1
|
Zhou W, Zhang P, Li H. Identifying Oxidative Stress-Related Genes (OSRGs) as Potential Target for Treating Periodontitis Based on Bioinformatics Analysis. Comb Chem High Throughput Screen 2024; 27:1191-1204. [PMID: 37605414 DOI: 10.2174/1386207326666230821102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Periodontitis (PD) is a multifactorial inflammatory disease that is closely associated with periodontopathic bacteria. Numerous studies have demonstrated oxidative stress (OS) contributes to inflammation and is a prime factor in the development of PD. It is imperative to explore the function of newly discovered hub genes associated with OS in the advancement of PD, thereby identifying potential targets for therapeutic intervention. OBJECTIVES The goal of the current study was to identify the oxidative-stress-related genes (OSRGs) associated with periodontitis (PD) development using an integrated bioinformatics method. METHODS DEGs from GEO gene-expression data were identified using the "limma" package. We obtained OSRGs from GeneCards and utilized a Venn diagram to uncover differentially expressed OSRGs (DEOSRGs). After receiving the DEOSRGs, we employed Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analytical tools to examine their possible functions and pathways in PD. Receiver operating characteristic (ROC) curves screened for hub genes of PD. RT-qPCR and western blot analysis were used to detect DEOSRG expression in mouse ligature-induced periodontitis gingival tissues. RESULTS The investigation identified 273 OSRGs. Based on PPI analysis, we recognized 20 OSRGs as hub genes. GO and KEGG enrichment analysis indicated that these hub genes were predominantly enriched in leukocyte migration, lymphocyte proliferation, and humoral immune response, and associated with leukocyte trans-endothelial migration, cytokine-cytokine receptor interaction, and NF-κB signaling pathway. Following ROC analysis, VCAM1, ITGAM, FCGR3A, IL1A, PECAM1, and VCAM1were identified as PD prognostic gene. RT-qPCR and western blot analyses confirmed that the expression ITGAM, FCGR3A, and PECAM1 were significantly elevated in the gingival tissues obtained from mice. CONCLUSION This investigation revealed that ITGAM, FCGR3A, and PECAM1 may have a crucial function in the advancement of PD.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Pengfei Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Hao Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| |
Collapse
|
2
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
3
|
Zhang S, Jin H, Da J, Zhang K, Liu L, Guo Y, Zhang W, Geng Y, Liu X, Zhang J, Jiang L, Yuan H, Wang J, Zhan Y, Li Y, Zhang B. Role of ferroptosis-related genes in periodontitis based on integrated bioinformatics analysis. PLoS One 2022; 17:e0271202. [PMID: 35901060 PMCID: PMC9333299 DOI: 10.1371/journal.pone.0271202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background Cell survival or death is one of the key scientific issues of inflammatory response. To regulate cell death during the occurrence and development of periodontitis, various forms of programmed cell death, such as pyroptosis, ferroptosis, necroptosis, and apoptosis, have been proposed. It has been found that ferroptosis characterized by iron-dependent lipid peroxidation is involved in cancer, degenerative brain diseases and inflammatory diseases. Furthermore, NCOA4 is considered one of ferroptosis-related genes (FRGs) contributing to butyrate-induced cell death in the periodontitis. This research aims to analyze the expression of FRGs in periodontitis tissues and to explore the relationship between ferroptosis and periodontitis. Method Genes associated with periodontitis were retrieved from two Gene Expression Omnibus datasets. Then, we normalized microarray data and removed the batch effect using the R software. We used R to convert the mRNA expression data and collected the expression of FRGs. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), transcription factor (TF) and protein-protein interaction (PPI) network analyses were used. In addition, we constructed a receiver operating characteristic curve and obtained relative mRNA expression verified by quantitative reverse-transcription polymerase chain reaction (PCR). Results Eight and 10 FRGs related to periodontitis were upregulated and downregulated, respectively. GO analysis showed that FRGs were enriched in the regulation of glutathione biosynthetic, glutamate homeostasis, and endoplasmic reticulum-nucleus signaling pathway. The top TFs included CEBPB, JUND, ATF2. Based on the PPI network analysis, FRGs were mainly linked to the negative regulation of IRE1-mediated unfolded protein response, regulation of type IIa hypersensitivity, and regulation of apoptotic cell clearance. The expression levels of NCOA4, SLC1A5 and HSPB1 using PCR were significantly different between normal gingival samples and periodontitis samples. Furthermore, the diagnostic value of FRGs for periodontitis were “Good”. Conclusions We found significant associations between FRGs and periodontitis. The present study not only provides a new possible pathomechanism for the occurrence of periodontitis but also offers a new direction for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yawei Geng
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoze Yuan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| |
Collapse
|
4
|
Genomic and Transcriptomic Profiling of Brain Metastases. Cancers (Basel) 2021; 13:cancers13225598. [PMID: 34830758 PMCID: PMC8615723 DOI: 10.3390/cancers13225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Brain metastases (BM) are the most common brain tumors in adults and are the main cause of cancer-associated death. Omics analysis of BM will allow for a better understanding of metastatic progression, prognosis and therapeutic targeting. In this study, BM samples underwent comprehensive molecular profiling with genomics and transcriptomics. Mutational signatures suggested that most mutations were gained prior to metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples. Transcriptomics revealed that melanoma BM formed a distinct cluster in comparison to other subtypes. Poor survival correlated to self-identified black race and absence of radiation treatment but not molecular profiles. These data identify potential new drivers of brain metastatic progression, implicate that melanoma BM are distinctive and likely responsive to unique therapies, and further investigation of sociodemographic and clinical features are needed in BM cohorts. Abstract Brain metastases (BM) are the most common brain tumors in adults occurring in up to 40% of all cancer patients. Multi-omics approaches allow for understanding molecular mechanisms and identification of markers with prognostic significance. In this study, we profile 130 BM using genomics and transcriptomics and correlate molecular characteristics to clinical parameters. The most common tumor origins for BM were lung (40%) followed by melanoma (21%) and breast (15%). Melanoma and lung BMs contained more deleterious mutations than other subtypes (p < 0.001). Mutational signatures suggested that the bulk of the mutations were gained before metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples, suggesting a broader role in promoting metastasis. Unsupervised hierarchical cluster analysis of transcriptional signatures available in 65 samples based on the hallmarks of cancer revealed four distinct clusters. Melanoma samples formed a distinctive cluster in comparison to other BM subtypes. Characteristics of molecular profiles did not correlate with survival. However, patients with self-identified black race or those who did not receive radiation correlated with poor survival. These data identify potential new drivers of brain metastatic progression. Our data also suggest further investigation of sociodemographic and clinical features is needed in BM cohorts.
Collapse
|
5
|
Liu MJ, Guo H, Jiang LL, Jiao M, Wang SH, Tian T, Fu X, Wang WJ. Elevated RBP-Jκ and CXCL11 Expression in Colon Cancer is Associated with an Unfavorable Clinical Outcome. Cancer Manag Res 2021; 13:3651-3661. [PMID: 33981164 PMCID: PMC8107007 DOI: 10.2147/cmar.s298580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction This study aims at exploring the expression and significance of recombination signal-binding protein for immunoglobulin kappa J region (RBP-Jκ) and C-X-C motif chemokine 11 (CXCL11) in human colon cancer tissues. Methods The RBP-Jκ and CXCL11 expression levels were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) in patients with colon cancer, and their prognostic significance was evaluated. Results Through analyzing 342 samples of colon cancer patients treated at our institution, increased expression of RBP-Jκ and CXCL11 was found in human colon cancer specimens compared with matched paratumorous normal specimens (P<0.001). A positive correlation was found between RBP-Jκ expression and CXCL11 expression (P<0.001). High RBP-Jκ expression was significantly associated with poorly differentiated tumors (P=0.005), invasion beyond propria muscularis (P=0.025), lymph node metastases (P=0.005), distant metastasis (P<0.001), advanced tumor-node-metastasis (TNM) stage (P=0.004), and a shorter overall survival (P<0.001). An increase in CXCL11 protein expression was associated with poorly differentiated tumors (P=0.015), invasion beyond propria muscularis (P=0.029), lymph node metastases (P=0.031), distant metastasis (P=0.045), advanced TNM stage (P=0.026), and a shorter overall survival of patients (P<0.001). In multivariate Cox regression analysis, RBP-Jκ protein expression (P=0.036), CXCL11 protein expression (P=0.001), differentiation (P<0.001), depth of invasion (P=0.009), distant metastasis (P<0.001), and TNM stage (P<0.001) were independent prognostic indicators of colon cancer. Conclusion High expression of RBP-Jκ is closely associated with high CXCL11 expression, which represents a risk factor for the poor overall survival of colon cancer patients.
Collapse
Affiliation(s)
- Meng-Jie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Li-Li Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Min Jiao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shu-Hong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wen-Juan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
6
|
Wang F, Han S, Yang J, Yan W, Hu G. Knowledge-Guided "Community Network" Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer. Cells 2021; 10:cells10020402. [PMID: 33669233 PMCID: PMC7919838 DOI: 10.3390/cells10020402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes and pathways have been identified, there remains an urgent need to mechanistically understand how these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based integration method, called the node and edge Prioritization-based Community Analysis, to identify functional modules and their candidate targets in NSCLC. The protein–protein interaction network was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes and the integrating edge weights, and then a “community network” was constructed by combining Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that the CCNB1-mediated network in the largest community provides a modular biomarker, the second community serves as a drug regulatory module, and the two are connected by some contextual signaling motifs. Moreover, integrating structural information into the signaling network suggested novel protein–protein interactions with therapeutic significance, such as interactions between GNG11 and CXCR2, CXCL3, and PPBP. This study provides new mechanistic insights into the landscape of cellular functions in the context of modular networks and will help in developing therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Fan Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (F.W.); (S.H.); (J.Y.)
| | - Shuqing Han
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (F.W.); (S.H.); (J.Y.)
| | - Ji Yang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (F.W.); (S.H.); (J.Y.)
| | - Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (F.W.); (S.H.); (J.Y.)
- Correspondence: (W.Y.); (G.H.)
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; (F.W.); (S.H.); (J.Y.)
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Correspondence: (W.Y.); (G.H.)
| |
Collapse
|
7
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|