1
|
Navarro M, Coba A, Muller M, Roura E, Cozzolino D. Mid infrared spectroscopy combined with chemometrics as tool to monitor the impact of heat stress and dietary interventions in lactating sows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:51-62. [PMID: 39455442 DOI: 10.1007/s00484-024-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Heat stress in hyper-prolific lactating sows is recognised as a factor reducing feed intake, milk production, and welfare, with significant losses in farm productivity. Individual capacities for body thermoregulation during environmental hyperthermia determine the adaptation of the animal during long and recurrent events. This study aimed to evaluate the ability of attenuated total reflectance (ATR) mid infrared (MIR) spectroscopy as a high-throughput method to identify markers of stress in plasma and milk collected from lactating sows under heat stress conditions fed with two levels of protein in the diet defined as low (16%) and standard (20%). The MIR spectra were analysed using linear discriminant analysis (LDA) and principal component analysis and validated using cross-validation. The results obtained indicated that MIR spectroscopy, in combination with chemometrics, was able to identify changes in the spectra associated with heat stress in wavenumbers corresponding with amide groups (proteins) (highest loadings observed in the regions between1065 and 1635 cm-1), lipids and unsaturated fatty acids (regions between 1746 and 3063 cm-1), lipo-polysaccharides (in 1247 cm-1) and carbohydrates (around the region1050 cm-1). These results also indicated that the information provided by these wavenumbers can be used as metabolic markers of the adaptation of the sows to hyperthermia. It was concluded that MIR spectroscopy is a rapid and inexpensive tool capable of detecting and evaluating the main biochemical changes of hyperthermia on lactating sows, facilitating the development of palliative management strategies such as dietary manipulations.
Collapse
Affiliation(s)
- M Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - A Coba
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - M Muller
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - E Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Animal Science, QAAFI, The Univeristy of Queensland, Brisbane, QLD, 4072, Australia
| | - D Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Zeng Y, Shi Y, Chen Y, Zhong S, Omar SM, Liu P, Zhuang Y, Cai G, Guo X, Gao X. Preparation of polyclonal antibody to CHOP protein and its application in heat stress of chickens. Int J Biol Macromol 2025; 286:138362. [PMID: 39645104 DOI: 10.1016/j.ijbiomac.2024.138362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Heat stress (HS) is a stress response of organisms to temperature changes, which can result in organ damage and increased chicken mortality in high-temperature environments. The CHOP protein, also known as GADD 135, plays a crucial role in endoplasmic reticulum stress. However, there are fewer studies related to whether CHOP proteins are involved in heat stress-induced organ damage. In this study, recombinant CHOP-pET-32a expression vector was constructed by using the prokaryotic expression technique of exogenous genes, and recombinant CHOP protein was obtained. Subsequently, rabbit anti-chicken CHOP polyclonal antibody was prepared by immunizing rabbits, and the antibody potency was higher than 1:102,400 as determined by ELISA. Immunofluorescence and western blotting demonstrated that the anti-CHOP antibody specifically recognized chicken CHOP protein. The protein was expressed in various organs, including the heart, liver, spleen, lung, kidney, bursa of Fabricius, and all segments of the intestine. Following heat stress, the expression of CHOP in the heart significantly increased, indicating a close association between CHOP and the occurrence of heat stress. The preparation of rabbit anti-CHOP polyclonal antibodies will be useful for future studies on poultry diseases.
Collapse
Affiliation(s)
- Yizhou Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shengwei Zhong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Niu X, Chen S, Wang X, Wen J, Liu X, Yong Y, Yu Z, Ma X, Abd El-Aty AM, Ju X. Butyrolactone-I from Marine Fungal Metabolites Mitigates Heat-Stress-Induced Apoptosis in IPEC-J2 Cells and Mice Through the ROS/PERK/CHOP Signaling Pathway. Mar Drugs 2024; 22:564. [PMID: 39728139 DOI: 10.3390/md22120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals. This study explored the protective effects of BTL-I against heat-stress-induced oxidative stress and apoptosis in IPEC-J2 cells and mice. Our findings demonstrated that BTL-I effectively inhibited the heat-stress-induced upregulation of HSP70 and HSP90, alleviating intestinal heat stress. Both in vitro and in vivo experiments revealed that heat stress increased intestinal cell apoptosis, with a significant upregulation of Bax/Bcl-2 expression, while BTL-I pretreatment significantly reduced apoptosis-related protein levels, showcasing its protective effects. Furthermore, BTL-I suppressed oxidative stress markers (ROS and MDA) while enhancing antioxidant activity (SOD levels). BTL-I also reduced the expression of p-PERK, p-eIF2α, ATF4, and CHOP, mitigating oxidative and endoplasmic reticulum stress in intestinal cells. In conclusion, BTL-I demonstrates the potential to improve animal resilience to heat stress, supporting sustainable livestock production systems. Its application as a natural, eco-friendly feed additive will contribute to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Xueting Niu
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shengwei Chen
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinchen Wang
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaying Wen
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xingbing Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Xianghong Ju
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Sui Y, Feng X, Ma Y, Zou Y, Liu Y, Huang J, Zhu X, Wang J. BHBA attenuates endoplasmic reticulum stress-dependent neuroinflammation via the gut-brain axis in a mouse model of heat stress. CNS Neurosci Ther 2024; 30:e14840. [PMID: 38973202 PMCID: PMC11228358 DOI: 10.1111/cns.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. β-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1β, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1β) in mouse BV2 cells. CONCLUSION β-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.
Collapse
Affiliation(s)
- Yuzhen Sui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yimeng Zou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanli Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Li L, Chen J, Wang Y, Pei Y, Ren L, Dai X, Li J, Ma J, Wang M, Chang W, Chen J, Song Q, Xu S. Heat acclimation with probiotics-based ORS supplementation alleviates heat stroke-induced multiple organ dysfunction via improving intestinal thermotolerance and modulating gut microbiota in rats. Front Microbiol 2024; 15:1385333. [PMID: 38962135 PMCID: PMC11220321 DOI: 10.3389/fmicb.2024.1385333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Heat stroke (HS) is a critical condition with extremely high mortality. Heat acclimation (HA) is widely recognized as the best measure to prevent and protect against HS. Preventive administration of oral rehydration salts III (ORSIII) and probiotics have been reported to sustain intestinal function in cases of HS. This study established a rat model of HA that was treated with probiotics-based ORS (ORSP) during consecutive 21-day HA training. The results showed that HA with ORSP could attenuate HS-induced hyperthermia by regulating thermoregulatory response. We also found that HA with ORSP could significantly alleviate HS-induced multiple organ injuries. The expression levels of a series of heat-shock proteins (HSPs), including HSP90, HSP70, HSP60, and HSP40, were significantly up-regulated from the HA training. The increases in intestinal fatty acid binding protein (I-FABP) and D-Lactate typically seen during HS were decreased through HA. The representative TJ proteins including ZO-1, E-cadherin, and JAM-1 were found to be significantly down-regulated by HS, but sustained following HA. The ultrastructure of TJ was examined by TEM, which confirmed its protective effect on the intestinal barrier protection following HA. We also demonstrated that HA raised the intestinal levels of beneficial bacteria Lactobacillus and lowered those of the harmful bacteria Streptococcus through 16S rRNA gene sequencing. These findings suggest that HA with ORSP was proven to improve intestinal thermotolerance and the levels of protective gut microbiota against HS.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Sanya, China
- Heatstroke Treatment and Research Center of PLA, Sanya, China
| | - Juelin Chen
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yawei Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yankun Pei
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jun Ma
- Heatstroke Treatment and Research Center of PLA, Sanya, China
- Postgraduate School, Medical School of Chinese PLA General Hospital, Beijing, China
| | - Man Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjun Chang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qing Song
- Heatstroke Treatment and Research Center of PLA, Sanya, China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Li H, Pan W, Li C, Cai M, Shi W, Ren Z, Lu H, Zhou Q, Shen H. Heat stress induces calcium dyshomeostasis to subsequent cognitive impairment through ERS-mediated apoptosis via SERCA/PERK/eIF2α pathway. Cell Death Discov 2024; 10:280. [PMID: 38862478 PMCID: PMC11167007 DOI: 10.1038/s41420-024-02047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Heat exposure is an environmental stressor that has been associated with cognitive impairment. However, the neural mechanisms that underlie this phenomenon have yet to be extensively investigated. The Morris water maze test was utilized to assess cognitive performance. RNA sequencing was employed to discover the primary regulators and pathological pathways involved in cognitive impairment caused by heat. Before heat exposure in vivo and in vitro, activation of the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) was achieved by CDN1163. Hematoxylin-Eosin, Nissl staining, calcium imaging, transmission electron microscopy, western blot, and immunofluorescence were utilized to visualize histological changes, intracellular calcium levels, endoplasmic reticulum stress (ERS) markers, apoptosis, and synaptic proteins alterations. Heat stress (HS) significantly induced cognitive decline and neuronal damage in mice. By the transcriptome sequencing between control (n = 5) and heat stress (n = 5) mice in hippocampal tissues, we identified a reduction in the expression of the atp2a gene encoding SERCA, accompanied by a corresponding decrease in its protein level. Consequently, this dysregulation resulted in an excessive accumulation of intracellular calcium ions. Furthermore, HS exposure also activated ERS and apoptosis, as evidenced by the upregulation of p-PERK, p-eIF2α, CHOP, and caspase-3. Consistently, a reduction in postsynaptic density protein 95 (PSD95) and synaptophysin (SYN) expressions indicated modifications in synaptic function. Notably, the impacts on neurons caused by HS were found to be mitigated by CDN1163 treatment both in vivo and in vitro. Additionally, SERCA-mediated ERS-induced apoptosis was attenuated by GSK2606414 treatment via inhibiting PERK-eIF2α-CHOP axis that not only curtailed the level of caspase-3 but also elevated the levels of PSD95 and SYN. These findings highlight the significant impact of heat stress on cognitive impairment, and further elucidate the underlying mechanism involving SERCA/PERK/eIF2α pathway.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenlan Pan
- Department of Clinical Nutrition, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Chenqi Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
- Department of Nutrition, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Mengyu Cai
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenjing Shi
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zifu Ren
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Qicheng Zhou
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Li H, Zhang G, Liu Y, Gao F, Ye X, Lin R, Wen M. Hypoxia-inducible factor 1α inhibits heat stress-induced pig intestinal epithelial cell apoptosis through eif2α/ATF4/CHOP signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171649. [PMID: 38485018 DOI: 10.1016/j.scitotenv.2024.171649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Gang Zhang
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Yongqing Liu
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Fan Gao
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, PR China
| | - Rutao Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| |
Collapse
|
9
|
Tang Z, Yang Y, Wu Z, Ji Y. Heat Stress-Induced Intestinal Barrier Impairment: Current Insights into the Aspects of Oxidative Stress and Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5438-5449. [PMID: 37012901 DOI: 10.1021/acs.jafc.3c00798] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Heat stress (HS) occurs when the sensible temperature of animals exceeds their thermoregulatory capacity, a condition that exerts a detrimental impact on health and growth. The intestinal tract, as a highly sensitive organ, has been shown to respond to HS by exhibiting mucosal injury, intestinal leakage, and disturbances in the gut microbiota. Oxidative stress and endoplasmic reticulum stress (ERS) are both potential outcomes of long-term exposure to high temperatures and have been linked to apoptosis, autophagy, and ferroptosis. In addition, HS alters the composition of the gut microbiota accompanied by changed levels of bacterial components and metabolites, rendering the gut more vulnerable to stress-related injury. In this review, we present recent advances in mechanisms of oxidative stress-associated ERS in response to HS, which is destructive to intestinal barrier integrity. The involvement of autophagy and ferroptosis in ERS was highlighted. Further, we summarize the relevant findings regarding the engagement of gut microbiota-derived components and metabolites in modulation of intestinal mucosal injury induced by HS.
Collapse
Affiliation(s)
- Zhining Tang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Tan YR, Shen SY, Shen HQ, Yi PF, Fu BD, Peng LY. The role of endoplasmic reticulum stress in regulation of intestinal barrier and inflammatory bowel disease. Exp Cell Res 2023; 424:113472. [PMID: 36634742 DOI: 10.1016/j.yexcr.2023.113472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease involving the digestive tract, characterized by abdominal pain, diarrhea, rectal bleeding, and so on, which can make patients physically weakened and live difficultly. Although IBD has been recognized for many years, the pathogenesis of IBD has not yet been established and damage to intestinal barrier is thought to be closely associated with IBD. Intestinal barrier is an innate barrier that maintains the homeostasis of the intestinal environment and impedes pathogenic bacteria and toxins, and the endoplasmic reticulum (ER) has recently been found to be involved in maintaining the integrity of intestinal barrier. Endoplasmic reticulum stress (ERS) is a status of endoplasmic reticulum damaged when unfolded or misfolded proteins accumulate in excess of the degradation systematic clearance limit of the misfolded proteins. The regulation of ERS on protein folding synthesis and maintenance of cellular homeostasis is an important factor in influencing the integrity of the intestinal barrier. This paper mainly discusses the relationship between ERS and the intestinal barrier, aiming to understand the regulatory role of ERS on the intestinal barrier and the mechanism and to improve new solutions and notions for the treatment or prevention of IBD.
Collapse
Affiliation(s)
- Yue-Rong Tan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Si-Yang Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hai-Qing Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ben-Dong Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Lu-Yuan Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
11
|
Zhang B, Sun H, Sun Z, Liu N, Liu R, Zhong Q. Glutamine alleviated heat stress-induced damage of porcine intestinal epithelium associated with the mitochondrial apoptosis pathway mediated by heat shock protein 70. J Anim Sci 2023; 101:skad127. [PMID: 37104726 PMCID: PMC10355369 DOI: 10.1093/jas/skad127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to investigate the effect of glutamine (Gln) addition on the damage of porcine intestinal epithelial cells (IPEC-J2) induced by heat stress (HS). IPEC-J2 cultured in logarithmic growth period in vitro were firstly exposed to 42 °C for 0.5, 1, 2, 4, 6, 8, 10, 12, and 24 h for cell viability and cultured with 1, 2, 4, 6, 8, or 10 mmol Gln per L of culture media for heat shock protein 70 (HSP70) expression to determine the optimal disposal strategy (HS, 42 °C for 12 h and HSP70 expression, 6 mmol/L Gln treatment for 24 h). Then IPEC-J2 cells were divided into three groups: control group (Con, cultured at 37 °C), HS group (HS, cultured at 42 °C for 12 h), and glutamine group (Gln+HS, cultured at 42 °C for 12 h combined with 6 mmol/L Gln treatment for 24 h). The results showed that HS treatment for 12 h significantly decreased the cell viability of IPEC-J2 (P < 0.05) and 6 mmol/L Gln treatment for 12 h increased HSP70 expression (P < 0.05). HS treatment increased the permeability of IPEC-J2, evidenced by the increased fluorescent yellow flux rates (P < 0.05) and the decreased transepithelial electrical resistance (P < 0.05). Moreover, the downregulated protein expression of occludin, claudin-1, and zonula occludens-1 was observed in HS group (P < 0.05), but Gln addition alleviated the negative effects on permeability and the integrity of intestinal mucosal barrier induced by HS (P < 0.05). In addition, HS resulted in the elevations in HSP70 expression, cell apoptosis, cytoplasmic cytochrome c potential expression, and the protein expressions of apoptosis-related factors (apoptotic protease-activating factor-1, cysteinyl aspartate-specific proteinase-3, and cysteinyl aspartate-specific proteinase-9) (P < 0.05); however, the reductions in mitochondrial membrane potential expression and B-cell lymphoma-2 expression were induced by HS (P < 0.05). But Gln treatment attenuated HS-induced adverse effects mentioned above (P < 0.05). Taken together, Gln treatment exhibited protective effects in protecting IPEC-J2 from cell apoptosis and the damaged integrity of epithelial mucosal barrier induced by HS, which may be associated with the mitochondrial apoptosis pathway mediated by HSP70.
Collapse
Affiliation(s)
- Bolin Zhang
- Department of Biology and Agriculture, Zunyi Normal College, Ping'an Avenue, Hong Huagang District, Zunyi 563006, People’s Republic of China
| | - Huilei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng street, Jingyue District, Changchun 130118, People’s Republic of China
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng street, Jingyue District, Changchun 130118, People’s Republic of China
| | - Ning Liu
- Department of Biology and Agriculture, Zunyi Normal College, Ping'an Avenue, Hong Huagang District, Zunyi 563006, People’s Republic of China
| | - Rujie Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng street, Jingyue District, Changchun 130118, People’s Republic of China
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng street, Jingyue District, Changchun 130118, People’s Republic of China
| |
Collapse
|
12
|
Trehalose Attenuates Oxidative Stress and Endoplasmic Reticulum Stress-Mediated Apoptosis in IPEC-J2 Cells Subjected to Heat Stress. Animals (Basel) 2022; 12:ani12162093. [PMID: 36009683 PMCID: PMC9405045 DOI: 10.3390/ani12162093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
This study was carried out to investigate the effects of trehalose (Tre) on antioxidant capacity, endoplasmic reticulum stress (ERS) response and apoptosis of heat-stressed intestinal porcine epithelial cells (IPEC-J2). IPEC-J2 cells were cultured at 37 °C until the end of the experiment (control, CON); exposed to heat stress for 2 h (43 °C, HS); or pretreated with 0.1, 1, 5, 10, and 15 mM trehalose at 37 °C for 4 h prior to heat stress exposure for 2 h. The optimum level of trehalose for protecting against HS-induced cell injuries was determined to be 10 mM, as evidenced by the highest cellular viability and lowest malondialdehyde (MDA) content and lactate dehydrogenase (LDH) activity. Based on these, IPEC-J2 cells were divided into three groups: the first group was cultured at 37 °C until the end of the experiment (control, CON); the second group was exposed to heat stress for 2 h (43 °C, HS); the third group was pretreated with 10 mM trehalose for 4 h at 37 °C prior to heat stress exposure for 2 h (Tre + HS). The reactive oxygen species (ROS) content, superoxide dismutase (SOD) activity, mitochondrial membrane potential (MMP) changes, and expressions of the manganese superoxide dismutase (SOD2), ERS and apoptosis-related proteins were determined. Compared to the CON group, HS significantly increased ROS generation (p < 0.01), decreased SOD activity (p < 0.05), and downregulated protein expression of SOD2 (p < 0.01). Compared to the HS group, Tre supplementation reduced ROS levels and increased SOD activity and SOD2 expression to the levels that were comparable to the control (p < 0.05). The HS-induced ERS response was evidenced by the increased protein expressions of glucose-regulated protein 78 (GRP78) (p < 0.01), eukaryotic translation initiation factor 2α (p-eif2α) (p < 0.01), transcription activator 4 (ATF4) (p < 0.01), and the protein expression of C/EBP homologous protein (CHOP) (p < 0.01), which were the four hallmarks of ERS. The Tre + HS group showed lower expressions of GRP78 (p < 0.01), p-eif2α (p < 0.01), ATF4 (p < 0.01), and CHOP (p < 0.01) than that of the HS group. Tre pretreatment attenuated HS-induced mitochondrial apoptosis in IPEC-J2 cells, demonstrated by the increased MMP and decreased proapoptotic proteins active caspase 3, Bax, and cytochrome c (Cyt c). Taken together, trehalose can protect against HS-induced oxidative damage and endoplasmic reticulum stress-mediated apoptosis in IPEC-J2 cells. These data may provide a nutritional strategy for alleviating heat stress in pig production.
Collapse
|