1
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
2
|
Zhang R, Dai F, Deng S, Zeng Y, Wang J, Liu G. Reprogramming of Glucose Metabolism for Revisiting Hepatocellular Carcinoma Resistance to Transcatheter Hepatic Arterial Chemoembolization. Chembiochem 2025; 26:e202400719. [PMID: 39501124 DOI: 10.1002/cbic.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is recognized globally as one of the most lethal tumors, presenting a significant menace to patients' lives owing to its exceptional aggressiveness and tendency to recur. Transcatheter hepatic arterial chemoembolization (TACE) therapy, as a first-line treatment option for patients with advanced HCC, has been proven effective. However, it is disheartening that nearly 40 % of patients exhibit resistance to this therapy. Consequently, this review delves into the metabolic aspects of glucose metabolism to explore the underlying mechanisms behind TACE treatment resistance and to propose potentially fruitful therapeutic strategies. The ultimate objective is to present novel insights for the development of personalized treatment methods targeting HCC.
Collapse
Affiliation(s)
- Ruijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Songhan Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Chen J, Jiang Y, Hou M, Liu C, Liu E, Zong Y, Wang X, Meng Z, Gu M, Su Y, Wang H, Fu J. Nuclear translocation of plasma membrane protein ADCY7 potentiates T cell-mediated antitumour immunity in HCC. Gut 2024; 74:128-140. [PMID: 39349007 DOI: 10.1136/gutjnl-2024-332902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The potency of T cell-mediated responses is a determinant of immunotherapy effectiveness in treating malignancies; however, the clinical efficacy of T-cell therapies has been limited in hepatocellular carcinoma (HCC) owing to the extensive immunosuppressive microenvironment. OBJECTIVE Here, we aimed to investigate the key genes contributing to immune escape in HCC and raise a new therapeutic strategy for remoulding the HCC microenvironment. DESIGN The genome-wide in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screen library was conducted to identify the key genes associated with immune tolerance. Single-cell RNA-seq (scRNA-seq), flow cytometry, HCC mouse models, chromatin immunoprecipitation and coimmunoprecipitation were used to explore the function and mechanism of adenylate cyclase 7 (ADCY7) in HCC immune surveillance. RESULTS Here, a genome-wide in vivo CRISPR screen identified a novel immune modulator-ADCY7. The transmembrane protein ADCY7 undergoes subcellular translocation via caveolae-mediated endocytosis and then translocates to the nucleus with the help of leucine-rich repeat-containing protein 59 (LRRC59) and karyopherin subunit beta 1 (KPNB1). In the nucleus, it functions as a transcription cofactor of CCAAT/enhancer binding protein alpha (CEBPA) to induce CCL5 transcription, thereby increasing CD8+ T cell infiltration to restrain HCC progression. Furthermore, ADCY7 can be secreted as exosomes and enter neighbouring tumour cells to promote CCL5 induction. Exosomes with high ADCY7 levels promote intratumoural infiltration of CD8+ T cells and suppress HCC tumour growth. CONCLUSION We delineate the unconventional function and subcellular location of ADCY7, highlighting its pivotal role in T cell-mediated immunity in HCC and its potential as a promising treatment target.
Collapse
Affiliation(s)
- Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Anhui, China
| | - Minghui Hou
- Research Center for Organoids, Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Erdong Liu
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yali Zong
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhengyuan Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Su
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
5
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
6
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
7
|
Xie S, Li X, Zhao J, Zhang F, Shu Z, Cheng H, Liu S, Shi S. The effect and mechanism of hexokinase-2 on cisplatin resistance in lung cancer cells A549. ENVIRONMENTAL TOXICOLOGY 2024; 39:2667-2680. [PMID: 38224486 DOI: 10.1002/tox.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Hexokinase (HK) is the first rate-limiting enzyme of glycolysis, which can convert glucose to glucose-6-phosphate. There are several subtypes of HK, including HK2, which is highly expressed in a variety of different tumors and is closely associated with survival. METHODS Non-small cell lung cancer (NSCLC) A549 cells with stable overexpression and knockdown of HK2 were obtained by lentivirus transfection. The effects of overexpression and knockdown of HK2 on proliferation, migration, invasion, and glycolytic activity of A549 cells were investigated. The effects on apoptosis were also analyzed using western blot and flow cytometry. In addition, the mitochondria and cytoplasm were separated and the expression of apoptotic proteins was detected by western blot respectively. RESULTS Upregulation of HK2 could promote glycolysis, cell proliferation, migration, and invasion, which would be inhibited through the knockdown of HK2. HK2 overexpression contributed to cisplatin resistance, whereas HK2 knockdown enhanced cisplatin-induced apoptosis in A549 cells. CONCLUSIONS Overexpression of HK2 can promote the proliferation, migration, invasion, and drug resistance of A549 cells by enhancing aerobic glycolysis and inhibiting apoptosis. Reducing HK2 expression or inhibiting HK2 activity can inhibit glycolysis and induce apoptosis in A549 cells, which is expected to be a potential treatment method for NSCLC.
Collapse
Affiliation(s)
- Shishun Xie
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Department of Respiratory medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jianjun Zhao
- Department of Respiratory medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Zhang
- General Surgery Center, Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Shu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Siyao Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shaomin Shi
- Department of Respiratory medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
9
|
Batheja S, Sahoo RK, Tarannum S, Vaiphei KK, Jha S, Alexander A, Goyal AK, Gupta U. Hepatocellular carcinoma: Preclinical and clinical applications of nanotechnology with the potential role of carbohydrate receptors. Biochim Biophys Acta Gen Subj 2023; 1867:130443. [PMID: 37573973 DOI: 10.1016/j.bbagen.2023.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer; accounts for 75-85% of cases. The treatment and management of HCC involve different sanative options like surgery, chemotherapy, immunotherapy, etc. Recently, various advancements have been introduced for the diagnosis and targeting of hepatic tumor cells. Among these, biomarkers are considered the primary source for the diagnosis and differentiation of tumor cells. With the advancement in the field of nanotechnology, different types of nanocarriers have been witnessed in tumor targeting. Nanocarriers such as nanoparticles, liposomes, polymeric micelles, nanofibers, etc. are readily prepared for effective tumor targeting with minimal side-effects. The emergence of various approaches tends to improve the effectiveness of these nanocarriers as demonstrated in ample clinical trials. This review focuses on the significant role of carbohydrates such as mannose, galactose, fructose, etc. in the development, diagnosis, and therapy of HCC. Hence, the current focus of this review is to acknowledge various perspectives regarding the occurrence, diagnosis, treatment, and management of HCC.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh Kumar Sahoo
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Sofiya Tarannum
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
10
|
Lu Y, Liu S, Sun Y, Zhao B, Xu D. Identification of key genes in hepatocellular carcinoma associated with exposure to TCDD and α-endosulfan by WGCNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114595. [PMID: 36753968 DOI: 10.1016/j.ecoenv.2023.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-tet-rachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are two typical persistent organic pollutants (POPs), both of which accumulate in the liver and have potential carcinogenic hepatic effects. The underlying molecular mechanisms of pathogenesis of hepatocellular carcinoma (HCC) remain elusive when exposure to POPs. The aim of this study is to explore the key genes involved in HCC when exposure to TCDD and α-endosulfan by weighted gene co-expression network analysis (WGCNA). First, we performed co-expressed analysis on HCC and normal condition, based on WGCNA. In results, seven co-expressed modules were identified from 56 human liver samples, and the brown module correlated with five stages of HCC. Subsequently, we predicted that human five liver diseases were associated with exposure to TCDD and/or α-endosulfan by Nextbio analysis. Functional enrichment analysis showed that the brown module enriched in oxidation-reduction process, DNA replication, oxidoreductase activity and aging, which were the same as the results when exposure to the mixture of TCDD and α-endosulfan. Lastly, based on the protein-protein interaction network, we identified three novel genes including HK2, EXO1 and PFKP as key genes in HCC associated with exposure to TCDD and α-endosulfan mixture. In addition, survival analysis of key genes in Kaplan-Meier plotter demonstrated that aberrant expression levels of all the three key genes were associated with poor prognosis of HCC. Finally, Western blot analysis confirmed that protein expression levels of PFKP and HK2 in the three exposed groups were significantly elevated, while EXO1 were significantly upregulated when exposure to TCDD and α-endosulfan mixture in HepaRG cells. This study provides a new perspective to the understanding of the genetic mechanism of HCC when exposure to POPs.
Collapse
Affiliation(s)
- Yanyuan Lu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shiqi Liu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China.
| |
Collapse
|
11
|
Huang XF, Fu LS, Cai QQ, Fan F. Prognostic and immunological role of sulfatide-related lncRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1091132. [PMID: 36816914 PMCID: PMC9929346 DOI: 10.3389/fonc.2023.1091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. Long non-coding RNAs (lncRNAs) play important roles in the occurrence and development of HCC through multiple pathways. Our previous study reported the specific molecular mechanism for sulfatide regulation of integrin αV expression and cell adhesion in HCC cells through lncRNA AY927503. Next, it is necessary to identify more sulfatide-related lncRNAs, explore their clinical signifcance, and determine new targeted treatment strategies. Methods Microarrays were used to screen a complete set of lncRNAs with different expression profiles in sulfatide-treated cells. Sulfatide-related lncRNAs expression data and corresponding HCC patient survival information were obtained from the The Cancer Genome Atlas (TCGA) database, and the prognosis prediction model was constructed based on Cox regression analysis. Methylated RNA immunoprecipitation with next generation sequencing (MeRIP-seq) was used to detemine the effect of sulfatide on lncRNAs m6A modification. Tumor Immune Estimation Resource (TIMER) and Gene set nnrichment analysis (GSEA) were utilized to enrich the immune and functional pathways of sulfatide-related lncRNAs. Results A total of 85 differentially expressed lncRNAs (|Fold Change (FC)|>2, P<0.05) were screened in sulfatide-treated HCC cells. As a result, 24 sulfatide-related lncRNAs were highly expressed in HCC tissues, six of which were associated with poor prognosis in HCC patients. Based on thses data, a sulfatide-related lncRNAs prognosis assessment model for HCC was constructed. According to this risk score analysis, the overall survival (OS) curve showed that the OS of high-risk patients was significantly lower than that of low-risk patients (P<0.05). Notably, the expression difference in sulfatide-related lncRNA NRSN2-AS1 may be related to sulfatide-induced RNA m6A methylation. In addition, the expression level of NRSN2-AS1 was significantly positively correlated with immune cell infiltration in HCC and participated in the peroxisome and Peroxisome proliferator-activated receptor (PPAR) signaling pathways. Conclusions In conclusion, sulfatide-related lncRNAs might be promising prognostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xing Feng Huang
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Li Sheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Qian Qian Cai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fei Fan
- Department of The Second Ward of Special Treatment, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
12
|
Zhang Y, Li W, Bian Y, Li Y, Cong L. Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ 2023; 11:e14797. [PMID: 36748090 PMCID: PMC9899054 DOI: 10.7717/peerj.14797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is a common malignancy with high morbidity and mortality rates. Changes in liver metabolism are key factors in the development of primary hepatic carcinoma, and mitochondrial dysfunction is closely related to the occurrence and development of tumours. Accordingly, the study of the metabolic mechanism of mitochondria in primary hepatic carcinomas has gained increasing attention. A growing body of research suggests that defects in mitochondrial respiration are not generally responsible for aerobic glycolysis, nor are they typically selected during tumour evolution. Conversely, the dysfunction of mitochondrial oxidative phosphorylation (OXPHOS) may promote the proliferation, metastasis, and invasion of primary hepatic carcinoma. This review presents the current paradigm of the roles of aerobic glycolysis and OXPHOS in the occurrence and development of hepatocellular carcinoma (HCC). Mitochondrial OXPHOS and cytoplasmic glycolysis cooperate to maintain the energy balance in HCC cells. Our study provides evidence for the targeting of mitochondrial metabolism as a potential therapy for HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenhuan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China,Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14174227. [PMID: 36077764 PMCID: PMC9454736 DOI: 10.3390/cancers14174227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research.
Collapse
|
14
|
Zhang L, Zhang Y, Shen D, Chen Y, Feng J, Wang X, Ma L, Liao Y, Tang L. RNA Binding Motif Protein 3 Promotes Cell Metastasis and Epithelial–Mesenchymal Transition Through STAT3 Signaling Pathway in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:405-422. [PMID: 35592242 PMCID: PMC9112182 DOI: 10.2147/jhc.s351886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose RNA binding motif protein 3 (RBM3) has been reported to be dysregulated in various cancers and associated with tumor aggressiveness. Epithelial–mesenchymal transition (EMT) is an important biological process by which tumor cells acquire metastatic abilities. This study aimed to explore the regulatory and molecular mechanisms of RBM3 in EMT process. Methods Western blotting, IHC, and qRT-PCR were performed to evaluate the expression of target genes. Transwell assay was used to investigate the migration and invasion. RNA immunoprecipitation and luciferase reporter assay were performed to explore the correlation of RBM3 with STAT3 or microRNA-383. Animal HCC models were used to explore the role of RBM3 in metastasis in vivo. Results RBM3 was highly expressed in HCC tissues compared to healthy tissues, and its level was negatively correlated with the prognosis of HCC patients. RBM3 overexpression accelerated migration and invasion, promoted EMT process, and activated STAT3 signaling. EMT induced by RBM3 was not only attenuated by inhibiting pSTAT3 via S3I-201 but also abolished by suppressing STAT3 expression via siRNAs. Mechanistically, RBM3 increased STAT3 expression by stabilizing STAT3 mRNA via binding to its mRNA. As an upstream target of RBM3, microRNA-383 inhibited RBM3 expression by binding to its 3ʹUTR and resulted in the inhibition of the EMT process. Inhibition of RBM3 in HCC animal models prolonged survival and ameliorated malignant phenotypes in mice. Conclusion Our findings support that RBM3 promotes HCC metastasis by activating STAT3 signaling.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Dongliang Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Jianguo Feng
- Southwest Medical University, Department Anesthesiology, Affiliated Hospital, Luzhou, 646000, People’s Republic of China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, People’s Republic of China
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- Correspondence: Liling Tang; Yi Liao, Tel +86 139 9605 1730; +86 139 9656 6993, Fax +86-23-65111901; +86-23-68763333, Email ;
| |
Collapse
|
15
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, Zhong J, Guo Z. Lactate: The Mediator of Metabolism and Immunosuppression. Front Endocrinol (Lausanne) 2022; 13:901495. [PMID: 35757394 PMCID: PMC9218951 DOI: 10.3389/fendo.2022.901495] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
The Warburg effect, one of the hallmarks of tumors, produces large amounts of lactate and generates an acidic tumor microenvironment via using glucose for glycolysis. As a metabolite, lactate not only serves as a substrate to provide energy for supporting cell growth and development but also acts as an important signal molecule to affect the biochemical functions of intracellular proteins and regulate the biological functions of different kinds of cells. Notably, histone lysine lactylation (Kla) is identified as a novel post-modification and carcinogenic signal, which provides the promising and potential therapeutic targets for tumors. Therefore, the metabolism and functional mechanism of lactate are becoming one of the hot fields in tumor research. Here, we review the production of lactate and its regulation on immunosuppressive cells, as well as the important role of Kla in hepatocellular carcinoma. Lactate and Kla supplement the knowledge gap in oncology and pave the way for exploring the mechanism of oncogenesis and therapeutic targets. Research is still needed in this field.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhao Zhai
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Duan
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangcai Wang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Longqiu Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - An Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Miao Cao
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanyang Wu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huaqiu Shi
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| | - Zhenli Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huaqiu Shi, ; Jianing Zhong, ; Zhenli Guo,
| |
Collapse
|
16
|
Hu L, Xu X, Li Q, Chen X, Yuan X, Qiu S, Yao C, Zhang D, Wang F. Caveolin-1 increases glycolysis in pancreatic cancer cells and triggers cachectic states. FASEB J 2021; 35:e21826. [PMID: 34320244 DOI: 10.1096/fj.202100121rrr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
In pancreatic cancer, autocrine insulin-like growth factor-1 (IGF-1) and paracrine insulin stimulate both IGF-1 receptor (IGF1R) and insulin receptor (IR) to increase tumor growth and glycolysis. In pancreatic cancer patients, cancer-induced glycolysis increases hepatic gluconeogenesis, skeletal muscle proteolysis, and fat lipolysis and, thereby, causes cancer cachexia. As a protein coexisting with IGF1R and IR, caveolin-1 (cav-1) may be involved in pancreatic cancer-induced cachexia. We undertook the present study to test this hypothesis. Out of wild-type MiaPaCa2 and AsPC1 human pancreatic cancer cell lines, we created their stable sub-lines whose cav-1 expression was diminished with RNA interference or increased with transgene expression. When these cells were studied in vitro, we found that cav-1 regulated IGF1R/IR expression and activation and also regulated cellular glycolysis. We transplanted the different types of MiaPaCa2 cells in growing athymic mice for 8 weeks, using intact athymic mice as tumor-free controls. We found that cav-1 levels in tumor grafts were correlated with expression levels of the enzymes that regulated hepatic gluconeogenesis, skeletal muscle proteolysis, and fat lipolysis in the respective tissues. When the tumors had original or increased cav-1, their carriers' body weight gain was less than the tumor-free reference. When cav-1 was diminished in tumors, the tumor carriers' body weight gain was not changed significantly, compared to the tumor-free reference. In conclusion, cav-1 in pancreatic cancer cells stimulated IGF1R/IR and glycolysis in the cancer cells and triggered cachectic states in the tumor carrier.
Collapse
Affiliation(s)
- Lijuan Hu
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin, China
| | - Xiaoqing Xu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Qiuju Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Xijuan Chen
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Xiangfei Yuan
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin, China
| | - Shuai Qiu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Chuanshan Yao
- The Medical School, Nankai University, Tianjin, China
| | - Dapeng Zhang
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin, China
| | - Feng Wang
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Nankai Hospital Affiliated to Nankai University, Tianjin, China
| |
Collapse
|
17
|
Chen X, Wang L, Yu X, Wang S, Zhang J. Caveolin-1 facilitates cell migration by upregulating nuclear receptor 4A2/retinoid X receptor α-mediated β-galactoside α2,6-sialyltransferase I expression in human hepatocarcinoma cells. Int J Biochem Cell Biol 2021; 137:106027. [PMID: 34157397 DOI: 10.1016/j.biocel.2021.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
It has been reported that caveolin-1 (Cav-1) acts as a tumor promoter in hepatocellular carcinoma (HCC). Our previous studies showed that Cav-1 promoted mouse hepatocarcinoma cell adhesion to fibronectin by upregulating β-galactoside α2,6-sialyltransferase I (ST6Gal-I) expression. However, the detailed mechanism by which Cav-1 regulates ST6Gal-I is not fully understood. In this study, we found that the expression levels of Cav-1 and ST6Gal-I were increased in HCC tissues and correlated with poor prognosis. Cav-1 upregulated ST6Gal-I expression to promote the migration and invasion of HCC cells by inducing epithelial-to-mesenchymal transition. Importantly, the binding of the transcription factor nuclear receptor 4A2/retinoid X receptor alpha (NR4A2/RXRα) to the -550/-200 region of the ST6GAL1 promoter was critical for Cav-1-induced ST6GAL1 gene expression. Furthermore, Cav-1 expression activated the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, followed by upregulation of NR4A2 expression and phosphorylation of RXRα, which facilitated the complex of NR4A2 and phosphorylated RXRα forming and binding to the ST6GAL1 promoter region to induce its transcription. Finally, in the diethylnitrosamine (DEN)-induced HCC murine model, the expression levels of NR4A2, p-RXRα, ST6Gal-I, and α2,6-linked sialic acid decreased in parallel in Cav-1-/- mice compared with Cav-1+/+ mice, which was consistent with the above in vitro results. These findings provide insight into the mechanism of ST6GAL1 gene transcription mediated by Cav-1, which may lead to the development of novel therapeutic strategies targeting metastasis in HCC.
Collapse
Affiliation(s)
- Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao Yu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
18
|
Dong X, Li Y, Li W, Kang W, Tang R, Wu W, Xing Z, Zhou L. The function of Cav-1 in MDA-MB-231 breast cancer cell migration and invasion induced by ectopic ATP5B. Med Oncol 2021; 38:73. [PMID: 34009483 PMCID: PMC8134283 DOI: 10.1007/s12032-021-01519-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 12/03/2022]
Abstract
Ectopic ATP5B, which is located in a unique type of lipid raft caveolar structure, can be upregulated by cholesterol loading. As the structural component of caveolae, Cav-1 is a molecular hub that is involved in transmembrane signaling. In a previous study, the ATP5B-specific binding peptide B04 was shown to inhibit the migration and invasion of prostate cancer cells, and the expression of ATP5B on the plasma membrane of MDA-MB-231 cells was confirmed. The present study investigated the effect of ectopic ATP5B on the migration and invasion of MDA-MB-231 cells and examined the involvement of Cav-1. Cholesterol loading increased the level of ectopic ATP5B and promoted cell migration and invasion. These effects were blocked by B04. Ectopic ATP5B was physically colocalized with Cav-1, as demonstrated by double immunofluorescence staining and coimmunoprecipitation. After Cav-1 knockdown, the migration and invasion abilities of MDA-MB-231 cells were significantly decreased, suggesting that Cav-1 influences the function of ectopic ATP5B. Furthermore, these effects were not reversed after treatment with cholesterol. We concluded that Cav-1 may participate in MDA-MB-231 cell migration and invasion induced by binding to ectopic ATP5B.
Collapse
Affiliation(s)
- Xinjie Dong
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yilei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wenzhe Kang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Rong Tang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Wenyi Wu
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Ziyi Xing
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| | - Lijuan Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
- Electron Microscopy Laboratory of Renal Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
19
|
Androgen Receptor Stimulates Hexokinase 2 and Induces Glycolysis by PKA/CREB Signaling in Hepatocellular Carcinoma. Dig Dis Sci 2021; 66:802-813. [PMID: 32274668 DOI: 10.1007/s10620-020-06229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) escapes growth inhibition by upregulating hexokinase 2 (HK2); however, the mechanism by which tumor cells upregulate HK2 remains unclear. AIM We aimed to investigate the role of androgen receptor (AR) signalling in promoting HK2 expression in HCC. METHODS The expressions of AR and HK2 in HCC tissues were analyzed by immunohistochemistry. Cell proliferation was determined using the CCK-8 assay, and the molecular mechanism of AR in the regulation of HK2 was evaluated by immunoblotting and luciferase assays. RESULTS AR expression is positively correlated with HK2 staining by an immunohistochemical analysis. The manipulation of AR expression changed HK2 expression and glycolysis. AR signaling promoted the growth of HCC by enhancing HK2-mediated glycolysis. Moreover, AR stimulated HK2 levels and glycolysis by potentiating protein kinase A/cyclic adenosine monophosphate response element-binding (CREB) protein signaling. CREB silencing decreased HK2 expression and inhibited AR-mediated HCC glycolysis. AR affected the sensitivity of HCC cells to glycolysis inhibitors by regulating downstream phosphorylated (p)-CREB. CONCLUSIONS These results indicate that AR at least partially induced glycolysis via p-CREB regulation of HK2 in HCC cells. Thus, this pathway should be considered for the design of novel therapeutic methods to target AR-overexpressing HCC.
Collapse
|
20
|
Li X, Li Y, Bai S, Zhang J, Liu Z, Yang J. NR2F1-AS1/miR-140/HK2 Axis Regulates Hypoxia-Induced Glycolysis and Migration in Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:427-437. [PMID: 33488124 PMCID: PMC7815091 DOI: 10.2147/cmar.s266797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxia is an important feature for the progression of hepatocellular carcinoma (HCC). Long noncoding RNA nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) is dysregulated in HCC. However, the role and mechanism of N2RF1-AS1 in hypoxia-induced glycolysis and migration remain unclear. Materials and Methods Tumor tissues and adjacent samples were harvested from 40 HCC patients. HCC cells were treated by hypoxia. The levels of NR2F1-AS1, microRNA (miR)-140, and hexokinase 2 (HK2) were examined via quantitative reverse transcription polymerase chain reaction or Western blot. Glycolysis was analyzed via glucose uptake, lactate production, and adenosine triphosphate (ATP) levels. Cell migration was analyzed via transwell assay. The target association was analyzed via dual-luciferase reporter assay and RNA immunoprecipitation. Results NR2F1-AS1 level was enhanced in HCC tissues and cells. High expression of NR2F1-AS1 indicated poor overall survival. Silence of NR2F1-AS1 repressed hypoxia-induced glycolysis and migration in HCC cells. NR2F1-AS1 could regulate HK2 expression by modulating miR-140. miR-140 down-regulation or HK2 up-regulation mitigated the influence of NR2F1-AS1 silence on hypoxia-induced glycolysis and migration in HCC cells. Conclusion NR2F1-AS1 knockdown restrained hypoxia-induced glycolysis and migration in HCC cells via increasing miR-140 and decreasing HK2.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Shuang Bai
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Jing Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Zhengcai Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Jingyue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xian 710032, People's Republic of China
| |
Collapse
|
21
|
Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020; 12:E1668. [PMID: 32585931 PMCID: PMC7352479 DOI: 10.3390/cancers12061668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) metabolism is redirected to glycolysis to enhance the production of metabolic compounds employed by cancer cells to produce proteins, lipids, and nucleotides in order to maintain a high proliferative rate. This mechanism drives towards uncontrolled growth and causes a further increase in reactive oxygen species (ROS), which could lead to cell death. HCC overcomes the problem generated by ROS increase by increasing the antioxidant machinery, in which key mechanisms involve glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible transcription factor (HIF-1α). These mechanisms could represent optimal targets for innovative therapies. The tumor microenvironment (TME) exerts a key role in HCC pathogenesis and progression. Various metabolic machineries modulate the activity of immune cells in the TME. The deregulated metabolic activity of tumor cells could impair antitumor response. Lactic acid-lactate, derived from the anaerobic glycolytic rate of tumor cells, as well as adenosine, derived from the catabolism of ATP, have an immunosuppressive activity. Metabolic reprogramming of the TME via targeted therapies could enhance the treatment efficacy of anti-cancer immunotherapy. This review describes the metabolic pathways mainly involved in the HCC pathogenesis and progression. The potential targets for HCC treatment involved in these pathways are also discussed.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| |
Collapse
|
22
|
Huang M, Xiong H, Luo D, Xu B, Liu H. CSN5 upregulates glycolysis to promote hepatocellular carcinoma metastasis via stabilizing the HK2 protein. Exp Cell Res 2020; 388:111876. [PMID: 31991125 DOI: 10.1016/j.yexcr.2020.111876] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022]
Abstract
Aerobic glycolysis promotes metastasis and correlates with poorer clinical outcomes in hepatocellular carcinoma (HCC), but the controllers and mechanisms of abnormally activated glycolysis remain unclear. Herein, we demonstrated that the fifth component of the constitutive photomorphogenic 9 (COP9) signalosome complex (COPS5/CSN5) was a controller of glycolysis. For the first time, we found that CSN5 could influence the expression of glycolytic metabolism-associated proteins, especially hexokinase 2 (HK2), a glycolytic rate-limiting enzyme. In addition, we found that CSN5 was associated with HK2 overexpression in HCC tissues. Silencing CSN5 expression caused a decrease in the level of the HK2 protein, glucose uptake, glycolysis capacity and the production of glycolytic intermediates in HCC cells. Re-expression of HK2 rescued the decreased glycolytic flux induced by CSN5 knockdown, whereas inhibition of HK2 alleviated CSN5-enhanced glycolysis. Functionally, CSN5 regulated HCC cell invasion and metastasis via HK2-mediated glycolysis. Mechanistically, we demonstrated that CSN5 attenuated the ubiquitin-proteasome system-mediated degradation of HK2 through its deubiquitinase function. Inhibition of CSN5 kinase activity by curcumin decreased HK2 protein expression and glycolysis, repressed the metastasis of HCC cells in vitro and in vivo, and prolonged the survival time of tumor-bearing nude mice. Overall, our study identified CSN5 as a controller of glycolysis, and it may be a potential treatment target for HCC.
Collapse
Affiliation(s)
- Mingwen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hu Xiong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Dilai Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Bangran Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hongliang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
23
|
Taskaeva I, Bgatova N, Gogaeva I. Lithium effects on vesicular trafficking in hepatocellular carcinoma cells. Ultrastruct Pathol 2019; 43:301-311. [PMID: 31826700 DOI: 10.1080/01913123.2019.1701167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly malignant tumors worldwide, characterized by the presence of many heterogeneous molecular cell events that contribute to tumor growth and progression. Endocytic processes are intimately involved in various pathological conditions, including cancer, since they interface with various cellular signaling programs. The ability of lithium to induce cell death and autophagy and affect cell proliferation and intracellular signaling has been shown in various experimental tumor models. The aim of this study was to evaluate the effects of lithium on vesicular transport in hepatocellular carcinoma cells. Using transmission electron microscopy we have characterized the endocytic apparatus in hepatocellular carcinoma-29 (HCC-29) cells in vivo and detailed changes in endocytotic vesicles after 20 mM lithium carbonate administration. Immunofluorescent analysis was used to quantify cells positive for EEA1-positive early endosomes, Rab11-positive recycling endosomes and Rab7-positive late endosomes. Lithium treatment caused an increase in EEA1- and Rab11-positive structures and a decrease in Rab7-positive vesicles. Thus, lithium affects diverse endocytic pathways in HCC-29 cells which may modulate growth and development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Boron-Neutron Capture Therapy, Department of Physics, Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Izabella Gogaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Hong SJ, Ahn MH, Sangshetti J, Arote RB. Sugar alcohol-based polymeric gene carriers: Synthesis, properties and gene therapy applications. Acta Biomater 2019; 97:105-115. [PMID: 31326667 DOI: 10.1016/j.actbio.2019.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Advances in the field of nanomedicine have led to the development of various gene carriers with desirable cellular responses. However, unfavorable stability and physicochemical properties have hindered their applications in vivo. Therefore, multifunctional, smart nanocarriers with unique properties to overcome such drawbacks are needed. Among them, sugar alcohol-based nanoparticle with abundant surface chemistry, numerous hydroxyl groups, acceptable biocompatibility and biodegradable property are considered as the recent additions to the growing list of non-viral vectors. In this review, we present some of the major advances in our laboratory in developing sugar-based polymers as non-viral gene delivery vectors to treat various diseases. We also discuss some of the open questions in this field. STATEMENT OF SIGNIFICANCE: Recently, the development of sugar alcohol-based polymers conjugated with polyethylenimine (PEI) has attracted tremendous interest as gene delivery vectors. First, the natural backbone of polymers with their numerous hydroxyl groups display a wide range of hyperosmotic properties and can thereby enhance the cellular uptake of genetic materials via receptor-mediated endocytosis. Second, conjugation of a PEI backbone with sugar alcohols via Michael addition contributes to buffering capacity and thereby the proton sponge effect. Last, sugar alcohol based gene delivery systems improves therapeutic efficacy both in vitro and in vivo.
Collapse
|