1
|
Gorgoulis VG, Evangelou K, Klionsky DJ. The DNA damage response and autophagy during cancer development: an antagonistic pleiotropy entanglement. Autophagy 2024; 20:2571-2573. [PMID: 38825325 PMCID: PMC11572190 DOI: 10.1080/15548627.2024.2362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
The DNA damage response (DDR) pathway is a cardinal cellular stress response mechanism that during cancer development follows an antagonistic pleiotropy mode of action. Given that DDR activation is an energy demanding process, interplay with macroautophagy/autophagy, a stress response and energy providing mechanism, is likely to take place. While molecular connections between both mechanisms have been reported, an open question regards whether autophagy activation follows solely or is entangled with DDR in a similar antagonistic pleiotropy pattern during cancer development. Combing evidence on the spatiotemporal relationship of DDR and autophagy in the entire spectrum of carcinogenesis from our previous studies, we discuss these issues in the current addendum.Abbreviation: AMPK: AMP-dependent protein kinase; DDR: DNA damage response.
Collapse
Affiliation(s)
- Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
2
|
Molenberghs F, Verschuuren M, Vandeweyer L, Peeters S, Bogers JJ, Novo CP, Vanden Berghe W, De Reu H, Cools N, Schelhaas M, De Vos WH. Lamin B1 curtails early human papillomavirus infection by safeguarding nuclear compartmentalization and autophagic capacity. Cell Mol Life Sci 2024; 81:141. [PMID: 38485766 PMCID: PMC10940392 DOI: 10.1007/s00018-024-05194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lauran Vandeweyer
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sarah Peeters
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Claudina Perez Novo
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
3
|
Yao Y, Pan L, Song W, Yuan Y, Yan S, Yu S, Chen S. Elsinochrome A induces cell apoptosis and autophagy in photodynamic therapy. J Cell Biochem 2023; 124:1346-1365. [PMID: 37555580 DOI: 10.1002/jcb.30451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Elsinochrome A (EA) is a perylene quinone natural photosensitizer, photosensitizer under light excitation generates reactive oxygen species (ROS) to induce apoptosis, so can be used for treating tumors, that is so-called photodynamic therapy (PDT). However, the molecular mechanism, especially related to apoptosis and autophagy, is still unclear. In this study, we aimed to explore the mechanism of EA-PDT-induced B16 cells apoptosis and autophagy. The action of EA-PDT on mitochondrial permeability transition pore (MPTP), mitochondrial membrane potential (MMP) and the mitochondrial function were researched by fluorescence technique and Extracellular Flux Analyzer. Illumina sequencing, tandem mass tags Quantitative Proteomics and Western Blot studied the mechanism at the gene and protein levels. The results indicated that EA-PDT had excellent phototoxicity in vitro. EA could bind to the mitochondria. EA-PDT for 5 min caused MPTP opening, MMP decreasing and abnormal mitochondrial function with a concentration-dependent characteristic. EA-PDT resulted in an increase intracellular ROS and the number of autophagosomes. Caspase2, caspase9 and tnf were upregulated, and bcl2, prkn, atg2, atg9 and atg10 were downregulated. Our results indicated that EA-PDT induced cell apoptosis and autophagy through the mediation of ROS/Atg/Parkin. This study can provide enlightenment for exploring potential targets of drug development for the PDT of melanoma.
Collapse
Affiliation(s)
- Yuanyuan Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lili Pan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenlong Song
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yizhen Yuan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuzhen Yan
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuqin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuanglin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|