1
|
Wang H, Peng Y, Huang X, Xiao J, Ma L, Liu H, Huang H, Yang Z, Wang C, Wang X, Cao Z. Glycometabolic reprogramming in cementoblasts: A vital target for enhancing cell mineralization. FASEB J 2023; 37:e23241. [PMID: 37847512 DOI: 10.1096/fj.202300870rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.
Collapse
Affiliation(s)
- Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Quan X, Xin Y, Wang HL, Sun Y, Chen C, Zhang J. Implications of altered sirtuins in metabolic regulation and oral cancer. PeerJ 2023; 11:e14752. [PMID: 36815979 PMCID: PMC9936870 DOI: 10.7717/peerj.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 02/16/2023] Open
Abstract
Sirtuins (SIRTs 1-7) are a group of histone deacetylase enzymes with a wide range of enzyme activities that target a range of cellular proteins in the nucleus, cytoplasm, and mitochondria for posttranslational modifications by acetylation (SIRT1, 2, 3, and 5) or ADP ribosylation (SIRT4, 6, and 7). A variety of cellular functions, including mitochondrial functions and functions in energy homeostasis, metabolism, cancer, longevity and ageing, are regulated by sirtuins. Compromised sirtuin functions and/or alterations in the expression levels of sirtuins may lead to several pathological conditions and contribute significantly to alterations in metabolic phenotypes as well as oral carcinogenesis. Here, we describe the basic characteristics of seven mammalian sirtuins. This review also emphasizes the key molecular mechanisms of sirtuins in metabolic regulation and discusses the possible relationships of sirtuins with oral cancers. This review will provide novel insight into new therapeutic approaches targeting sirtuins that may potentially lead to effective strategies for combating oral malignancies.
Collapse
Affiliation(s)
- Xu Quan
- Department of Stomatology, Shanghai General Hospital, Shanghai, China
| | - Ying Xin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Yingjie Sun
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jiangying Zhang
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Parveen S, Alhazmi YA. Impact of Intermittent Fasting on Metabolic Syndrome and Periodontal Disease-A Suggested Preventive Strategy to Reduce the Public Health Burden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14536. [PMID: 36361416 PMCID: PMC9657467 DOI: 10.3390/ijerph192114536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/27/2023]
Abstract
Metabolic syndrome (MetS) prevalence continues to climb significantly worldwide in today's ad libitum society. MetS has tremendous societal and economic ramifications, making it imperative to develop effective strategies for preventing and controlling it to alleviate this growing burden. Periodontal disease and MetS are associated with several risk factors. Studies in the past have demonstrated that obesity, cardiovascular illness, and type 2 diabetes mellitus have a negative effect on the severity of the periodontal disease. Patients with metabolic syndrome have elevated serum levels of proinflammatory mediators such as tumor necrosis factor-alpha interleukin-6 and C-reactive protein. Similar inflammatory mediators, such as interleukin-6, tumor necrosis factor-alpha, and C-reactive protein, are increased in patients with severe periodontal disease. Remarkably, intermittent fasting is underpinned by scientific evidence, claiming to be the most effective non-pharmacological, potential therapeutic alternative for combating a wide range of metabolic, inflammatory, and lifestyle-related diseases. Nonetheless, an insufficient investigation has been performed to determine whether intermittent fasting has therapeutic benefits on periodontal inflammation and diseases. Here, we show the interrelationship between metabolic syndrome and periodontal disease and contextualize the beneficial impact of intermittent fasting in modulating the chronic metabolic and periodontal inflammatory response. We also anticipate that this review paves the way for further exploration of intermittent fasting as a unique research paradigm representing a cost-effective alternative strategy to conventional disease management in patients with periodontal diseases and metabolic syndrome which may serve as the foundation for an integrative vision relevant to primary, diagnostic, and therapeutic purposes.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
5
|
Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022; 13:953078. [PMID: 36060706 PMCID: PMC9437461 DOI: 10.3389/fphys.2022.953078] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases, comprising seven members SIRT1-SIRT7. Sirtuins have been extensively studied in regulating ageing and age-related diseases. Sirtuins are also pivotal modulators in oxidative stress and inflammation, as they can regulate the expression and activation of downstream transcriptional factors (such as Forkhead box protein O3 (FOXO3a), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB)) as well as antioxidant enzymes, through epigenetic modification and post-translational modification. Most importantly, studies have shown that aberrant sirtuins are involved in the pathogenesis of infectious and inflammatory oral diseases, and oral cancer. In this review, we provide a comprehensive overview of the regulatory patterns of sirtuins at multiple levels, and the essential roles of sirtuins in regulating inflammation, oxidative stress, and bone metabolism. We summarize the involvement of sirtuins in several oral diseases such as periodontitis, apical periodontitis, pulpitis, oral candidiasis, oral herpesvirus infections, dental fluorosis, and oral cancer. At last, we discuss the potential utilization of sirtuins as therapeutic targets in oral diseases.
Collapse
Affiliation(s)
- Zijian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
6
|
Value of Serum Sirtuin-1 (SIRT1) Levels and SIRT1 Gene Variants in Periodontitis Patients. Medicina (B Aires) 2022; 58:medicina58050653. [PMID: 35630070 PMCID: PMC9144289 DOI: 10.3390/medicina58050653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Objectives: Periodontitis is a multifactorial inflammatory disease associated with biofilm dysbiosis and is defined by progressive periodontium destruction. Genes largely regulate this entire process. SIRTs are a group of histone deacetylases (HDACs) intimately involved in cell metabolism and are responsible for altering and regulating numerous cell functions. Understanding SIRTs and their functions in periodontitis may be useful for therapeutic treatment strategies in the future. The aim of our study was to investigate the associations amid SIRT1 single-gene nucleotide polymorphisms (rs3818292, rs3758391, and rs7895833) and SIRT1 serum levels for patients affected by periodontitis in the Caucasian population. Materials and Methods: The study included 201 patients affected by periodontitis and 500 healthy controls. DNA extraction from peripheral leukocytes was carried out using commercial kits. The real-time PCR method was selected for the determination of the genotype of the periodontitis patients and the control group. The ELISA method was used to measure the SIRT1 concentration. A statistical data analysis was performed using “BM SPSS Statistics 27.0” software. Results: The SIRT1 rs3818292 AG genotype was associated with a 2-fold and 1.9-fold increase in the development of periodontitis under the codominant and overdominant models (OR = 1.959; CI = 1.239–3.098; p = 0.004; and OR = 1.944; CI = 1.230–3.073; p = 0.004, respectively). The serum SIRT1 levels were not statistically significantly different between subjects in the periodontitis and control groups (0.984 (5.159) ng/mL vs. 0.514 (7.705) ng/mL, p = 0.792). Conclusions: in our study, the genotypes and alleles of SIRT1 rs3818292, rs3758391, and rs7895833 statistically significantly differed between the periodontitis and control groups, exclusively in the male population and subjects older than 60 years.
Collapse
|
7
|
Metabolic Remodeling Impacts the Epigenetic Landscape of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:3490433. [PMID: 35422867 PMCID: PMC9005295 DOI: 10.1155/2022/3490433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation can dynamically adjust the gene expression program of cell fate decision according to the cellular microenvironment. Emerging studies have shown that metabolic activities provide fundamental components for epigenetic modifications and these metabolic-sensitive epigenetic events dramatically impact the cellular function of stem cells. Dental mesenchymal stem cells are promising adult stem cell resource for in situ injury repair and tissue engineering. In this review, we discuss the impact of metabolic fluctuations on epigenetic modifications in the oral and maxillofacial regions. The principles of the metabolic link to epigenetic modifications and the interaction between metabolite substrates and canonical epigenetic events in dental mesenchymal stem cells are summarized. The coordination between metabolic pathways and epigenetic events plays an important role in cellular progresses including differentiation, inflammatory responses, and aging. The metabolic-epigenetic network is critical for expanding our current understanding of tissue homeostasis and cell fate decision and for guiding potential therapeutic approaches in dental regeneration and infectious diseases.
Collapse
|
8
|
Li C, Xiao F, Wen Y, Wu J, Huang N. Krüppel-like factor 5 -mediated Sirtuin6 promotes osteogenic differentiation and inhibits inflammatory injury of lipopolysaccharide-induced periodontal membrane stem cells by inhibiting nuclear factor kappa-B pathway. Bioengineered 2022; 13:6966-6977. [PMID: 35249460 PMCID: PMC8973994 DOI: 10.1080/21655979.2022.2036915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is a chronic infectious disease that causes inflammation and immune response and has an ultimate impact on the health of the whole body. Sirtuin6 (SIRT6) and Krüppel-like factor 5 (KLF5) have been reported to regulate the inflammatory response and play an important role in the development of periodontitis. LPS was adopted to induce periodontal ligament stem cells (PDLSCs) to construct a periodontitis cell model. SIRT6 expression was assayed through RT-qPCR and Western blot. Subsequently, after SIRT6 was overexpressed, CCK8 was to appraise cell viability. ELISA analysis was used to estimate inflammatory response. ALP staining, ARS staining, and Western blot were used to detect osteogenic differentiation. The JASPAR website then predicts the binding of transcription factor KLF5 to SIRT6 promoter. The interaction between KLF5 and SIRT6 was verified by a luciferase reporter and ChIP assays. Additionally, the osteogenic differentiation and inflammation in LPS-induced PDLSCs transfected with Ov-SIRT6 and si-KIF5 were also explored. Finally, the protein levels of the nuclear factor kappa-B (NF-κB) pathway-related factors were detected by Western blot to further explore the mechanism. There was a marked decrease in SIRT6 expression in LPS-induced PDLSCs. SITR6 overexpression prevented LPS-induced cell viability loss and inflammation, while promoting osteogenic differentiation. In addition, KLF5 could transcriptionally activate SIRT6. Further, KLF5 knockdown reversed the impacts of SIRT6 on the proliferation, inflammation, and osteogenic differentiation of LPS-induced PDLSCs via mediating NF-κB pathway. Overall, KLF5-mediated SIRT6 promoted the viability and osteogenic differentiation, while inhibiting the inflammatory response of LPS-induced PDLSCs by inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Chanxiu Li
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunsheng Wen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Wu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nannan Huang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Pieles O, Hartmann M, Morsczeck C. AMP-activated protein kinase and the down-stream activated process of autophagy regulate the osteogenic differentiation of human dental follicle cells. Arch Oral Biol 2021; 122:104951. [PMID: 33254047 DOI: 10.1016/j.archoralbio.2020.104951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Dental follicle cells (DFCs) are progenitors of alveolar osteoblasts. AMP-activated protein kinase (AMPK) and the down-stream activated autophagy process play a key role in cellular energy and metabolic homeostasis and are involved in many biological processes including differentiation. Previous studies showed ambiguous results about the role of AMPK and autophagy in osteogenic differentiation of various osteogenic progenitors, but the role of AMPK and autophagy in DFCs is unknown. This study examined the role of AMPK and autophagy in the osteogenic differentiation of DFCs. MATERIALS AND METHODS We evaluated the expression of AMPK isoforms and autophagy markers during osteogenic differentiation via Western Blot analyses and the impact of AMPK / autophagy activators and inhibitors and siRNAs on osteogenic differentiation via ALP activity assay, Alizarin Red staining and Real-Time Reverse-Transcription PCR. RESULTS We have shown that expression of AMPK and autophagy markers are regulated during osteogenic differentiation and that activation of AMPK inhibits the ALP activity and other osteogenic markers after induction of osteogenic differentiation, while inhibition of AMPK and autophagy increased the expression of some osteogenic markers. In long-term cultures with osteogenic differentiation medium, however, both the activation and the inhibition of AMPK significantly inhibited biomineralization of DFCs. In contrast, activation or inhibition of autophagy barely affected early differentiation markers, while autophagy inhibition enhanced biomineralization and autophagy activation diminished mineralization capability of DFCs. CONCLUSIONS AMPK regulates the osteogenic differentiation in earlier stages while indirectly affecting biomineralization at least partly via autophagy. The osteogenic differentiation of DFCs is sensitive to changes in AMPK and autophagic activity.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Maria Hartmann
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 2020; 253:117660. [PMID: 32294474 DOI: 10.1016/j.lfs.2020.117660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
AIMS Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (rBMSCs). The present study aimed to assess the influence of microRNA miR-186 on the proliferation and OD potential of rBMSCs. MAIN METHODS OD was performed and evaluated through Alizarin red S staining, alkaline phosphatase (ALP) activity, and specific marker expression. KEY FINDINGS miR-186 downregulation was observed during OD. rBMSCs with miR-186 overexpression were generated via transfection. Compared with vehicle negative controls, miR-186 upregulation significantly repressed rBMSCs' OD, as evidenced by a reduced ALP activity and decreased mRNA levels of osteogenic markers [osteocalcin, Runx2, BSP, and ALP]. Furthermore, bioinformatic prediction and dual-luciferase reporter assay demonstrated that miR-186 targeted SIRT6 3'-UTR for silencing. SIRT6 overexpression reversed the inhibitory effect of miR-186 on the OD of rBMSCs. Additionally, further examination showed that the activation of nuclear factor-kappa B (NFκB) pathway was involved in the miR-186/SIRT6 signal axis, and phorbol 12-myristate 13-acetate, a NFκB activator, also inhibited the OD of rBMSCs. SIGNIFICANCE The present study results may demonstrate a novel mechanism of rBMSCs OD via miR-186-SIRT6 interaction.
Collapse
|
12
|
Li F, Du W, Wang H, Zhao S, Zhu L, Hao J. Activation of AMPK pathway compromises Rab11 downregulation-mediated inhibition of Schwann cell proliferation in a Glut1 and Glut3-dependent manner. Neurosci Lett 2020; 720:134762. [PMID: 31954765 DOI: 10.1016/j.neulet.2020.134762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Rab11, a small GTPase, is an important protein in the regulation of intracellular plasma membrane trafficking. Schwann cells are the main cells of peripheral nerves and knockdown of Rab11 in these cells inhibits the formation of functional tunneling nanotubes (TNTs). However, the role of Rab11 in the functioning of Schwann cells remains elusive. Herein, using cell viability analysis, live/dead cell staining, BrdU assay, and western blot analysis with an AMPK antibody, we observed that the knockdown of Rab11 significantly inhibited the proliferation of RSC96 cells. Further investigations showed that the AMPK pathway was activated by the knockdown of Rab11, as indicated by the enhanced levels of phosphorylated AMPK. Moreover, suppression of AMPK pathway with Compound C aggravated Rab11 knockdown-induced inhibition of cell proliferation. In contrast, activation of the AMPK pathway with AICAR ameliorated the Rab11 knockdown-mediated inhibition of cell proliferation. Furthermore, the levels of Glut1 and Glut3 were decreased in the RSC96 cells upon Rab11 knockdown. Additionally, the knockdown of Glut1 and Glut3 led to the activation of the AMPK pathway in RSC96 cells. We conclude that the knockdown of Rab11 suppresses the proliferation of RSC96 cells, and as a compensatory mechanism, the activation of AMPK pathway, in a Glut1 and Glut3-dependent manner, improves RSC96 cell proliferation.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Morsczeck C. Cellular senescence in dental pulp stem cells. Arch Oral Biol 2019; 99:150-155. [PMID: 30685471 DOI: 10.1016/j.archoralbio.2019.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This short review summarizes our current knowledge about dental stem cell aging and about possible targets for the regulation of cellular senescence. DESIGN A literature search was performed using a combination of keywords, e.g., stem cells, replicative senescence, differentiation potential, dental pulp, dental follicle and periodontal ligament. RESULTS Previous studies have shown that cellular senescence occurs while the proliferation of dental stem cells. Moreover, the differentiation potential was significantly decreased in senescent stem cells and senescent cells secrete also factors that are harmful to the adjacent tissue cells. Moreover, many targets for the regulation of cellular senescence are considered; for example pathways related to the nutrient sensing such as the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway. CONCLUSIONS The regulation of cellular senescence will play a crucial role in the clinical use of stem cells. However, there is no cell culture protocol available that prevents dental stem cell senescence. Therefore, more knowledge about molecular processes in stem cells is needed before and after the induction of senescence.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|