1
|
Yang J, Luo Y, Yao Z, Wang Z, Jiang K. Theoretical perspectives and clinical applications of non-coding RNA in lung cancer metastasis: a systematic review. Discov Oncol 2025; 16:169. [PMID: 39937377 PMCID: PMC11822152 DOI: 10.1007/s12672-025-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer is one of the deadliest malignancies worldwide, with distant metastasis being a major cause of death. However, the specific mechanisms of lung cancer metastasis remain unclear. NcRNAs, a widely present type of non-coding RNAs in the body, constitute about 98% of the human genome, lacking protein-coding capacity but involved in various cellular processes such as proliferation, apoptosis, invasion, and migration. Studies have shown that ncRNAs play a crucial role in the metastasis of lung cancer, although research in this area is limited. This review summarizes the biological origins and functions of ncRNAs, their specific roles and mechanisms in lung cancer metastasis, and discusses their potential for early screening and therapeutic applications in lung cancer. Furthermore, it outlines the challenges in translating basic advancements of ncRNAs in lung cancer metastasis into clinical practice.
Collapse
Affiliation(s)
- Jie Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yi Luo
- The Clinical Medical College, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zuhuan Yao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhou M, Duan L, Chen J, Li Y, Yin Z, Song S, Cao Y, Luo P, Hu F, Yang G, Xu J, Liao T, Jin Y. The dynamic role of nucleoprotein SHCBP1 in the cancer cell cycle and its potential as a synergistic target for DNA-damaging agents in cancer therapy. Cell Commun Signal 2024; 22:131. [PMID: 38365687 PMCID: PMC10874017 DOI: 10.1186/s12964-024-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ping Luo
- Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Fan Hu
- Medical Subcenter of HUST Analytical & Testing Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingting Liao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Huang S, Wang X, Zhu Y, Wang Y, Chen J, Zheng H. SOX2 promotes vasculogenic mimicry by accelerating glycolysis via the lncRNA AC005392.2-GLUT1 axis in colorectal cancer. Cell Death Dis 2023; 14:791. [PMID: 38044399 PMCID: PMC10694132 DOI: 10.1038/s41419-023-06274-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Vasculogenic mimicry (VM), a new model of angiogenesis, fulfills the metabolic demands of solid tumors and contributes to tumor aggressiveness. Our previous study demonstrated the effect of SOX2 in promoting VM in colorectal cancer (CRC). However, the underlying mechanisms behind this effect remain elusive. Here, we show that SOX2 overexpression enhanced glycolysis and sustained VM formation via the transcriptional activation of lncRNA AC005392.2. Suppression of either glycolysis or AC005392.2 expression curbed SOX2-driven VM formation in vivo and in vitro. Mechanistically, SOX2 combined with the promoter of AC005392.2, which decreased H3K27me3 enrichment and thus increased its transcriptional activity. Overexpression of AC005392.2 increased the stability of GLUT1 protein by enhancing its SUMOylation, leading to a decrease in the ubiquitination and degradation of GLUT1. Accumulation of GLUT1 contributed to SOX2-mediated glycolysis and VM. Additionally, clinical analyses showed that increased levels of AC005392.2, GLUT1, and EPHA2 expression were positively correlated with SOX2 and were also associated with poor prognoses in patients with CRC. Our study conclusively demonstrates that the SOX2-lncRNA AC005392.2-GLUT1 signaling axis regulates VM formation in CRC, offering a foundation for the development of new antiangiogenic drugs or new drug combination regimens.
Collapse
Affiliation(s)
- Shimiao Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yin Zhu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 510515, Guangzhou, China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Haoxuan Zheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
5
|
Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomed Pharmacother 2023; 160:114362. [PMID: 36739763 DOI: 10.1016/j.biopha.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of cancer is increasing globally, and it is the most common cause of death. The identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. SHCSH2 domain-binding protein 1 (SHCBP1) is a protein that specifically binds to the SH2 domain of Src homology-collagen. It participates in the regulation of a variety of signal transduction pathways and can activate a variety of signaling molecules to perform a series of physiological functions. SHCBP1 is expressed in a variety of human tissues, but its abnormal expression in various systems is associated with cancer. SHCBP1 is abnormally expressed in a variety of tumors, and plays roles in almost all aspects of cancer biology (such as cell proliferation, apoptosis prevention, invasion, and metastasis) through various possible mechanisms. Its expression level is related to the clinicopathological characteristics of patients. In addition, the SHCBP1 expression pattern is closely related to cancer type, stage, and other clinical variables. Therefore, SHCBP1 is a promising tumor biomarker for cancer diagnosis and prognosis and a potential therapeutic target. This article reviews the expression, biological functions, mechanisms, and potential clinical significance of SHCBP1 in various human tumors to provide a new theoretical basis for clinical molecular diagnosis, molecular targeted therapy, and scientific research on cancer.
Collapse
|
6
|
Lei Q, Yuan B, Liu K, Peng L, Xia Z. A novel prognostic related lncRNA signature associated with amino acid metabolism in glioma. Front Immunol 2023; 14:1014378. [PMID: 37114036 PMCID: PMC10126287 DOI: 10.3389/fimmu.2023.1014378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background Glioma is one of the deadliest malignant brain tumors in adults, which is highly invasive and has a poor prognosis, and long non-coding RNAs (lncRNAs) have key roles in the progression of glioma. Amino acid metabolism reprogramming is an emerging hallmark in cancer. However, the diverse amino acid metabolism programs and prognostic value remain unclear during glioma progression. Thus, we aim to find potential amino-related prognostic glioma hub genes, elaborate and verify their functions, and explore further their impact on glioma. Methods Glioblastoma (GBM) and low-grade glioma (LGG) patients' data were downloaded from TCGA and CCGA datasets. LncRNAs associated with amino acid metabolism were discriminated against via correlation analysis. LASSO analysis and Cox regression analysis were conducted to identify lncRNAs related to prognosis. GSVA and GSEA were performed to predict the potential biological functions of lncRNA. Somatic mutation data and CNV data were further built to demonstrate genomic alterations and the correlation between risk scores. Human glioma cell lines U251 and U87-MG were used for further validation in vitro experiments. Results There were eight amino-related lncRNAs in total with a high prognostic value that were identified via Cox regression and LASSO regression analyses. The high risk-score group presented a significantly poorer prognosis compared with the low risk-score group, with more clinicopathological features and characteristic genomic aberrations. Our results provided new insights into biological functions in the above signature lncRNAs, which participate in the amino acid metabolism of glioma. LINC01561 is one of the eight identified lncRNAs, which was adopted for further verification. In in vitro experiments, siRNA-mediated LINC01561 silencing suppresses glioma cells' viability, migration, and proliferation. Conclusion Novel amino-related lncRNAs associated with the survival of glioma patients were identified, and a lncRNA signature can predict glioma prognosis and therapy response, which possibly has vital roles in glioma. Meanwhile, it emphasized the importance of amino acid metabolism in glioma, particularly in providing deeper research at the molecular level.
Collapse
Affiliation(s)
- Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Yuan
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kun Liu
- Department of Cerebrovascular Surgery, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Peng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
- *Correspondence: Zhiwei Xia, ; Li Peng,
| |
Collapse
|
7
|
Zhu Y, Yang Y, Li X. Long noncoding RNA signatures involved in the genomic instability of papillary thyroid carcinoma. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2052192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yunhua Zhu
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yifei Yang
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaoyan Li
- Department of Thyroid Mammary Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers. Comput Struct Biotechnol J 2022; 20:3106-3119. [PMID: 35782736 PMCID: PMC9233189 DOI: 10.1016/j.csbj.2022.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.
Collapse
|
9
|
DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:205-219. [PMID: 34761103 PMCID: PMC8551476 DOI: 10.1016/j.omto.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
DNA methylation is a class of epigenetic modification manner, which is responsible for the inactivation of various tumor suppressors. Recently, long non-coding RNAs (lncRNAs) were revealed to be implicated in a variety of malignancies, including non-small cell lung cancer (NSCLC). However, the contributions of lncRNAs to DNA-methylation-induced oncogenic effects in NSCLC remain largely unknown. In this study, we identified a DNA-methylation-repressed lncRNA DIO3 opposite strand upstream RNA (DIO3OS) in NSCLC. DIO3OS is downregulated in NSCLC, and its low expression is related to poor prognosis. Ectopic expression of DIO3OS repressed NSCLC cell growth and motility and promoted NSCLC cell apoptosis in vitro. DIO3OS also repressed NSCLC tumorigenesis and metastasis in vivo. DIO3OS knockdown exhibited opposite biological effects. DIO3OS competitively bound heterogeneous nuclear ribonucleoprotein K (hnRNPK), repressed the binding of hnRNPK to MYC DNA and MYC mRNA, reduced the promoting roles of hnRNPK on MYC transcription and translation, led to the repression of MYC transcription and translation, and therefore remarkably decreased the expression of MYC and CDC25A, a downstream target of MYC. Additionally, depletion of hnRNPK blocked the tumor-suppressive roles of DIO3OS in NSCLC. In conclusion, these findings identified DIO3OS as an important protective factor against NSCLC via modulating hnRNPK-MYC-CDC25A axis.
Collapse
|
10
|
Wang Q, Yan C, Zhang P, Li G, Zhu R, Wang H, Wu L, Xu G. Microarray Identifies a Key Carcinogenic Circular RNA 0008594 That Is Related to Non-Small-Cell Lung Cancer Development and Lymph Node Metastasis and Promotes NSCLC Progression by Regulating the miR-760-Mediated PI3K/AKT and MEK/ERK Pathways. Front Oncol 2021; 11:757541. [PMID: 34858831 PMCID: PMC8632265 DOI: 10.3389/fonc.2021.757541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to explore the circular RNA (circRNA/circ) profile engaged in non-small cell lung cancer (NSCLC) development and metastasis and to investigate potentially key carcinogenic circRNAs related to NSCLC. Methods CircRNA profiles between 10 NSCLC tissues and 10 adjacent tissues and between five NSCLC tissues with lymph node metastasis (LNM) and five NSCLC tissues without LNM were detected by Arraystar Human circRNA Array followed by bioinformatics. Circ_0008594 knockdown, circ_0004293 overexpression, and circ_0003832 overexpression plasmids were transfected into H23 and H460 cells to sort potential oncogenic circRNA. Then circ_0008594 overexpression and knockdown plasmids were transfected, followed by that circ_0008594 knockdown plus miR-760 knockdown plasmids were transfected into these cells. Cell proliferation, apoptosis, invasion, stemness, and pathways were detected. In addition, xenograft mice models were constructed via injecting H23 cells with circ_0008594 overexpression or knockdown to validate the findings. Results A total of 455 dysregulated circRNAs in NSCLC tissues versus adjacent tissues and 353 dysregulated circRNAs in NSCLC tissues with LNM versus those without LNM were discovered. Via cross-analysis, 19 accordant circRNAs were uncovered, among which three candidate circRNAs (circ_0008594, circ_0004293, circ_0003832) were chosen for functional experiments, during which it was observed that circ_0008549 affected H23 and H460 cell proliferation and apoptosis more obviously than circ_0004293 and circ_0003832. Subsequent experiments showed that circ_0008594 promoted H23 and H460 cell proliferation and invasion but affected stemness less and negatively regulated miR-760 via direct binding. Furthermore, miR-760 attenuated the effect of circ_0008549 on regulating H23 and H460 cell functions and the PI3K/AKT and MEK/ERK pathways. In vivo experiments further confirmed that circ_0008549 increased tumor volume, epithelial-mesenchymal transition, and the PI3K/AKT and MEK/ERK pathways while reducing tumor apoptosis and miR-760 NSCLC xenograft models. Conclusion Our study identifies several valuable circRNAs related to NSCLC development and LNM. Furthermore, as a key functional circRNA, circ_0008594 was observed to promote NSCLC progression by regulating the miR-760-mediated PI3K/AKT and MEK/ERK pathways.
Collapse
Affiliation(s)
- Qiushi Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunhua Yan
- Department of Respiratory, Longgang District People's Hospital of Shenzhen, Shenzhen, China.,Department of Respiratory, Longgang District The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Pengfei Zhang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruidong Zhu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanbing Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Libo Wu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Liu B, Li H, Liu X, Li F, Chen W, Kuang Y, Zhao X, Li L, Yu B, Jin X, Li Q. CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p /SNCA signal axis in non-small-cell lung cancer cells. Cell Signal 2021; 84:110012. [PMID: 33892093 DOI: 10.1016/j.cellsig.2021.110012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mounting evidence suggests that circular RNAs (circRNAs) are closely related to the regulation of gene expression during tumour development. However, the role of circRNAs in modulating the radiosensitivity of non-small cell lung cancer (NSCLC) cells has not been explored. METHODS Transcriptome sequencing was used to explore the expression profiles of circRNAs in NSCLC. The expression level of circRNAs was changed by inducing instantaneous knockdown or overexpression. Changes in proliferation and radiosensitivity of NSCLC cells were investigated using CCK-8, EDU, and clonal survivals. RESULTS By analysing the circRNA expression profile of NSCLC cells, we found that circRNA ZNF208 (circZNF208) was significantly upregulated in a radioresistant NSCLC cell line (A549-R11), which was acquired from the parental NSCLC cell line A549. Knockout experiments indicated that circZNF208 enhanced the radiosensitivity of A549 and A549-R11 cells to X-rays. Mechanistically, circZNF208 upregulated SNCA expression by acting as a sponge of miR-7-5p and subsequently promoted the resistance of NSCLC cells to low linear energy transfer (LET) X-rays. However, this effect was not observed in NSCLC cells exposed to high-LET carbon ions. CONCLUSIONS Knockdown of circZNF208 altered the radiosensitivity of patients with NSCLC to X-rays but did not significantly change the sensitivity to carbon ions. Therefore, circZNF208 might serve as a potential biomarker and therapeutic target for NSCLC treatment with radiotherapy of different modalities.
Collapse
Affiliation(s)
- Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- Northwest Normal University, Lanzhou, Gansu, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Discovery of a Novel Long Noncoding RNA Lx8-SINE B2 as a Marker of Pluripotency. Stem Cells Int 2021; 2021:6657597. [PMID: 33628268 PMCID: PMC7884122 DOI: 10.1155/2021/6657597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
Pluripotency and self-renewal of embryonic stem cells (ESCs) are marked by core transcription regulators such as Oct4, Sox2, and Nanog. Another important marker of pluripotency is the long noncoding RNA (lncRNA). Here, we ind that a novel long noncoding RNA (lncRNA) Lx8-SINE B2 is a marker of pluripotency. LncRNA Lx8-SINE B2 is enriched in ESCs and downregulated during ESC differentiation. By rapid amplification of cDNA ends, we identified the full-length sequence of lncRNA Lx8-SINE B2. We further showed that transposable elements at upstream of lncRNA Lx8-SINE B2 could drive the expression of lncRNA Lx8-SINE B2. Furthermore, ESC-specific expression of lncRNA Lx8-SINE B2 was driven by Oct4 and Sox2. In summary, we identified a novel marker lncRNA of ESCs, which is driven by core pluripotency regulators.
Collapse
|
13
|
Zhao Z, Xing Y, Liu Y, Jing S. Lung cancer‑associated transcript 1 facilitates tumorigenesis in laryngeal squamous cell carcinoma through the targeted inhibition of miR‑493. Mol Med Rep 2020; 23:59. [PMID: 33215214 PMCID: PMC7705996 DOI: 10.3892/mmr.2020.11697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve important roles in the tumorigenesis of a diverse range of cancer types. The lung cancer-associated transcript 1 (LUCAT1), has been reported to promote the proliferation, migration and invasion of oral squamous cell carcinoma cells. However, the exact role of LUCAT1 in laryngeal squamous cell carcinoma (LSCC) remains to fully understood. The present study aimed to interrogate the role and modulatory mechanism of LUCAT1 in LSCC. Reverse transcription-quantitative PCR and western blotting were used to investigate the expression of LUCAT1 and miR-493, as well as the protein expression of cyclin-dependent kinase 2, cyclin E1, p21, matrix metalloproteinase (MMP)2, MMP9, vascular endothelial growth factor-C, Bcl-2, Bax, cleaved caspase-3 and procaspase-3. Cell Counting Kit-8, flow cytometry, wound healing and Transwell assays were performed to analyze the proliferation, cell cycle, apoptosis levels, and the migratory and invasive abilities, respectively, of the LSCC AMC-HN-8 cell line. In addition, dual-luciferase reporter and ribonucleoprotein immunoprecipitation assays were used to investigate the binding between LUCAT1 and microRNA (miR)-493. The results of the present study revealed that the expression levels of LUCAT1 were upregulated in AMC-HN-8 cells. The genetic knockdown of LUCAT1 expression levels significantly suppressed the cell proliferation, alongside downregulating the expression levels of CDK2 and cyclin E1 and upregulating p21 expression levels. In addition, the knockdown of LUCAT1 inhibited cell migration and invasion, as demonstrated using the wound healing and Transwell assays, respectively. Moreover, LUCAT1 knockdown promoted cell apoptosis and upregulated the expression levels of Bax and cleaved caspase-3, whilst downregulating the expression levels of Bcl-2. Furthermore, LUCAT1 was discovered to directly bind to and inhibit the well-known tumor suppressor, miR-493. Notably, the specific inhibition of miR-493 partly blocked the anticancer effects of LUCAT1 knockdown in AMC-HN-8 cells. In conclusion, these results suggested that LUCAT1 may facilitate tumorigenesis in LSCC through the targeted inhibition of miR-493, which provides evidence for a novel target for the treatment of LSCC.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Xing
- The Third Department of Rehabilitation, Shijiazhuang No. 1 Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan Liu
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shanghua Jing
- Department of Otorhinolaryngology‑Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
14
|
Wang Y, Liu Y, Guan Y, Li H, Liu Y, Zhang M, Cui P, Kong D, Chen X, Yin H. Integrated analysis of immune-related genes in endometrial carcinoma. Cancer Cell Int 2020; 20:477. [PMID: 33024415 PMCID: PMC7531161 DOI: 10.1186/s12935-020-01572-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Exploring novel and sensitive targets is urgent due to the high morbidity of endometrial cancer (EC). The purpose of our study was to explore the transcription factors and immune-related genes in EC and further identify immune-based lncRNA signature as biomarker for predicting survival prognosis. Methods Transcription factors, aberrantly expressed immune-related genes and immune-related lncRNAs were explored through bioinformatics analysis. Cox regression and the least absolute shrinkage and selection operator (LASSO) analysis were conducted to identify the immune and overall survival (OS) related lncRNAs. The accuracy of model was evaluated by Kaplan-Meier method and receiver operating characteristic (ROC) analysis, and the independent prognostic indicator was identified with Cox analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect the accuracy of our results. Results A network of 29 transcription factors and 17 immune-related genes was constructed. Furthermore, four immune-prognosis-related lncRNAs were screened out. Kaplan-Meier survival analysis and time-dependent ROC analysis revealed a satisfactory predictive potential of the 4-lncRNA model. Consistency was achieved among the results from the training set, testing set and entire cohort. The distributed patterns between the high- and low-risk groups could be distinguished in principal component analysis. Comparisons of the risk score and clinical factors confirmed the four-lncRNA-based signature as an independent prognostic indicator. Last, the reliability of the results was verified by qRT-PCR in 29 cases of endometrial carcinoma and in cells. Conclusions Overall, our study constructed a network of transcription factors and immune-related genes and explored a four immune-related lncRNA signature that could serve as a novel potential biomarker of EC.
Collapse
Affiliation(s)
- Yiru Wang
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Yunduo Liu
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Yue Guan
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Hao Li
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Yuan Liu
- The Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang China
| | - Mengjun Zhang
- The Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang China
| | - Ping Cui
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Dan Kong
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Xiuwei Chen
- The Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040 Heilongjiang China
| | - Hang Yin
- The Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang China
| |
Collapse
|
15
|
Wang H, Feng L, Zheng Y, Li W, Liu L, Xie S, Zhou Y, Chen C, Cheng D. LINC00680 Promotes the Progression of Non-Small Cell Lung Cancer and Functions as a Sponge of miR-410-3p to Enhance HMGB1 Expression. Onco Targets Ther 2020; 13:8183-8196. [PMID: 32904350 PMCID: PMC7455755 DOI: 10.2147/ott.s259232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose LINC00680 was reported to be involved in various cancers through multiple mechanisms. Therefore, we intended to investigate its role in the progression of non-small cell lung cancer (NSCLC). Materials and Methods Firstly, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test LINC00680 in NSCLC tissue and cell lines. Subsequently, A549 and H1299 cells were transfected with LINC00680 overexpressing plasmids and their proliferation and colony formation and apoptosis was tested by Transwell assay and flow cytometry. In addition, xenograft tumor experiments in nude mice also affirmed. Meanwhile, we predicted that miR-410-3p, LINC00680 and high-mobility group protein box 1(HMGB1) relationship by Starbase, dual-luciferase reporter and RIP assay. Finally, the carcinogenic effects of LINC00680 were reversed by ethyl pyruvate (EP), a specific inhibitor of HMGB1. Results LINC00680 was upregulated in NSCLC and was closely related to the malignancy and poor prognosis of NSCLC patients. LINC00680 promoted proliferation and colony formation and inhibited apoptosis of A549 and H1299 cells. In addition, overexpressing LINC00680 accelerated the growth of NSCLC cells in xenograft tumor experiments in nude mice also affirmed. Meanwhile, high-mobility group protein box 1(HMGB1) was astoundingly amplified in NSCLC and was negatively regulated by miR-410-3p. Further, HMGB1 acted as a downstream target of miR-410-3p, upregulating miR-410-3p to attenuate HMGB1, while LINC00680 strengthened the expression of HMGB1 in A549 and H1299 cells. Discussion Thus, these results indicated that LINC00680 was cancerogenic in NSCLC by upregulating HMGB1 via sponging miR-410-3p.
Collapse
Affiliation(s)
- Hui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Li Feng
- Department of Radiology, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yuqiong Zheng
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Liang Liu
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Sheng Xie
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Chaofeng Chen
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
16
|
Iturri J, Weber A, Vivanco MD, Toca-Herrera JL. Single-Cell Probe Force Studies to Identify Sox2 Overexpression-Promoted Cell Adhesion in MCF7 Breast Cancer Cells. Cells 2020; 9:E935. [PMID: 32290242 PMCID: PMC7227807 DOI: 10.3390/cells9040935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
The replacement of the cantilever tip by a living cell in Atomic Force Microscopy (AFM) experiments permits the direct quantification of cell-substrate and cell-cell adhesion forces. This single-cell probe force measurement technique, when complemented by microscopy, allows controlled manipulation of the cell with defined location at the area of interest. In this work, a setup based on two glass half-slides, a non-fouling one with bacterial S-layer protein SbpA from L. sphaericus CMM 2177 and the second with a fibronectin layer, has been employed to measure the adhesion of MCF7 breast cancer cells to fibronectin films (using SbpA as control) and to other cells (symmetric vs. asymmetric systems). The measurements aimed to characterize and compare the adhesion capacities of parental cells and cells overexpressing the embryonic transcription factor Sox2, which have a higher capacity for invasion and are more resistant to endocrine therapy in vivo. Together with the use of fluorescence techniques (epifluorescence, Total Internal Fluorescence Microscopy (TIRF)), the visualization of vinculin and actin distribution in cells in contact with fibronectin surfaces is enabled, facilitating the monitoring and quantification of the formation of adhesion complexes. These findings demonstrate the strength of this combined approach to assess and compare the adhesion properties of cell lines and to illustrate the heterogeneity of adhesive strength found in breast cancer cells.
Collapse
Affiliation(s)
- Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María d.M. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - José L. Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| |
Collapse
|