrocyte differentiation. Discussion Collectively our data highlights the divergent chondrocyte phenotypes in articular and growth plate cartilage. Further, we show that the magnitude of hydrostatic pressure application has distinct effects on gene expression and biological processes in hip cap cartilage explants. Finally, we identified differential expression of a number of genes that have previously been identified as osteoarthritis risk genes, including Ctsk, and Chadl. Together these data may provide potential genetic targets for future investigations in osteoarthritis research and novel therapeutics.
Collapse
Affiliation(s)
- Lucie E. Bourne
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Hesketh
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Aikta Sharma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Giselda Bucca
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Peter G. Bush
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Katherine A. Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
7
|
Houchen CJ, Castro B, Hahn Leat P, Mohammad N, Hall-Glenn F, Bumann EE. Treatment with an inhibitor of matrix metalloproteinase 9 or cathepsin K lengthens embryonic lower jaw bone. Orthod Craniofac Res 2023; 26:500-509. [PMID: 36680416 PMCID: PMC11508777 DOI: 10.1111/ocr.12635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Skeletal malocclusions are common, and severe malocclusions are treated by invasive surgeries. Recently, jaw bone length has been shown to be developmentally controlled by osteoclasts. Our objective was to determine the effect of inhibiting osteoclast-secreted proteolytic enzymes on lower jaw bone length of avian embryos by pharmacologically inhibiting matrix metalloproteinase-9 (MMP9) or cathepsin K (CTSK). METHODS Quail (Coturnix coturnix japonica) embryos were given a single dose of an inhibitor of MMP9 (iMMP9), an inhibitor CTSK (iCTSK), or vehicle at a developmental stage when bone deposition is beginning to occur. At a developmental stage when the viscerocranium is largely calcified, the heads were scanned via micro-computed tomography and reproducible landmarks were placed on 3D-reconstructed skulls; the landmark coordinates were used to quantify facial bone dimensions. RESULTS Approximately half of the quail given either iMMP9 or iCTSK demonstrated an overt lower jaw phenotype, characterized by longer lower jaw bones and a greater lower to upper jaw ratio than control embryos. Additionally, iMMP9-treated embryos exhibited a significant change in midface length and iCTSK-treated embryos had significant change in nasal bone length. CONCLUSION MMP9 and CTSK play a role in osteoclast-mediated determination of lower jaw bone length. Pharmacological inhibition of MMP9 or CTSK may be a promising therapeutic alternative to surgery for treating skeletal jaw malocclusions, but more preclinical research is needed prior to clinical translation.
Collapse
Affiliation(s)
- Claire J Houchen
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bethany Castro
- Summer Scholar Program Participant, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Portia Hahn Leat
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Nashwa Mohammad
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Faith Hall-Glenn
- Department of Orthopaedic Surgery, School of Medicine, University of California-San Francisco, San Francisco, California, USA
- St. Anna's Children's Cancer Research Institute, Vienna, Austria
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
9
|
Mijanović O, Jakovleva A, Branković A, Zdravkova K, Pualic M, Belozerskaya TA, Nikitkina AI, Parodi A, Zamyatnin AA. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int J Mol Sci 2022; 23:ijms232213762. [PMID: 36430239 PMCID: PMC9698382 DOI: 10.3390/ijms232213762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.
Collapse
Affiliation(s)
- Olja Mijanović
- Dia-M, LCC, 7 b.3 Magadanskaya Str., 129345 Moscow, Russia
- The Human Pathology Department, Sechenov First Moscow State University, 119991 Moscow, Russia
| | | | - Ana Branković
- Department of Forensics Engineering, University of Criminal Investigation and Police Studies, Cara Dusana 196, 11000 Belgrade, Serbia
| | - Kristina Zdravkova
- AD Alkaloid Skopje, Boulevar Alexander the Great 12, 1000 Skopje, North Macedonia
| | - Milena Pualic
- Institute Cardiovascular Diseases Dedinje, Heroja Milana Tepica 1, 11000 Belgrade, Serbia
| | - Tatiana A. Belozerskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Angelina I. Nikitkina
- ArhiMed Clinique for New Medical Technologies, Vavilova St. 68/2, 119261 Moscow, Russia
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| |
Collapse
|
10
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
11
|
Stone RN, Frahs SM, Hardy MJ, Fujimoto A, Pu X, Keller-Peck C, Oxford JT. Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. Int J Mol Sci 2021; 22:6241. [PMID: 34207917 PMCID: PMC8230108 DOI: 10.3390/ijms22126241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Collapse
Affiliation(s)
- Roxanne N. Stone
- Interdisciplinary Studies Program, Boise State University, Boise, ID 83725, USA;
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
| | - Stephanie M. Frahs
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Makenna J. Hardy
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Akina Fujimoto
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | - Cynthia Keller-Peck
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA; (S.M.F.); (M.J.H.); (A.F.); (X.P.); (C.K.-P.)
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
12
|
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol 2021; 8:607764. [PMID: 33553146 PMCID: PMC7859330 DOI: 10.3389/fcell.2020.607764] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
There is emerging awareness that subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). This review presents recent investigations on the cellular and molecular mechanism of subchondral bone remodeling, and summarizes the current interventions and potential therapeutic targets related to OA subchondral bone remodeling. The first part of this review covers key cells and molecular mediators involved in subchondral bone remodeling (osteoclasts, osteoblasts, osteocytes, bone extracellular matrix, vascularization, nerve innervation, and related signaling pathways). The second part of this review describes candidate treatments for OA subchondral bone remodeling, including the use of bone-acting reagents and the application of regenerative therapies. Currently available clinical OA therapies and known responses in subchondral bone remodeling are summarized as a basis for the investigation of potential therapeutic mediators.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yau Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis. Probiotics Antimicrob Proteins 2021; 13:1018-1032. [PMID: 33459997 DOI: 10.1007/s12602-020-09735-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of using probiotics to treat osteoarthritis (OA) has only recently been recognized, with a small number of animal and human studies having been undertaken. The aim of this study was to describe the effect of a probiotic composition (PB) and chondroitin sulfate (CS), administered separately or in combination, on Tlr2, Tlr4, Nfkb1, and Comp gene expression in cartilage and levels of cytokines (IL-6, IL-8, TGF-β1, IGF-1) and COMP, ACAN, CHI3L1, CTSK, and TLR-2 in serum during monoiodoacetate (MIA)-induced OA in rats. Expression of Tlr2, Tlr4, Nfkb1, and Comp in cartilage was analyzed using one-step SYBR Green real-time RT-PCR. The levels of IL-6, IL-8, TGF-β1, IGF-1, COMP, ACAN, CHI3L1, CTSK, and TLR-2 were measured in serum by enzyme-linked immunosorbent assay. Experimental OA caused an upregulation in Tlr2, Tlr4, Nfkb1, and downregulation of Comp expression in the cartilage. MIA-OA caused a significant increase of TLR-2 soluble form and IL-6, IL-8, TGF-β1, COMP, ACAN, CHI3L1, and CTSK levels in the blood serum; the level of IGF-1, on contrary, decreased. Separate administration of PB and CS raised expression of Comp and reduced Tlr2, Tlr4, and Nfkb1 expressions in cartilage. The levels of the studied markers of cartilage metabolism in serum were decreased or increased (IGF-1). The combined use of PB and CS was more effective than separate application approaching above-mentioned parameters to control. The outcomes of our research prove that multistrain live probiotic composition amplifies the positive action of CS in osteoarthritis attenuation and necessitates further investigation with large-scale randomized controlled trial.
Collapse
|
14
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
15
|
Razmara E, Azimi H, Bitaraf A, Daneshmand MA, Galehdari M, Dokhanchi M, Esmaeilzadeh‐Gharehdaghi E, Garshasbi M. Whole-exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis. Mol Genet Genomic Med 2020; 8:e1118. [PMID: 31944631 PMCID: PMC7057126 DOI: 10.1002/mgg3.1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. In this study, we aimed to find the potential genetic cause of skeletal disease, a heterogeneous disease, revealing the obvious short stature phenotype. In an Iranian family, we used solo-WES in a suspected patient to decipher the potential genetic cause(s). METHODS A comprehensive clinical and genotyping examination was applied to suspect the disease of the patient. The solo clinical WES was exploited, and the derived data were filtered according to the standard pipelines. In order to validate the WES finding, the region harboring the candidate variant in the CTSK gene was amplified from genomic DNA and sequenced directly by Sanger sequencing. RESULTS Sequence analysis revealed a rare novel nonsense variant, p.(Trp320*); c.905G>A, in the CTSK gene (NM_000396.3). In silico analysis shed light on the contribution of the variant to the pathogenicity of pycnodysostosis. This variant was confirmed by Sanger sequencing and further clinical examinations of the patient confirmed the disease. CONCLUSION The present study shows a rare variant of the CTSK gene, which inherited as autosomal recessive, in an Iranian male patient with pycnodysostosis. Taken together, the novel nonsense CTSK variant meets the criteria of being likely pathogenic according to the American College of Medical Genetics and Genomics-the Association for Molecular Pathology (ACMG-AMP) variant interpretation guidelines.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | | | - Amirreza Bitaraf
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Mohammad Galehdari
- Department of BiologyFaculty of SciencesNorth Tehran BranchIslamic Azad UniversityTehranIran
| | - Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
16
|
Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells. Sci Rep 2020; 10:216. [PMID: 31937805 PMCID: PMC6959248 DOI: 10.1038/s41598-019-57073-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Cathepsin K is a protease known to be involved in not only bone remodeling and resorption, but also articular cartilage degradation that leads to osteoarthritis (OA). Hyaluronan (HA) plays a pivotal role in maintaining homeostasis within articular chondrocytes. Intra-articular supplementation of high molecular weight hyaluronan (HMW-HA) has been widely used in OA treatment. However, its prospective mechanism of action is still unclear. In this study, we examined the suppressive effect of HA on enhanced cathepsin K expression induced by mechanical stress loading. A human chondrocytic HCS-2/8 cells were cultured in silicon chambers and subjected to cyclic tensile stress (CTS) loading. CTS loading significantly increased messenger ribonucleic acid and protein expression of cathepsin K, which appeared to be suppressed by pre-treatment with HMW-HA. Activation of nuclear factor-kappa B (NF-κB) was induced by CTS loading, and suppressed by pre-treatment with HMW-HA. Helenalin, a chemical inhibitor of NF-κB, clearly suppressed the enhanced expression of cathepsin K, as well as NF-κB activation induced by CTS loading. The suppressive effect of HMW-HA on enhanced cathepsin K expression via NF-κB inhibition impacts the effectiveness of HMW-HA in OA treatment. Our findings provide new evidence supporting the biological effectiveness of intra-articular HMW-HA injections for treatment of OA.
Collapse
|
17
|
The Importance of the Knee Joint Meniscal Fibrocartilages as Stabilizing Weight Bearing Structures Providing Global Protection to Human Knee-Joint Tissues. Cells 2019; 8:cells8040324. [PMID: 30959928 PMCID: PMC6523218 DOI: 10.3390/cells8040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review aspects of the pathobiology of the meniscus in health and disease and show how degeneration of the meniscus can contribute to deleterious changes in other knee joint components. The menisci, distinctive semilunar weight bearing fibrocartilages, provide knee joint stability, co-ordinating functional contributions from articular cartilage, ligaments/tendons, synovium, subchondral bone and infra-patellar fat pad during knee joint articulation. The meniscus contains metabolically active cell populations responsive to growth factors, chemokines and inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha, resulting in the synthesis of matrix metalloproteases and A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS)-4 and 5 which can degrade structural glycoproteins and proteoglycans leading to function-limiting changes in meniscal and other knee joint tissues. Such degradative changes are hall-marks of osteoarthritis (OA). No drugs are currently approved that change the natural course of OA and translate to long-term, clinically relevant benefits. For any pharmaceutical therapeutic intervention in OA to be effective, disease modifying drugs will have to be developed which actively modulate the many different cell types present in the knee to provide a global therapeutic. Many individual and combinatorial approaches are being developed to treat or replace degenerate menisci using 3D printing, bioscaffolds and hydrogel delivery systems for therapeutic drugs, growth factors and replacement progenitor cell populations recognising the central role the menisci play in knee joint health.
Collapse
|