1
|
Zhao YJ, Zhang SY, Wei YY, Li HH, Lei W, Wang K, Kumar S, Zhou C, Zheng J. An endogenous aryl hydrocarbon receptor ligand dysregulates endothelial functions, transcriptome, and phosphoproteome. Am J Physiol Cell Physiol 2025; 328:C954-C966. [PMID: 39907700 DOI: 10.1152/ajpcell.00849.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
We have reported that an endogenous aryl hydrocarbon receptor (AhR) ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), inhibits functions of human umbilical vein endothelial cells (HUVECs) and induces preeclampsia (PE)-like symptoms in rats. Herein, we tested the hypothesis that ITE impairs endothelial functions via disturbing transcriptome and phosphoproteome in HUVECs. We measured AhR activity in human maternal and umbilical vein sera from PE and normotensive (NT) pregnancies. The serum-induced changes in CYP1A1/B1 mRNA (indexes of AhR activation) in HUVECs were quantified using quantitative reverse transcription polymerase chain reaction (RT-qPCR). ITE's effects on endothelial proliferation and monolayer integrity in female and male HUVECs were determined. We profiled ITE-induced changes in transcriptome and phosphoproteome in HUVECs using RNA-seq and bottom-up phosphoproteomics, respectively. After 12 h of treatment, umbilical vein sera from PE increased CYP1A1 mRNA (1.7-fold of NT) in HUVECs, which was blocked by CH223191, an AhR antagonist. ITE dose-dependently inhibited endothelial proliferation (76%-87% of control) and time-dependently reduced endothelial integrity with a maximum inhibition (∼10%) at 40 h. ITE induced 140 and 80 differentially expressed genes in female and male HUVECs, respectively. ITE altered phosphorylation of 92 and 105 proteins at 4 and 24 h, respectively, in HUVECs. These ITE-dysregulated genes and phosphoproteins were enriched in biological functions and pathways that are relevant to heart, liver, and kidney diseases, vascular functions, and inflammatory responses. Thus, endogenous AhR ligands may impair endothelial functions by disturbing transcriptome and phosphoproteome. These AhR ligand-dysregulated genes and phosphoproteins may be therapeutic and cell sex-specific targets for PE-induced endothelial dysfunction.NEW & NOTEWORTHY Preeclampsia elevates AhR agonistic activities in fetal circulation and alters immune cell gene signatures of human umbilical vein endothelial cells (HUVECs). An endogenous AhR ligand (ITE) decreases cell proliferation and monolayer integrity in HUVECs in vitro. ITE dysregulates transcriptome in HUVECs in a fetal sex-specific manner. ITE also disrupts phosphoproteome in HUVECs. These ITE-dysregulated genes and phosphoproteins are highly relevant to diseases of the heart, vascular function, and inflammatory responses.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Si-Yan Zhang
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying-Ying Wei
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, People's Republic of China
| | - Hui-Hui Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, People's Republic of China
| | - Sathish Kumar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Chi Zhou
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Tan H, Tong X, Gao Z, Xu Y, Tan L, Zhang W, Xiang R, Xu Y. The hMeDIP-Seq identified INPP4A as a novel biomarker for eosinophilic chronic rhinosinusitis with nasal polyps. Epigenomics 2022; 14:757-775. [PMID: 35765979 DOI: 10.2217/epi-2022-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is an endotype of chronic rhinosinusitis with nasal polyps characterized by more severe symptoms, a stronger association with asthma and a greater recurrence risk. It is unknown whether DNA hydroxymethylation could influence ECRSwNP. Methods: Hydroxymethylated DNA immunoprecipitation sequencing was carried out in three distinct groups (control, ECRSwNP and NECRSwNP). Additional qRT-PCR, immunohistochemistry and analysis of the receiver operating characteristic curve were performed. Results: Between ECRSwNP and NECRSwNP, 26 genes exhibited differential DNA hydroxymethylation. Consistent with their hydroxymethylation level, GNAL, INPP4A and IRF4 expression levels were significantly different between ECRSwNP and the other two groups. The receiver operating characteristic curve revealed that INPP4A mRNA has a high predictive accuracy for ECRSwNP. Conclusion: DNA hydroxymethylation regulates the expression of multiple genes in ECRSwNP. INPP4A mRNA was markedly decreased in ECRSwNP polyps and can predict ECRSwNP.
Collapse
Affiliation(s)
- Hanyu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoting Tong
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziang Gao
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingying Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu Tan
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Zhang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rong Xiang
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Xu
- Department of Otolaryngology - Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
3
|
Hanson J. [G proteins: privileged transducers of 7-transmembrane spanning receptors]. Biol Aujourdhui 2022; 215:95-106. [PMID: 35275054 DOI: 10.1051/jbio/2021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors or GPCR are the most abundant membrane receptors in our genome with around 800 members. They play an essential role in most physiological and pathophysiological phenomena. In addition, they constitute 30% of the targets of currently marketed drugs and remain an important reservoir for new innovative therapies. Their main effectors are heterotrimeric G proteins. These are composed of 3 subunits, α, β and γ, which, upon coupling with a GPCR, dissociate into Gα and Gβγ to activate numerous signaling pathways. This article describes some of the recent advances in understanding the function and role of heterotrimeric G proteins. After a short introduction to GPCRs, the history of the discovery of G proteins is briefly described. Then, the fundamental mechanisms of activation, signaling and regulation of G proteins are reviewed. New paradigms concerning intracellular signaling, specific recognition of G proteins by GPCRs as well as biased signaling are also discussed.
Collapse
Affiliation(s)
- Julien Hanson
- Laboratoire de Pharmacologie Moléculaire, GIGA-Molecular Biology of Diseases, Université de Liège, CHU, B34, Tour GIGA (+4), Avenue de l'Hôpital 11, B-4000 Liège, Belgique
| |
Collapse
|
4
|
Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies. Reprod Sci 2021; 29:1278-1286. [PMID: 34622427 DOI: 10.1007/s43032-021-00759-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 02/02/2023]
Abstract
Preeclampsia (PE) is a hypertensive pregnancy, which is a leading cause of maternal and fetal morbidity and mortality during pregnancy. L-Tryptophan (Trp) is an essential amino acid, which can be metabolized into various biologically active metabolites. However, the levels of many circulating Trp-metabolites in human normotensive pregnancies (NT) and PE are undetermined. This study quantified the levels of Trp-metabolites in maternal and umbilical vein sera from women with NT and PE. Paired maternal and umbilical blood samples were collected from singleton pregnant patients. Twenty-five Trp-metabolites were measured in serum samples using liquid chromatography with tandem mass spectrometry. The effects of L-kynurenine (Kyn) and indole-3-lactic acid (ILA), on function of human umbilical vein endothelial cells (HUVECs), were also determined. Twenty Trp-metabolites were detected. The levels of 9 Trp-metabolites including Kyn and ILA were higher (P < 0.05) in umbilical vein than maternal serum, whereas 2 (5-hydroxy-L-tryptophan and serotonin) were lower (P < 0.05) in umbilical vein compared to maternal serum. PE significantly (P < 0.05) elevated ILA levels in maternal and umbilical vein sera. Kyn dose-dependently decreased (P < 0.05) cell viability. Kyn and ILA dose- and time-dependently (P < 0.05) increased monolayer integrity in HUVECs. These data suggest that these Trp-metabolites are important in regulating endothelial function during pregnancy, and the elevated ILA in PE may antagonize increased endothelial permeability occurring in PE.
Collapse
|
5
|
Jan M, Cueto R, Jiang X, Lu L, Sardy J, Xiong X, Yu JE, Pham H, Khan M, Qin X, Ji Y, Yang XF, Wang H. Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Redox Biol 2021; 45:102018. [PMID: 34140262 PMCID: PMC8282538 DOI: 10.1016/j.redox.2021.102018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is an established and potent independent risk factor for degenerative diseases, including cardiovascular disease (CVD), Alzheimer disease, type II diabetes mellitus, and chronic kidney disease. HHcy has been shown to inhibit proliferation and promote inflammatory responses in endothelial cells (EC), and impair endothelial function, a hallmark for vascular injury. However, metabolic processes and molecular mechanisms mediating HHcy-induced endothelial injury remains to be elucidated. This study examined the effects of HHcy on the expression of microRNA (miRNA) and mRNA in human aortic EC treated with a pathophysiologically relevant concentration of homocysteine (Hcy 500 μM). We performed a set of extensive bioinformatics analyses to identify HHcy-altered metabolic and molecular processes. The global functional implications and molecular network were determined by Gene Set Enrichment Analysis (GSEA) followed by Cytoscape analysis. We identified 244 significantly differentially expressed (SDE) mRNA, their relevant functional pathways, and 45 SDE miRNA. HHcy-altered SDE inversely correlated miRNA-mRNA pairs (45 induced/14 reduced mRNA) were discovered and applied to network construction using an experimentally verified database. We established a hypothetical model to describe the biochemical and molecular network with these specified miRNA/mRNA axes, finding: 1) HHcy causes metabolic reprogramming by increasing glucose uptake and oxidation, by glycogen debranching and NAD+/CoA synthesis, and by stimulating mitochondrial reactive oxygen species production via NNT/IDH2 suppression-induced NAD+/NADP-NADPH/NADP+ metabolism disruption; 2) HHcy activates inflammatory responses by activating inflammasome-pyroptosis mainly through ↓miR193b→↑CASP-9 signaling and by inducing IL-1β and adhesion molecules through the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes, as well as GPCR and interferon α/β signaling; 3) HHcy promotes cell degradation by the activation of lysosome autophagy and ubiquitin proteasome systems; 4) HHcy causes cell cycle arrest at G1/S and S/G2 transitions, suppresses spindle checkpoint complex and cytokinetic abscission, and suppresses proliferation through ↓miRNA335/↑VASH1 and other axes. These findings are in accordance with our previous studies and add a wealth of heretofore-unexplored molecular and metabolic mechanisms underlying HHcy-induced endothelial injury. This is the first study to consider the effects of HHcy on both global mRNA and miRNA expression changes for mechanism identification. Molecular axes and biochemical processes identified in this study are useful not only for the understanding of mechanisms underlying HHcy-induced endothelial injury, but also for discovering therapeutic targets for CVD in general. Identified multiple HHcy-altered metabolic and molecular processes potentially responsible for HHcy-induced endothelial injury via examining global mRNA/miRNA expression changes in Hcy-treated EC and performing comprehensive bioinformatic studies. HHcy may activate glucose uptake signaling via the ↓miR148b→↑SLC2A axis. HHcy may induce glucose oxidation signaling by switching pyruvate metabolism from lactate synthesis to mitochondrial oxidation via expression changes of ↑MPC1 & ↓LDHB. HHcy may disrupt redox homeostasis mostly by suppressing NNT/IDH2-related mt-NADPH/mt-NAD+ signaling. HHcy may increase FA β-oxidation, glutamine, TCA cycle and OXPHOS signaling. HHcy may activate inflammatory signaling via the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes. HHcy may activate inflammasome/pyroptosis-related signaling by the ↓miR137→↑TLR3, the ↓miR574→↑TRAF5, and the ↓miR193b→↑CASP-9 axes, and induce IL1α/β and CASP-10/7. HHcy may induce inflammation signaling via GPCR activation through the ↓miRNA335→↑CXCR4/↑GNA14 axes. HHcy may activate molecular degradation process signaling through the ↓miRNA335→↑ASAH1/↑ABCB9 axes. HHcy may suppress cell cycle and proliferation through the miR491→↓HMGA2→↓CCNA2/CCNB2, the ↓miR335→↑VASH1, the ↓miR181a→↑PHLDA1, the miR6045→↓CENPH, the miR22→↓PRR11/↓BRCA2, and the miR605/miR497/miR514a→CEP55 axes
Collapse
Affiliation(s)
- Michael Jan
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, United States
| | - Ramon Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Liu Lu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jason Sardy
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Justine E Yu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Hung Pham
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xuebing Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, United States; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Chen W, He S, Xiang D. Hypoxia-induced retinal pigment epithelium cell-derived bFGF promotes the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway. Gene 2021; 790:145695. [PMID: 33964379 DOI: 10.1016/j.gene.2021.145695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia promotes the secretion of basic fibroblast growth factor (bFGF) in retinal pigment epithelium (RPE), which plays an important part in retinopathy of prematurity (ROP). This study preliminarily explored the effect of hypoxia-induced RPE-derived bFGF on the biological functions of human umbilical vein endothelial cells (HUVECs). After cell culture in hypoxia conditions, the cell viability, apoptosis, and the expressions of bFGF and vascular endothelial growth factor A (VEGFA) in human RPEs were detected by 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, western blot, RT-qPCR, or ELISA. The HUVECs were transfected with siRNA for bFGF (sibFGF) or transforming growth factor-β1 (TGF-β1) (siTGF-β1) and grown in the supernatant RPE under normoxia conditions or hypoxia conditions to further determine the cell viability, migration, angiogenesis, and the expressions of TGF-β1, p-smad2/3, and smad2/3 in the cells by performing MTT, transwell, tube formation, Western blot, or RT-qPCR. Hypoxia culture decreased the cell viability and promoted the apoptosis as well as the expressions of bFGF and VEGFA in RPEs. In both normoxia and hypoxia conditions, RPE-derived bFGF increased the cell viability, migration, angiogenesis, and the expressions of TGF-β1 and p-smad2/3 in the HUVECs, with hypoxia-induced RPE-derived bFGF showing a stronger effect than bFGF induced by normoxia. However, sibFGF reversed the effects caused by RPE-derived bFGF. Moreover, siTGF-β1 decreased the high cell viability, migration and angiogenesis of HUVECs, and downregulated the expressions of TGF-β1 and phosphorylated (p)-smad2/3 upregulated by hypoxia-induced RPE-derived bFGF. Hypoxia-induced RPE-derived bFGF could promote the migration and angiogenesis of HUVECs through regulating TGF-β1/smad2/3 pathway.
Collapse
Affiliation(s)
- Wensi Chen
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China
| | - Shiping He
- Department of Ophthalmology, Aier Eye Hospital, China
| | - Daoman Xiang
- Department of Pediatric Ophthalmology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.
| |
Collapse
|
7
|
Elevated MicroRNA 183 Impairs Trophoblast Migration and Invasiveness by Downregulating FOXP1 Expression and Elevating GNG7 Expression during Preeclampsia. Mol Cell Biol 2020; 41:MCB.00236-20. [PMID: 33139493 DOI: 10.1128/mcb.00236-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of uncertain etiology that is the leading cause of maternal and fetal morbidity or mortality. The dysregulation of microRNAs (miRNAs) has been highlighted as a potential factor involved in the development of PE. Therefore, our study investigated a novel miRNA, miRNA 183 (miR-183), and its underlying association with PE. Expression of miR-183, forkhead box P1 (FOXP1), and G protein subunit gamma 7 (GNG7) in placental tissues of patients with PE was determined. Gain- and loss-of-function experiments were conducted to explore modulatory effects of miR-183, FOXP1, and GNG7 on the viability, invasion, and angiogenesis of trophoblast cells in PE. Finally, we undertook in vivo studies to explore effects of FOXP1 in the PE model. The results revealed suppressed expression of FOXP1 and significant elevations in miR-183 and GNG7 expression in placental tissues of PE patients. FOXP1 was observed to promote proliferation, invasion, and angiogenesis in human chorionic trophoblastic cells. miR-183 resulted in depletion of FOXP1 expression, while FOXP1 was capable of restraining GNG7 expression and promoting the mTOR pathway. The findings confirmed the effects of FOXP1 on PE. In conclusion, miR-183 exhibits an inhibitory role in PE through suppression of FOXP1 and upregulation of GNG7.
Collapse
|
8
|
Li Y, Zhou C, Lei W, Wang K, Zheng J. Roles of aryl hydrocarbon receptor in endothelial angiogenic responses†. Biol Reprod 2020; 103:927-937. [PMID: 32716482 PMCID: PMC7731988 DOI: 10.1093/biolre/ioaa128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a transcription factor, which can be activated by a plethora of structure-diverse ligands. Historically, AhR is known for its involvements in regulation of metabolism of xenobiotics. However, normal physiological roles of AhR have been defined in other essential biological processes, including vascular growth and function, reproduction, and immunoresponses. In contrast, aberrant expression and activation of the AhR signaling pathway occur in a variety of human diseases, many of which (e.g., preeclampsia, atherosclerosis, and hypertension) could be associated with endothelial dysfunction. Indeed, emerging evidence has shown that either exogenous or endogenous AhR ligands can induce endothelial dysfunction in either an AhR-dependent or AhR-independent manner, possibly reliant on the blood vessel origin (artery and vein) of endothelial cells. Given that the AhR signaling pathway has broad impacts on endothelial and cardiovascular function, AhR ligands, AhR, and their downstream genes could be considered novel therapeutic targets for those endothelial-related diseases. This review will discuss the current knowledge of AhR's mediation on endothelial function and potential mechanisms underlying these actions with a focus on placental endothelial cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wei Lei
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Zhou C, Zou QY, Jiang YZ, Zheng J. Role of oxygen in fetoplacental endothelial responses: hypoxia, physiological normoxia, or hyperoxia? Am J Physiol Cell Physiol 2020; 318:C943-C953. [PMID: 32267717 DOI: 10.1152/ajpcell.00528.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During pregnancy, placental vascular growth, which is essential for supporting the rapidly growing fetus, is associated with marked elevations in blood flow. These vascular changes take place under chronic physiological low O2 (less than 2-8% O2 in human; chronic physiological normoxia, CPN) throughout pregnancy. O2 level below CPN pertinent to the placenta results in placental hypoxia. Such hypoxia can cause severe endothelial dysfunction, which is associated with adverse pregnancy outcomes (e.g., preeclampsia) and high risk of adult-onset cardiovascular diseases in children born to these pregnancy complications. However, our current knowledge about the mechanisms underlying fetoplacental endothelial function is derived primarily from cell models established under atmospheric O2 (~21% O2 at sea level, hyperoxia). Recent evidence has shown that fetoplacental endothelial cells cultured under CPN have distinct gene expression profiles and cellular responses compared with cells cultured under chronic hyperoxia. These data indicate the critical roles of CPN in programming fetal endothelial function and prompt us to re-examine the mechanisms governing fetoplacental endothelial function under CPN. Better understanding these mechanisms will facilitate us to develop preventive and therapeutic strategies for endothelial dysfunction-associated diseases (e.g., preeclampsia). This review will provide a brief summary on the impacts of CPN on endothelial function and its underlying mechanisms with a focus on fetoplacental endothelial cells.
Collapse
Affiliation(s)
- Chi Zhou
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qing-Yun Zou
- Department of Vascular Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Zhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Zheng
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
10
|
Lim YH, Fraile C, Antaya RJ, Choate KA. Tufted angioma with associated Kasabach-Merritt phenomenon caused by somatic mutation in GNA14. Pediatr Dermatol 2019; 36:963-964. [PMID: 31423605 PMCID: PMC7039697 DOI: 10.1111/pde.13979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tufted angioma (TA) is a rare vascular tumor characterized by histologic tufts of proliferating capillaries that occurs in infancy or early childhood, with a poorly understood pathogenesis. Though benign, TA can be associated with the Kasabach-Merritt phenomenon (KMP), a life-threatening consumptive coagulopathy and thrombocytopenia. Here, we explored the genetic mechanism underlying a case of TA associated with KMP via targeted sequencing of laser capture micro-dissected lesion and blood DNA, and identified a somatic, activating GNA14 mutation specific to the tumor. Our findings support aberrant GNA14 activation underlies the pathogenesis of TA associated with KMP.
Collapse
Affiliation(s)
- Young H Lim
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carmen Fraile
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard J Antaya
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
12
|
Zhou C, Yan Q, Zou QY, Zhong XQ, Tyler CT, Magness RR, Bird IM, Zheng J. Sexual Dimorphisms of Preeclampsia-Dysregulated Transcriptomic Profiles and Cell Function in Fetal Endothelial Cells. Hypertension 2019; 74:154-163. [PMID: 31154903 DOI: 10.1161/hypertensionaha.118.12569] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia impairs fetoplacental vascular function and increases risks of adult-onset cardiovascular disorders in children born to preeclamptic mothers, implicating that preeclampsia programs fetal vasculature in utero. However, the underlying mechanisms remain elusive. We hypothesize that preeclampsia alters fetal endothelial gene expression and disturbs cytokines- and growth factors-induced endothelial responses. RNA sequencing analysis was performed on unpassaged human umbilical vein endothelial cells (HUVECs) from normotensive and preeclamptic pregnancies. Functional assays for endothelial monolayer integrity, proliferation, and migration were conducted on passage 1 HUVECs from normotensive and preeclamptic pregnancies. Compared with normotensive cells, 926 and 172 genes were dysregulated in unpassaged female and male HUVECs from preeclamptic pregnancies, respectively. Many of these preeclampsia-dysregulated genes are associated with cardiovascular diseases (eg, heart failure) and endothelial function (eg, cell migration, calcium signaling, and endothelial nitric oxide synthase signaling). TNF (tumor necrosis factor)-α-, TGF (transforming growth factor)-β1-, FGF (fibroblast growth factor)-2-, and VEGFA (vascular endothelial growth factor A)-regulated gene networks were differentially disrupted in unpassaged female and male HUVECs from preeclamptic pregnancies. Moreover, preeclampsia decreased endothelial monolayer integrity in responses to TNF-α in both female and male HUVECs. Preeclampsia decreased TGF-β1-strengthened monolayer integrity in female HUVECs, whereas it enhanced FGF-2-strengthened monolayer integrity in male HUVECs. Preeclampsia promoted TNF-α-, TGF-β1-, and VEGFA-induced cell proliferation in female, but not in male HUVECs. Preeclampsia inhibited TNF-α-induced cell migration in female HUVECs, but had an opposite effect on male HUVECs. In conclusion, preeclampsia differentially dysregulates cardiovascular diseases- and endothelial function-associated genes/pathways in female and male fetal endothelial cells in association with the sexual dimorphisms of preeclampsia-dysregulated fetal endothelial function.
Collapse
Affiliation(s)
- Chi Zhou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Qin Yan
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China (Q.Y.)
| | - Qing-Yun Zou
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Xin-Qi Zhong
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Department of Pediatrics, the 3rd Affiliated Hospital of Guangzhou Medical University, Guangdong, China (X.-Q.Z.)
| | - Chanel T Tyler
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa (R.R.M.)
| | - Ian M Bird
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.)
| | - Jing Zheng
- From the Department of Obstetrics and Gynecology, University of Wisconsin-Madison (C.Z., Q.Y., Q.-Y.Z., X.-Q.Z., C.T.T., I.M.B., J.Z.).,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (J.Z.)
| |
Collapse
|