1
|
Li S, Qiu Y, Li A, Lu J, Ji X, Hao W, Cheng C, Gao X. Characterization of the Expression and Role of Striatin-Interacting Protein 2 in Mouse Cochlea. Otol Neurotol 2025; 46:e139-e146. [PMID: 39965243 DOI: 10.1097/mao.0000000000004449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
HYPOTHESIS In this study, we aimed to examine the cochlear expression pattern and function of Striatin-interacting protein 2 (STRIP2) by using animal models. BACKGROUND Sensorineural hearing loss often results from genetic defects in hair cell (HC) development and function. STRIP2 is a part of the striatin-interacting phosphatase and kinase (STRIPAK) complex, which plays important regulatory roles in cell fate determination, proliferation, cytoskeletal organization, and cell morphology. A recent study revealed Strip2 as the candidate gene that regulates positive selection in HC lineages. However, its role in the inner ear has not been identified. METHODS Strip2 knockout mouse model was used to examine the cochlear expression pattern and function of STRIP2. Auditory brainstem response test was used to evaluate the hearing function of mice. Immunostaining and scanning electron microscope were used to study hair cells, synapses, and stereocilia of cochlea. RESULTS Immunostaining showed that cytoplasmic STRIP2 expression in hair cells increased from postnatal day (P) 3 to P14. Despite having normal hearing thresholds, hair cell numbers, and stereocilia morphology until P90, the deletion of Strip2 resulted in a mild reduction in ribbon synapse density, suggesting a late onset of cochlear synaptic defects. CONCLUSION Our results revealed that STRIP2 was abundantly expressed in hair cells; however, the hearing function of Strip2-/- mice was comparable to that of control mice until P90, and a mild decrease in ribbon synapse number was detected at P60 and P90. Further studies on STRIP2 and its associated complexes will provide new insights into the pathways involved in inner ear development and function.
Collapse
Affiliation(s)
| | - Yue Qiu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wenli Hao
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | | |
Collapse
|
2
|
Zhou H, Zhang S, Jin X, A C, Gong P, Zhao S. The Electric Field Guided HaCaT Cell Migration Through the EGFR/p38 MAPK/Akt Pathway. Curr Issues Mol Biol 2024; 47:16. [PMID: 39852131 PMCID: PMC11763975 DOI: 10.3390/cimb47010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Previous studies have shown that the endogenous electric field (EF) is an overriding cure in guiding cell migration toward the wound center to promote wound healing, but the mechanism underlying is unclear. In this study, we investigated the molecular mechanism of electric field-guided cell migration in human keratinocyte HaCaT cells. Our results showed that HaCaT cells migrate toward the anode under EFs. The phosphorylation levels of p38 MAPK and Akt were obviously elevated in the EF. Knocking down p38 MAPK obviously abolished directed migration of HaCaT cells under the EFs. Inhibiting p38 MAPK by SB203580 impaired the EF-guided cell migration. The electric field may guide HaCaT cell migration through the EGFR/p38 MAPK/Akt pathway.
Collapse
Affiliation(s)
| | | | | | | | - Peng Gong
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China; (H.Z.); (S.Z.); (X.J.); (C.A.)
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China; (H.Z.); (S.Z.); (X.J.); (C.A.)
| |
Collapse
|
3
|
Pan J, Zhang Y, He L, Wu Y, Xiao W, Zhang J, Xu Y. STRIP2 is regulated by the transcription factor Sp1 and promotes lung adenocarcinoma progression via activating the PI3K/AKT/mTOR/MYC signaling pathway. Genomics 2024; 116:110923. [PMID: 39191354 DOI: 10.1016/j.ygeno.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) generally have poor prognosis. The role of striatin-interacting protein 2 (STRIP2) in LUAD remain unclear. METHODS Liquid chromatography-mass spectrometry analyses were used to screen the STRIP2-binding proteins and co-immunoprecipitation verified these interactions. A dual luciferase reporter assay explored the transcription factor activating STRIP2 transcription. Xenograft and lung metastasis models assessed STRIP2's role in tumor growth and metastasis in vivo. RESULTS STRIP2 is highly expressed in LUAD tissues and is linked to poor prognosis. STRIP2 expression in LUAD cells significantly promoted cell proliferation, invasion, and migration in vitro and in vivo. Mechanistically, STRIP2 boosted the PI3K/AKT/mTOR/MYC cascades by binding AKT. In addition, specificity protein 1, potently activated STRIP2 transcription by binding to the STRIP2 promoter. Blocking STRIP2 reduces tumor growth and lung metastasis in xenograft models. CONCLUSIONS Our study identifies STRIP2 is a key driver of LUAD progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Junfan Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Liu He
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Yue Wu
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Weijin Xiao
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Jing Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
4
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Zhao B, Chen Z, Li T, Yao H, Wang Z, Liao Y, Guo H, Fu D, Ji Y, Du M. Eupatilin suppresses osteoclastogenesis and periodontal bone loss by inhibiting the MAPKs/Siglec-15 pathway. Int Immunopharmacol 2024; 139:112720. [PMID: 39047450 DOI: 10.1016/j.intimp.2024.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Periodontitis is a widely prevalent oral disease around the world characterized by the disruption of the periodontal ligament and the subsequent development of periodontal pockets, as well as the loss of alveolar bone, and may eventually lead to tooth loss. This research aims to assess the suppressive impact of Eupatilin, a flavone obtained from Artemisia argyi, on osteoclastogenesis in vitro and periodontitis in vivo. We found that Eupatilin can efficiently obstruct the differentiation of Raw264.7 and bone marrow-derived macrophages (BMDMs) induced by RANKL, leading to the formation of mature osteoclasts. Consistently, bone slice resorption assay showed that Eupatilin significantly inhibited osteoclast-mediated bone resorption in a dose-dependent manner. Eupatilin also downregulated the expression of osteoclast-specific genes and proteins in Raw264.7 and BMDMs. RNA sequencing showed that Eupatilin notably downregulated the expression of Siglec-15. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified significantly enriched pathways in DEGs, including MAPK signaling pathway. And further mechanistic investigations confirmed that Eupatilin repressed MAPKs/NF-κBsignaling pathways. It was found that Siglec-15 overexpression reversed the inhibitory impact of Eupatilin on the differentiation of osteoclasts. Furthermore, activating MAPK signaling pathway reversed the downregulation of Siglec-15 and the inhibition of osteoclastogenesis by Eupatilin. To sum up, Eupatilin reduced the expression of Siglec-15 by suppressing MAPK signaling pathway, ultimately leading to the inhibition of osteoclastogenesis. Meanwhile, Eupatilin suppressed the alveolar bone resorption caused by experimentalperiodontitis in vivo. Eupatilin exhibits potential therapeutic effects in the treatment of periodontitis, rendering it a promising pharmaceutical agent.
Collapse
Affiliation(s)
- Boxuan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhiyong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haiying Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
7
|
Obara N, Kyakumoto S, Yamaguchi S, Yamada H, Ishisaki A, Kamo M. Disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells results in tumor progression, possibly through an increase of MMP-2 and MMP-9 expression. J Oral Biosci 2024; 66:151-159. [PMID: 38030062 DOI: 10.1016/j.job.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES This study aimed to clarify the molecular mechanism underlying the higher invasion and metastasis abilities of LMF4 cells than those of HSC-3 cells by comparing the expression levels of the tumor suppressor factor, cell adhesion molecule 1 (CADM1). METHODS We explored 1) whether CADM1 expression level was downregulated in LMF4 cells compared with HSC-3 cells, 2) whether CADM1 expression knockdown increased the expression levels of matrix metalloproteinases (MMPs), 3) the exact cellular signaling pathways responsible for increased MMP expression after knockdown of CADM1 expression, and 4) whether disruption of CADM1-dependent HSC-3 cell adhesion increased the migratory and invasive activities of HSC-3 cells. RESULTS CADM1 expression was lower in the LMF4 than in the HSC-3 cells. The knockdown of CADM1 increased the expression of MMP-2 and MMP-9 in HSC-3 cells. In addition, the upregulation of MMP-2 expression after CADM1 knockdown was abrogated by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. The upregulation of MMP-9 expression after the knockdown of CADM1 was abrogated by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 MAP kinase (MAPK) inhibitor SB203580 and LY294002. Anti-CADM1 neutralizing antibody evoked migratory and invasive abilities of HSC-3 cells. CONCLUSION The disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells resulted in tumor progression, possibly through an increase in MMP-2 expression in a MEK/PI3K-dependent manner and an increase in MMP-9 expression in a JNK/p38 MAPK/PI3K-dependent manner.
Collapse
Affiliation(s)
- Nanami Obara
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan; Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 19-1, Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 19-1, Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
8
|
Liu T, Zhang T, Guo C, Liang X, Wang P, Zheng B. Murine double minute 2-mediated estrogen receptor 1 degradation activates macrophage migration inhibitory factor to promote vascular smooth muscle cell dedifferentiation and oxidative stress during thoracic aortic aneurysm progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119661. [PMID: 38218386 DOI: 10.1016/j.bbamcr.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Tian Zhang
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Chenfan Guo
- Department of Cardiovascular Surgery, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning 530001, Guangxi, PR China
| | - Xiangsen Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, PR China
| | - Pandeng Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Baoshi Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
9
|
Xu T, Jiang Y, Fu H, Yang G, Hu X, Chen Y, Zhang Q, Wang Y, Wang Y, Xie HQ, Han F, Xu L, Zhao B. Exploring the adverse effects of 1,3,6,8-tetrabromo-9H-carbazole in atherosclerotic model mice by metabolomic profiling integrated with mechanism studies in vitro. CHEMOSPHERE 2024; 349:140767. [PMID: 37992903 DOI: 10.1016/j.chemosphere.2023.140767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Given its wide distribution in the environment and latent toxic effects, 1,3,6,8-tetrabromo-9H-carbazole (1368-BCZ) is an emerging concern that has gained increasing attention globally. 1368-BCZ exposure is reported to have potential cardiovascular toxicity. Although atherosclerosis is a cardiovascular disease and remains a primary cause of mortality worldwide, no evidence has been found regarding the impact of 1368-BCZ on atherosclerosis. Therefore, we aimed to explore the deleterious effects of 1368-BCZ on atherosclerosis and the underlying mechanisms. Serum samples from 1368-BCZ-treated atherosclerotic model mice were subjected to metabolomic profiling to investigate the adverse influence of the pollutant. Subsequently, the molecular mechanism associated with the metabolic pathway of atherosclerotic mice that was identified following 1368-BCZ exposure was validated in vitro. Serum metabolomics analysis revealed that 1368-BCZ significantly altered the tricarboxylic acid cycle, causing a disturbance in energy metabolism. In vitro, we further validated general markers of energy metabolism based on metabolome data: 1368-BCZ dampened adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS) production. Furthermore, blocking the aryl hydrocarbon receptor (AhR) reversed the high production of ROS induced by 1368-BCZ. It is concluded that 1368-BCZ decreased the ATP synthesis by disturbing the energy metabolism, thereby stimulating the AhR-mediated ROS production and presumably causing aggravated atherosclerosis. This is the first comprehensive study on the cardiovascular toxicity and mechanism of 1368-BCZ based on rodent models of atherosclerosis and integrated with in vitro models.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Yuxi Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Yilan Wang
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Han
- PET/CT Center, Key Laboratory of Functional Molecular Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
11
|
Dai W, Wang H, Zhan Y, Li N, Li F, Wang J, Yan H, Zhang Y, Wang J, Wu L, Liu H, Fan Y, Tao Y, Mo X, Yang JJ, Sun K, Chen G, Yu Y. CCNK Gene Deficiency Influences Neural Progenitor Cells Via Wnt5a Signaling in CCNK-Related Syndrome. Ann Neurol 2023; 94:1136-1154. [PMID: 37597256 DOI: 10.1002/ana.26766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Rare variants of CCNK (cyclin K) give rise to a syndrome with intellectual disability. The purpose of this study was to describe the genotype-phenotype spectrum of CCNK-related syndrome and the underlying molecular mechanisms of pathogenesis. METHODS We identified a number of de novo CCNK variants in unrelated patients. We generated patient-induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) as disease models. In addition, we constructed NPC-specific Ccnk knockout (KO) mice and performed molecular and morphological analyses. RESULTS We identified 2 new patients harboring CCNK missense variants and followed-up 3 previous reported patients, which constitute the largest patient population analysis of the disease. We demonstrate that both the patient-derived NPC models and the Ccnk KO mouse displayed deficient NPC proliferation and enhanced apoptotic cell death. RNA sequencing analyses of these NPC models uncovered transcriptomic signatures unique to CCNK-related syndrome, revealing significant changes in genes, including WNT5A, critical for progenitor proliferation and cell death. Further, to confirm WNT5A's role, we conducted rescue experiments using NPC and mouse models. We found that a Wnt5a inhibitor significantly increased proliferation and reduced apoptosis in NPCs derived from patients with CCNK-related syndrome and NPCs in the developing cortex of Ccnk KO mice. INTERPRETATION We discussed the genotype-phenotype relationship of CCNK-related syndrome. Importantly, we demonstrated that CCNK plays critical roles in NPC proliferation and NPC apoptosis in vivo and in vitro. Together, our study highlights that Wnt5a may serve as a promising therapeutic target for the disease intervention. ANN NEUROL 2023;94:1136-1154.
Collapse
Affiliation(s)
- Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Nan Li
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Department of Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingmin Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Huifang Yan
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Zhang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Junyu Wang
- Departmentof Pediatrics, Peking University First Hospital, Beijing, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Huili Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yue Tao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Sun
- Department of Pediatric Cardiovascular, Center of Clinical Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
12
|
Hussey MR, Enquobahrie DA, Loftus CT, MacDonald JW, Bammler TK, Paquette AG, Marsit CJ, Szpiro AA, Kaufman JD, LeWinn KZ, Bush NR, Tylavsky F, Zhao Q, Karr CJ, Sathyanarayana S. Associations of prenatal exposure to NO 2 and near roadway residence with placental gene expression. Placenta 2023; 138:75-82. [PMID: 37216796 PMCID: PMC10349584 DOI: 10.1016/j.placenta.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Traffic-related air pollution (TRAP), a common exposure, potentially impacts pregnancy through altered placental function. We investigated associations between prenatal TRAP exposure and placental gene expression. METHODS Whole transcriptome sequencing was performed on placental samples from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle and Yakima, WA) (n = 205), cohorts of the ECHO-PATHWAYS Consortium. Residential NO2 exposures were computed via spatiotemporal models for full-pregnancy, each trimester, and the first/last months of pregnancy. Individual cohort-specific, covariate-adjusted linear models were fit for 10,855 genes and respective exposures (NO2 or roadway proximity [≤150 m]). Infant-sex/exposure interactions on placental gene expression were tested with interaction terms in separate models. Significance was based on false discovery rate (FDR<0.10). RESULTS In GAPPS, final-month NO2 exposure was positively associated with MAP1LC3C expression (FDR p-value = 0.094). Infant-sex interacted with second-trimester NO2 on STRIP2 expression (FDR interaction p-value = 0.011, inverse and positive associations among male and female infants, respectively) and roadway proximity on CEBPA expression (FDR interaction p-value = 0.045, inverse among females). In CANDLE, infant-sex interacted with first-trimester and full-pregnancy NO2 on RASSF7 expression (FDR interaction p-values = 0.067 and 0.013, respectively, positive among male infants and inverse among female infants). DISCUSSION Overall, pregnancy NO2 exposure and placental gene expression associations were primarily null, with exception of final month NO2 exposure and placental MAP1LC3C association. We found several interactions of infant sex and TRAP exposures on placental expression of STRIP2, CEBPA, and RASSF7. These highlighted genes suggest influence of TRAP on placental cell proliferation, autophagy, and growth, though additional replication and functional studies are required for validation.
Collapse
Affiliation(s)
- Michael R Hussey
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Daniel A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alison G Paquette
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, School of Medicine, University of California, San Francisco, San, Francisco, CA, USA
| | - Frances Tylavsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catherine J Karr
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sheela Sathyanarayana
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
13
|
Wang J, Yuan Y, Tang L, Zhai H, Zhang D, Duan L, Jiang X, Li C. Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:921200. [PMID: 35774125 PMCID: PMC9237420 DOI: 10.3389/fonc.2022.921200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Background Striatin-interacting protein 2 (STRIP2), also called Fam40b, has been reported to regulate tumor cell growth. But the role of STRIP2 in lung adenocarcinoma (LUAD) has not been discovered clearly. Thus, the aim of our study is to explore the function and underlying mechanism of STRIP2 in LUAD. Methods Expression of STRIP2 was determined using the Cancer Genome Atlas (TCGA), GTEx, Ualcan, and the Human Protein Altas databases. The Correlation of STRIP2 and survival was detected by PrognoScan and Kaplan-Meier plotter databases. Besides, the correlation between STRIP2 expression and tumor immune infiltration as well as immune checkpoints were analyzed by the ssGSEA method. The biological function of STRIP2 and its co-expression genes was determined by gene ontology (GO) and Genes and Genomes (KEGG), respectively. Finally, the expression level and biological function of STRIP2 in LUAD were determined by qPCR, CCK8, transwell, and wound healing assays. Results This manuscript revealed a significantly increased expression of mRNA and protein of STRIP2 in lung adenocarcinoma compared with the adjacent normal tissues. GEO and Kaplan-Meier plotter databases showed higher STRIP2 expression levels were correlated with poor prognosis survival of LUAD. Moreover, Cox regression analysis suggested that a higher STRIP2 level served as an independent risk factor in predicting deteriorative overall survival (OS) for LUAD patients. SsGSEA results showed STRIP2 expression level was positively correlated with infiltrating levels of Th2 cells in LUAD. Lastly, GO analysis indicated the biological processes were enriched in nuclear division and positive regulation of the cell cycle. KEGG signaling pathway analysis showed STRIP2 was correlated with the MAPK signaling pathway and the TNF signaling pathway. The GSEA database showed that STRIP2 was positively associated with the epithelial-mesenchymal transition, cell cycle, and TNF signaling pathway. The QRT-PCR assay showed that STRIP2 was upregulated in LUAD cell lines. Cell proliferation and migration were inhibited in LUAD by knockdown of STRIP2. Moreover, we confirmed that the TMPO-AS1/let-7c-5p/STRIP2 network regulates STRIP2 overexpression in LUAD and is associated with poor prognosis. Conclusion Our findings indicated that STRIP2 acted as a crucial oncogene in LUAD and was correlated with unfavorable survival and tumor infiltration inflation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haoqing Zhai
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Xiulin Jiang
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| |
Collapse
|
14
|
Yang K, Li C, Wang Y, Hao J. Micro-Vibration Environment Promotes Bone Marrow Mesenchymal Stem Cells (BMSCs) Healing of Fracture Ends and Matrix Metalloproteinase-9 (MMP-9) Expression. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When the muscle is stimulated by micro-vibration environment, it will produce a mechanical effect on skeletal muscle, thereby promoting growth of skeletal muscle cells. Bone marrow mesenchymal stem cells (BMSCs), as mechanically sensitive cells, have ability to multipolarize and multiple
tropisms. This experiment explores the effect of BMSC cells on fracture end healing in fracture rats in a micro-vibration environment, and further explores whether it promotes the healing of fracture end to provide biological treatment ideas for the clinical repair of fracture patients. After
modeling, SD rats were assigned into blank group, control group, and experimental group (treated with BMSCs) followed by analysis of bone volume fraction and bone trabecular thickness and number by Micro-CT, callus growth by H&E staining, and expression of p38 and MMP-9 by immunohistochemical
staining. The BV/TV value of experimental group was (0.41±0.06), Tb.Th value (0.08±0.01), Tb.N value (3.96±0.48) and was higher than other two groups (P < 0.05). The growth of capillaries, trabecular bone, fibrous callus and cartilaginous callus in experimental
group showed increased growth and the calcification was observed at the edge of cartilage callus. In addition, experimental group showed increased distribution area of MMP-9 and elevated expression of MMP-9 and p38MAPK. In conclusion, the micro-vibration environment can effectively promote
the chemotaxis of BMSC cells to the fracture site to activate ossification, thereby promoting the proliferation and ossification and differentiation of BMSC, and further promoting the repair of fracture ends.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Chenmei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Yapeng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Junlong Hao
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| |
Collapse
|
15
|
Wu J, Lu G, Zhou S, Jin Z, Fang F. MicroRNA-30c-2-3p targets STRIP2 to suppress malignant progression of gastric cancer cells. J Biochem 2022; 171:451-457. [PMID: 35106560 DOI: 10.1093/jb/mvac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNA plays a crucial part in genesis and development of gastric cancer (GC). We uncovered that microRNA-30c-2-3p was down-regulated in GC tissue and cell lines. Suppression of microRNA-30c-2-3p promoted progression of GC cells in vitro. STRIP2 was confirmed as a target for microRNA-30c-2-3p. MicroRNA-30c-2-3p overexpression remarkably suppressed cell malignant behaviors, while reintroduction of STRIP2 partially restored the anticancer effect of microRNA-30c-2-3p. Taken together, these findings suggested that microRNA-30c-2-3p acted as a candidate tumor suppressor in GC by directly targeting STRIP2. Therefore, microRNA-30c-2-3p can be used as a towardly GC therapeutic target.
Collapse
Affiliation(s)
- Junfei Wu
- Department of General Surgery, First People's Hospital of Tonglu, Tonglu City, 311500, China
| | - Guochun Lu
- Department of General Surgery, First People's Hospital of Tonglu, Tonglu City, 311500, China
| | - Shengkun Zhou
- Department of General Surgery, First People's Hospital of Tonglu, Tonglu City, 311500, China
| | - Zier Jin
- Department of General Surgery, First People's Hospital of Tonglu, Tonglu City, 311500, China
| | - Fu Fang
- Department of General Surgery, First People's Hospital of Tonglu, Tonglu City, 311500, China
| |
Collapse
|
16
|
Jiang H, Zhao Y, Feng P, Liu Y. Sulfiredoxin-1 Inhibits PDGF-BB-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Enhancing the Activation of Nrf2/ARE Signaling. Int Heart J 2022; 63:113-121. [PMID: 35034915 DOI: 10.1536/ihj.21-213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfiredoxin1 (Srxn1), an endogenous antioxidant protein, is involved in cardiovascular diseases. In this study, we aimed to investigate the role of Srxn1 in VSMCs and its molecular mechanism. The murine vascular smooth muscle cells MOVAS were treated with different doses of platelet-derived growth factor-BB (PDGF-BB); then, Srxn1 expression was detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. MTT and wound healing assay were used to examine the effect of Srxn1 on MOVAS cell proliferation and migration. Reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in MOVAS cells were detected using corresponding commercial kits. Moreover, the expression of proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 2 (MMP-2), and nuclear factor erythroid-2-related factor 2 (Nrf2) /antioxidant response element (ARE) signaling-related proteins was detected using western blot analysis. In our study, PDGF-BB dose-dependently increased Srxn1 expression in MOVAS cells, and Srxn1 expression was increased with time dependence in PDGF-BB-treated MOVAS cells. The knockdown of Srxn1 increased PDGF-BB-induced the proliferation, migration, ROS production, MDA level, and the protein expression of PCNA and MMP-2, as well as decreased SOD activity and the expression of Nrf2/ARE signaling-related proteins in PDGF-BB-stimulated MOVAS cells. However, the overexpression of Srxn1 showed the opposite results to those of knockdown of Srxn1. Moreover, the inhibitory effects of Srxn1 overexpression on PDGF-BB induced proliferation, migration, ROS production, and MDA level and the promotion of Srxn1 overexpression on PDGF-BB induced SOD activity were partially reversed by the knockdown of Nrf2. Srxn1 inhibited PDGF-BB-induced proliferation, migration, and oxidative stress through activating Nrf2/ARE signaling.
Collapse
Affiliation(s)
- Haijie Jiang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Yueyan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Panyang Feng
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| | - Yan Liu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University
| |
Collapse
|
17
|
Characterization of murine cytomegalovirus infection and induction of calcification in Murine Aortic Vascular Smooth Muscle Cells (MOVAS). J Virol Methods 2021; 297:114270. [PMID: 34461152 DOI: 10.1016/j.jviromet.2021.114270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection in the majority of the world population. HCMV is associated with increased incidence and severity of many cardiovascular diseases including myocarditis, atherosclerosis, and transplant vasculopathy. Due to the species-restricted nature of cytomegalovirus infection, murine cytomegalovirus (MCMV) is a useful model that recapitulates many of the features of HCMV infection of the cardiovascular system. While in vivo MCMV studies are able to answer many questions regarding pathogenesis of infection, in vitro experiments using cell lines are useful tools to further understand the potential underlying mechanisms. In this study, we characterize MCMV infection of the murine aortic smooth muscle cell line (MOVAS). Our findings demonstrate that MOVAS cells are permissive for MCMV infection, form plaques under carboxymethyl cellulose overlay, and produce progeny virus similar to NIH 3T3 murine embryonic fibroblasts. In addition, MCMV infection induces calcification in MOVAS cells similar to that seen in the epicardium of MCMV-infected hearts. We conclude that MOVAS cells are a useful in vitro tool for studying CMV-mediated cardiac calcification.
Collapse
|
18
|
Zhang S, Dong Y, Qiang R, Zhang Y, Zhang X, Chen Y, Jiang P, Ma X, Wu L, Ai J, Gao X, Wang P, Chen J, Chai R. Characterization of Strip1 Expression in Mouse Cochlear Hair Cells. Front Genet 2021; 12:625867. [PMID: 33889175 PMCID: PMC8056008 DOI: 10.3389/fgene.2021.625867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/-) mice to obtain Strip1 homozygous knockout (Strip1-/-) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1-/- mice were obtained and the ratio of Strip +/- to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/- mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
20
|
Qiu LM, Sun YH, Chen TT, Chen JJ, Ma HT. STRIP2, a member of the striatin-interacting phosphatase and kinase complex, is implicated in lung adenocarcinoma cell growth and migration. FEBS Open Bio 2020; 10:351-361. [PMID: 31901223 PMCID: PMC7050248 DOI: 10.1002/2211-5463.12785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD) accounts for ~40% of lung cancer cases, and the 5-year relative survival rate is no more than 1%. Dysregulation of components of striatin-interacting phosphatase and kinase (STRIPAK) complexes is associated with various diseases, including cancer. Striatin-interacting protein 2 (STRIP2), also called Fam40b, has been reported to regulate tumor cell growth and migration. Here, we investigated the role of STRIP2 in LUAD growth, migration and the underlying mechanisms. Analysis of data from The Cancer Genome Atlas database revealed that STRIP2 is highly expressed and predicted poor outcomes in patients with LUAD. Moreover, quantitative RT-PCR (qRT-PCR) analysis revealed that the mRNA expression of STRIP2 is greater in all tested LUAD cells than in a normal lung cell line. To investigate the function of STRIP2, we overexpressed STRIP2 in SPC-A1 cells and depleted STRIP2 in Calu-3 cells. Cell proliferation was evaluated by Cell Counting Kit-8 and colony-forming assays, and Transwell assay was employed to test cell invasion and migration. Our results indicate that STRIP2 depletion suppressed cell proliferation, invasion and migration in Calu-3 cells, and overexpression of STRIP2 had the opposite effects in SPC-A1 cells. Moreover, we discovered that STRIP2 depletion reduced the protein levels of p-Akt and phosphorylated-mammalian target of rapamycin (p-mTOR) in Calu-3 cells, whereas STRIP2 overexpression increased levels of these proteins in SPC-A1 cells. Furthermore, we found that silencing of STRIP2 clearly enhanced protein levels of E-cadherin and reduced levels of N-cadherin, Vimentin and matrix metalloproteinase-9 in Calu-3 cells, whereas overexpression of STRIP2 had the opposite effect in SPC-A1 cells. Our data indicate that STRIP2 promotes the proliferation and motility of LUAD cells, and this may be mediated through the regulation of the Akt/mTOR pathway and epithelial-mesenchymal transition. These results may facilitate the development of therapeutic strategies to treat LUAD.
Collapse
Affiliation(s)
- Li-Min Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, Yancheng City No. 1 People's Hospital, Yancheng City, China
| | - Yun-Hao Sun
- Department of Thoracic Surgery, Yancheng City No. 1 People's Hospital, Yancheng City, China
| | - Ting-Ting Chen
- Department of Emergency, Yancheng City No. 1 People's Hospital, Yancheng City, China
| | - Jin-Jin Chen
- Department of Oncology, Yancheng City No. 1 People's Hospital, Yancheng City, China
| | - Hai-Tao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Peng H, Tang J, Zhao S, Shen L, Xu D. Inhibition of Soluble Epoxide Hydrolase in Macrophages Ameliorates the Formation of Foam Cells - Role of Heme Oxygenase-1. Circ J 2019; 83:2555-2566. [PMID: 31666457 DOI: 10.1253/circj.cj-19-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
BACKGROUND Accumulation of foam cells in the neointima represents an early stage of atherosclerosis. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHi), effectively elevates epoxyeicosatrienoic acid (EET) levels. The effects of EETs on macrophages foam cells formation are poorly understood. METHODS AND RESULTS Incubation of foam cells with TPPU markedly ameliorate cholesterol deposition in oxidized low-density lipoprotein (oxLDL)-loaded macrophages by increasing the levels of EETs. Notably, TPPU treatment significantly inhibits oxLDL internalization and promotes cholesterol efflux. The elevation of EETs results in a decrease of class A scavenger receptor (SR-A) expression via downregulation of activator protein 1 (AP-1) expression. Additionally, TPPU selectively increases protein but not the mRNA level of ATP-binding cassette transporter A1 (ABCA1) through the reduction of calpain activity that stabilizes the protein. Moreover, TPPU treatment reduces the cholesterol content of macrophages and inhibits atherosclerotic plaque formation in apolipoprotein E-deficient mice. These changes induced by TPPU are dependent on heme oxygenase-1 (HO-1) activation. CONCLUSIONS The present study findings elucidate a precise mechanism of regulating cholesterol uptake and efflux in macrophages, which involves the prevention of atherogenesis by increasing the levels of EETs with TPPU.
Collapse
Affiliation(s)
| | - Jianjun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| |
Collapse
|