1
|
Chong ZZ, Souayah N. Crumbling Pathogenesis and Biomarkers for Diabetic Peripheral Neuropathy. Biomedicines 2025; 13:413. [PMID: 40002826 PMCID: PMC11853266 DOI: 10.3390/biomedicines13020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Diabetic sensorimotor polyneuropathy (DSP) is a common chronic diabetic complication. Traditionally, DSP was once considered irreversible with a typical loss of axon. However, the superimpose of acquired demyelination on axonal loss in DSP patients has been observed, implying that DSP may be preventable or reversible, particularly within a subgroup of patients exhibiting early-stage acquired demyelination, underscoring the critical importance of identifying early prognostic markers. Methods: We systemically review the literature on the roles of biomarkers in predicting DSP and monitoring the progress. The underlying mechanisms of biomarkers were also discussed. Results: The pathogenesis of DSP is multifaceted, with various pathological mechanisms contributing to its development. Key mechanisms include aberrant glucose metabolism and induction of oxidative stress and inflammation. Several pathological processes, such as disrupted glucose metabolism, nerve damage, impaired microcirculation, genetic variants, and microRNA dysregulation, lead to molecular and protein changes that may be detectable in blood and other biological compartments, thus serving as potential biomarkers for DSP progression. However, the utility of a biomarker depends on its predictive accuracy, practicality, and ease of measurement. Conclusions: Most biomarkers for predicting DSP have demonstrated suboptimal predictive value, and many lack established accuracy in forecasting DSP progression. Consequently, the diagnostic utility of any single biomarker remains limited. A comprehensive combination of biomarkers from various categories may hold incredible promise for accurate detection. As artificial intelligence (AI) techniques, especially machine learning, rapidly advance, these technologies may offer significant potential for developing diagnostic platforms to integrate and interpret complex biomarker data for DSP.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, New Jersey Medical School, Rutgers University, 185 S. Orange Ave, Newark, NJ 07103, USA
| | - Nizar Souayah
- Department of Neurology, New Jersey Medical School, Rutgers University, 90 Bergen Street DOC 8100, Newark, NJ 07101, USA
| |
Collapse
|
2
|
Su Y, Liu T, Zhao M, Wu D, Wang Y, Wu X. Isoviolanthin promotes Schwann cells activity in peripheral nerve regeneration via Fhl3-mediated epithelial-mesenchymal transition-like process: An in vitro study. Heliyon 2025; 11:e41087. [PMID: 39811297 PMCID: PMC11731196 DOI: 10.1016/j.heliyon.2024.e41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration. We represented the first evidence that isoviolanthin possesses the capability to enhance Schwann cell proliferation and migration. Then, transcriptome sequencing was employed to examine the Differential Expressed Genes (DEGs), resulting in the identification of 193 DEGs. Following this, the expression levels of the top 5 up-regulated genes were confirmed through RT-qPCR, with Fhl3 demonstrating the most significant up-regulation. Schwann cells were transduced with virus particles made in HEK-293T/17 cells by transfection with lentivirus packaging plasmids containing Fhl3. A notable enhancement in Schwann cell proliferation and migration was observed following transduction. Furthermore, the Fhl3-up group exhibited a significant upregulation of Vimentin expression compared to the control group. These results suggested that isoviolanthin plays a positive role in enhancing Schwann cells' activity via increasing Fhl3 expression, and the mechanism may be related to the EMT(epithelial-mesenchymal transition)-like process.
Collapse
Affiliation(s)
- Yajuan Su
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiantian Liu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minjun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Wu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuehua Wang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xubo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
3
|
Shaha A, Wang Y, Wang X, Wang D, Guinovart D, Liu B, Kang N. CMTM6 mediates the Warburg effect and promotes the liver metastasis of colorectal cancer. Exp Mol Med 2024; 56:2002-2015. [PMID: 39218981 PMCID: PMC11447025 DOI: 10.1038/s12276-024-01303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Liver metastasis of colorectal cancer (CRC) is a leading cause of death among cancer patients. The overexpression of glucose transporter 1 (Glut1) and enhanced glucose uptake that are associated with the Warburg effect are frequently observed in CRC liver metastases, but the underlying mechanisms remain poorly understood. CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) regulates the intracellular trafficking of programmed death-ligand-1 (PD-L1); therefore, we investigated whether CMTM6 regulates Glut1 trafficking and the Warburg effect in CRC cells. We found that knocking down of CMTM6 by shRNA induced the lysosomal degradation of Glut1, decreased glucose uptake and glycolysis in CRC cells, and suppressed subcutaneous CRC growth in nude mice and liver metastasis in C57BL/6 mice. Mechanistically, CMTM6 forms a complex with Glut1 and Rab11 in the endosomes of CRC cells, and this complex is required for the Rab11-dependent transport of Glut1 to the plasma membrane and for the protection of Glut1 from lysosomal degradation. Multiomics revealed global transcriptomic changes in CMTM6-knockdown CRC cells that affected the transcriptomes of adjacent cancer-associated fibroblasts from CRC liver metastases. As a result of these transcriptomic changes, CMTM6-knockdown CRC cells exhibited a defect in the G2-to-M phase transition, reduced secretion of 60 cytokines/chemokines, and inability to recruit cancer-associated fibroblasts to support an immunosuppressive CRC liver metastasis microenvironment. Analysis of TCGA data confirmed that CMTM6 expression was increased in CRC patients and that elevated CMTM6 expression was associated with worse patient survival. Together, our data suggest that CMTM6 plays multiple roles in regulating the Warburg effect, transcriptome, and liver metastasis of CRC.
Collapse
Affiliation(s)
- Aurpita Shaha
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
- The School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Dong Wang
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - David Guinovart
- Mathematical, Computational, and Statistical Modeling, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
4
|
Shi Y, Li H, Lin Y, Wang S, Shen G. Effective constituents and protective effect of Mudan granules against Schwann cell injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117692. [PMID: 38176668 DOI: 10.1016/j.jep.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Mudan granules (MD) is a Chinese patent medicine for treating DPN, which is composed of nine Chinese medicinal herbs, including the radix of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. (Huangqi in Chinese), rhizome of Corydalis yanhusuo W.T. Wang (Yanhusuo), radix and rhizome of Panax notoginseng (Burk.) F. H. Chen (Sanqi), radix of Paeonia lactiflora Pall. or Paeonia veitchii Lynch (Chishao), radix and rhizome of Salvia miltiorrhiza Bge. (Danshen), rhizome of Ligusticum chuanxiong Hort. (Chuanxiong), flowers of Carthamus tinctorius L. (Honghua), lignum of Caesalpinia sappan L. (Sumu), and caulis of Spatholobus suberectus Dunn (Jixueteng). MD was reported to have a protective effect on Schwann cell (SC) that is considered as an important therapeutic target of DPN. However, the constituents of MD have not been reported, and the effective constituents and protective pathways for MD against SC injury remain unclear. AIM OF THE STUDY This study aimed to identify the constituents in MD, and to investigate the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC. MATERIALS AND METHODS The chemical constituents of MD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Protective effect and effective constituents screening were performed in an in vitro SC injury model induced by high glucose and lipid levels. The protective pathways of MD and its effective constituents were investigated by western blotting assay of related proteins. RESULTS A total of 136 constituents were identified in MD. MD downregulated the phosphorylation of extracellular-regulated protein kinases 1/2 (ERK1/2) and expression of cyclooxygenase-2 (COX-2) and upregulated the expression of sirtuin 2 (SIRT2). Seven effective constituents were screened out, including three from Sanqi [20(R)-ginsenoside Rh2, 20(S)-ginsenoside Rh2, and ginsenoside Rk3], one from Huangqi (astragaloside II), one from Danshen (danshensu), and two from Chuanxiong (chlorogenic and cryptochlorogenic acid). Six of the seven compounds, excluding danshensu, inhibited the phosphorylation of ERK1/2. Both astragaloside II and chlorogenic acid upregulated the expression of SIRT2, and cryptochlorogenic acid and danshensu downregulated the expression of COX-2. CONCLUSIONS The constituents of MD were firstly identified, and seven effective constituents were found. MD can protect SC against high-glucose and -lipid injury by downregulating ERK1/2 phosphorylation and COX-2 expression and upregulating SIRT2 expression. Seven effective constituents regulated the expression of these proteins. This study presented an important advance toward elucidating the chemical constituents, and the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC, which is very helpful for investigating the action mechanism of MD on treating DPN, and could ultimately inform the development of effective quality control procedures for MD production.
Collapse
Affiliation(s)
- Yingqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yugang Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321016, China.
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310022, China
| |
Collapse
|
5
|
Gunsch G, Paradie E, Townsend KL. Peripheral nervous system glia in support of metabolic tissue functions. Trends Endocrinol Metab 2023; 34:622-639. [PMID: 37591710 DOI: 10.1016/j.tem.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored. PNSG are found in large nerves (such as the sciatic), the ganglia, and the tissues themselves, and can crosstalk with a range of cell types in addition to neurons. PNSG are also subject to phenotypic changes in response to signals from their local tissue environment, including metabolic changes. These topics and the importance of PNSG in metabolically active tissues, such as adipose, muscle, heart, and lymphatic tissues, are outlined in this review.
Collapse
Affiliation(s)
- Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common neuropathy in the world, mainly manifested as bilateral symmetry numbness, pain or paresthesia, with a high rate of disability and mortality. Schwann cells (SCs), derived from neural ridge cells, are the largest number of glial cells in the peripheral nervous system, and play an important role in DPN. Studies have found that SCs are closely related to the pathogenesis of DPN, such as oxidative stress, endoplasmic reticulum stress, inflammation, impaired neurotrophic support and dyslipidemia. This article reviews the mechanism of SCs in DPN.
Collapse
Affiliation(s)
- Jingjing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- * Correspondence: Jingjing Li, Heilongjiang University of Traditional Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang Province 150000, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
7
|
Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, Kong D, Hao J. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis 2021; 12:642. [PMID: 34162834 PMCID: PMC8222353 DOI: 10.1038/s41419-021-03930-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM) and the dysfunction of Schwann cells plays an important role in the pathogenesis of DPN. Thioredoxin-interacting protein (TXNIP) is known as an inhibitor of thioredoxin and associated with oxidative stress and inflammation. However, whether TXNIP is involved in dysfunction of Schwann cells of DPN and the exact mechanism is still not known. In this study, we first reported that TXNIP expression was significantly increased in the sciatic nerves of diabetic mice, accompanied by abnormal electrophysiological indexes and myelin sheath structure. Similarly, in vitro cultured Schwann cells TXNIP was evidently enhanced by high glucose stimulation. Again, the function experiment found that knockdown of TXNIP in high glucose-treated RSC96 cells led to a 4.12 times increase of LC3-II/LC3-I ratio and a 25.94% decrease of cleaved caspase 3/total caspase 3 ratio. Then, DNA methyltransferase (DNMT) inhibitor 5-Aza has been reported to benefit Schwann cell in DPN, and here 5-Aza treatment reduced TXNIP protein expression, improved autophagy and inhibited apoptosis in high glucose-treated RSC96 cells and the sciatic nerves of diabetic mice. Furthermore, DNMT1 and DNMT3a upregulation were found to be involved in TXNIP overexpression in high glucose-stimulated RSC96 cells. Silencing of DNMT1 and DNMT3a effectively reversed high glucose-enhanced TXNIP. Moreover, high glucose-inhibited PI3K/Akt pathway led to DNMT1, DNMT3a, and TXNIP upregulation in RSC96 cells. Knockdown of DNMT1 and DNMT3a prevented PI3K/Akt pathway inhibition-caused TXNIP upregulation in RSC96 cells. Finally, in vivo knockout of TXNIP improved nerve conduction function, increased autophagosome and LC3 expression, and decreased cleaved Caspase 3 and Bax expression in diabetic mice. Taken together, PI3K/Akt pathway inhibition mediated high glucose-induced DNMT1 and DNMT3a overexpression, leading to cell autophagy inhibition and apoptosis via TXNIP protein upregulation in Schwann cells of DPN.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Qingqing Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
8
|
Lu Q, Wang PS, Yang L. Golgi-associated Rab GTPases implicated in autophagy. Cell Biosci 2021; 11:35. [PMID: 33557950 PMCID: PMC7869216 DOI: 10.1186/s13578-021-00543-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a conserved cellular degradation process in eukaryotes that facilitates the recycling and reutilization of damaged organelles and compartments. It plays a pivotal role in cellular homeostasis, pathophysiological processes, and diverse diseases in humans. Autophagy involves dynamic crosstalk between different stages associated with intracellular vesicle trafficking. Golgi apparatus is the central organelle involved in intracellular vesicle trafficking where Golgi-associated Rab GTPases function as important mediators. This review focuses on the recent findings that highlight Golgi-associated Rab GTPases as master regulators of autophagic flux. The scope for future research in elucidating the role and mechanism of Golgi-associated Rab GTPases in autophagy and autophagy-related diseases is discussed further.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Po-Shun Wang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA.
| |
Collapse
|
9
|
Hou L, Yuan X, Le G, Lin Z, Gan F, Li H, Huang K. Fumonisin B1 induces nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in human renal tubule epithelial cells. Food Chem Toxicol 2021; 149:112037. [PMID: 33548371 DOI: 10.1016/j.fct.2021.112037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fumonisin B1 (FB1), a worldwide contaminating mycotoxin, can cause global food issue. It has been reported that FB1 is related to chronic kidney disease of unknown etiology. However, the study of FB1-induced nephrotoxicity in vitro is very limited and the mechanism is unknown. Human renal tubule epithelial (HK-2) cells were used in this study. The results showed that FB1 exposure could decrease cell viability, induce cell apoptosis and up-regulate the expression of Kim-1, collagen I, α-SMA and TGF-β1. In addition, autophagy was activated after FB1 exposure, including the conversion of LC3 and up-regulation of ATGs. Furthermore, autophagy inhibitor 3-MA could block FB1-induced abnormalities. And antioxidant enzymes (Gpx1 and Gpx4) were obviously down-regulated and intracellular ROS levels displayed an ascent trend as FB1 exposure concentrations increased. Employing of antioxidant NAC could suppress FB1-induced nephrotoxicity and autophagy. FB1 inhibited the phosphorylation of p70 S6k, a downstream protein of mTORC1. Also, oxidative stress, autophagy and phosphorylation of p70 S6k induced by FB1 was inhibited by MHY1485, an activator of mTOR. But the phosphorylation of AKT, a downstream protein of mTORC2 showed no change with or without MHY1485. Taken together, FB1 induced nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in HK-2 cells.
Collapse
Affiliation(s)
- Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|