1
|
Aoyama M, Mano Y. Nonclinical immunogenicity assessment of E3112, a recombinant human hepatocyte growth factor, and its impact on pharmacokinetics in rats and monkeys. J Pharm Biomed Anal 2025; 252:116504. [PMID: 39393211 DOI: 10.1016/j.jpba.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
E3112 is a recombinant human hepatocyte growth factor currently in development for the treatment of acute liver failure. The assessment of immunogenicity is crucial in the development of biotherapeutics. Consequently, a semi-quantitative assay of anti-drug antibody (ADA) was developed in rat and monkey serum using a ligand binding assay with electrochemiluminescence detection. A standard tiered approach was employed for the immunogenicity assessment, comprising a screening assay and a subsequent confirmatory assay. In the assay validation studies, selectivity, sensitivity, prozone effects, reproducibility, drug tolerance, and stability were evaluated. These assessments were conducted using a surrogate positive control of ADA. The accuracy and precision of the surrogate ADA were within ± 20 % and 20 %, respectively. The stability of ADA was also confirmed under a variety of conditions. The developed assays were successfully employed for the assessment of immunogenicity in rats and monkeys following the administration of a repeated dose of E3112. The administration of E3112 resulted in an increase in ADA levels, with higher levels observed in rats than in monkeys. Systemic exposures of E3112 in rats with higher ADA levels were lower than those with lower ADA, confirming the utility of nonclinical immunogenicity in interpreting pharmacokinetics and its inter-individual variability.
Collapse
Affiliation(s)
- Muneo Aoyama
- Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yuji Mano
- Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba-shi, Ibaraki 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan.
| |
Collapse
|
2
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
3
|
Seta Y, Kimura K, Masahiro G, Tatsumori K, Murakami Y. SHED-CM: The Safety and Efficacy of Conditioned Media from Human Exfoliated Deciduous Teeth Stem Cells in Amyotrophic Lateral Sclerosis Treatment: A Retrospective Cohort Analysis. Biomedicines 2024; 12:2193. [PMID: 39457505 PMCID: PMC11504253 DOI: 10.3390/biomedicines12102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a progressive and irreversible neurodegenerative disease with limited treatment options. Advances in regenerative medicine have opened up new treatment options. The primary and exploratory objectives of this retrospective cohort study were to evaluate the safety and efficacy of stem cells from human exfoliated deciduous teeth-conditioned media (SHED-CM). METHODS Safety assessments included adverse events, vital signs, and laboratory test changes before and after administration, and efficacy was measured using the ALS Functional Rating Scale-Revised (ALSFRS-R), grip strength, and forced vital capacity in 24 patients with ALS treated at a single facility between 1 January 2022, and 30 November 2023. RESULTS While ALSFRS-R scores typically decline over time, the progression rate in this cohort was slower, suggesting a potential delay in disease progression. Alternatively, improvements in muscle strength and mobility were observed in some patients. Although adverse events were reported in only 3% of cases (no serious allergic reactions), the treatment-induced changes in vital signs and laboratory results were not clinically significant. CONCLUSIONS The SHED-CM treatment is a safe and potentially effective therapeutic option for patients with ALS. Further research is needed to optimize the SHED-CM treatment; however, this study lays the groundwork for future exploration of regenerative therapies for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
4
|
Thomas SJ, Ghosh B, Wang Z, Yang M, Nong J, Severa J, Wright MC, Zhong Y, Lepore AC. Hepatocyte Growth Factor Delivery to Injured Cervical Spinal Cord Using an Engineered Biomaterial Protects Respiratory Neural Circuitry and Preserves Functional Diaphragm Innervation. J Neurotrauma 2024; 41:2168-2185. [PMID: 39078323 DOI: 10.1089/neu.2024.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
A major portion of spinal cord injury (SCI) cases occur in the cervical region, where essential components of the respiratory neural circuitry are located. Phrenic motor neurons (PhMNs) housed at cervical spinal cord level C3-C5 directly innervate the diaphragm, and SCI-induced damage to these cells severely impairs respiratory function. In this study, we tested a biomaterial-based approach aimed at preserving this critical phrenic motor circuitry after cervical SCI by locally delivering hepatocyte growth factor (HGF). HGF is a potent mitogen that promotes survival, proliferation, migration, repair, and regeneration of a number of different cell and tissue types in response to injury. We developed a hydrogel-based HGF delivery system that can be injected into the intrathecal space for local delivery of high levels of HGF without damaging the spinal cord. Implantation of HGF hydrogel after unilateral C5 contusion-type SCI in rats preserved diaphragm function, as assessed by in vivo recordings of both compound muscle action potentials and inspiratory electromyography amplitudes. HGF hydrogel also preserved PhMN innervation of the diaphragm, as assessed by both retrograde PhMN tracing and detailed neuromuscular junction morphological analysis. Furthermore, HGF hydrogel significantly decreased lesion size and degeneration of cervical motor neuron cell bodies, as well as reduced levels surrounding the injury site of scar-associated chondroitin sulfate proteoglycan molecules that limit axon growth capacity. Our findings demonstrate that local biomaterial-based delivery of HGF hydrogel to injured cervical spinal cord is an effective strategy for preserving respiratory circuitry and diaphragm function.
Collapse
Affiliation(s)
- Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mengxi Yang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jenna Severa
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Clinical application and potential pluripotent effects of hepatocyte growth factor in spinal cord injury regeneration. Expert Opin Investig Drugs 2024; 33:713-720. [PMID: 38783527 DOI: 10.1080/13543784.2024.2360191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a condition in which the spinal cord parenchyma is damaged by various factors. The mammalian central nervous system has been considered unable to regenerate once damaged, but recent progress in basic research has gradually revealed that injured neural cells can indeed regenerate. Drug therapy using novel agents is being actively investigated as a new treatment for SCI. One notable treatment method is regeneration therapy using hepatocyte growth factors (HGF). AREA COVERED HGF has pluripotent neuroregenerative actions, as indicated by its neuroprotective and regenerative effects on the microenvironment and damaged cells, respectively. This review examines these effects in various phases of SCI, from basic research to clinical studies, and the application of this treatment to other diseases. EXPERT OPINION In regenerative medicine for SCI, drug therapies have tended to be more likely to be developed compared to cell replacement treatment. Nevertheless, there are still challenges to be addressed for these clinical applications due to a wide variety of pathology and animal experimental models of basic study, but HGF could be an effective treatment for SCI with expanded application.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
6
|
Berthiaume AA, Reda SM, Kleist KN, Setti SE, Wu W, Johnston JL, Taylor RW, Stein LR, Moebius HJ, Church KJ. ATH-1105, a small-molecule positive modulator of the neurotrophic HGF system, is neuroprotective, preserves neuromotor function, and extends survival in preclinical models of ALS. Front Neurosci 2024; 18:1348157. [PMID: 38389786 PMCID: PMC10881713 DOI: 10.3389/fnins.2024.1348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wu
- Athira Pharma, Inc., Bothell, WA, United States
| | | | | | | | | | | |
Collapse
|
7
|
Stansberry WM, Pierchala BA. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci 2023; 16:1238453. [PMID: 37692101 PMCID: PMC10483118 DOI: 10.3389/fnmol.2023.1238453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The discovery of the neurotrophins and their potent survival and trophic effects led to great enthusiasm about their therapeutic potential to rescue dying neurons in neurodegenerative diseases. The further discovery that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) had potent survival-promoting activity on motor neurons led to the proposal for their use in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). In this review we synthesize the literature pertaining to the role of NGF, BDNF, CNTF and GDNF on the development and physiology of spinal motor neurons, as well as the preclinical studies that evaluated their potential for the treatment of ALS. Results from the clinical trials of these molecules will also be described and, with the aid of decades of hindsight, we will discuss what can reasonably be concluded and how this information can inform future clinical development of neurotrophic factors for ALS.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
9
|
Proteomics Analysis of Lymphoblastoid Cell Lines from Patients with Amyotrophic Lateral Sclerosis. Molecules 2023; 28:molecules28052014. [PMID: 36903260 PMCID: PMC10004326 DOI: 10.3390/molecules28052014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of the progressive degeneration of motor neurons, caused by poorly understood mechanisms for which there is no cure. Some of the cellular perturbations associated with ALS can be detected in peripheral cells, including lymphocytes from blood. A related cell system that is very suitable for research consists of human lymphoblastoid cell lines (LCLs), which are immortalized lymphocytes. LCLs that can be easily expanded in culture and can be maintained for long periods as stable cultures. We investigated, on a small set of LCLs, if a proteomics analysis using liquid chromatography followed by tandem mass spectrometry reveals proteins that are differentially present in ALS versus healthy controls. We found that individual proteins, the cellular and molecular pathways in which these proteins participate, are detected as differentially present in the ALS samples. Some of these proteins and pathways are already known to be perturbed in ALS, while others are new and present interest for further investigations. These observations suggest that a more detailed proteomics analysis of LCLs, using a larger number of samples, represents a promising approach for investigating ALS mechanisms and to search for therapeutic agents. Proteomics data are available via ProteomeXchange with identifier PXD040240.
Collapse
|
10
|
Muacevic A, Adler JR, Torres R, Maita K, Garcia J, Serrano L, Ho O, Forte AJ. Modulation of Burn Hypermetabolism in Preclinical Models. Cureus 2023; 15:e33518. [PMID: 36779088 PMCID: PMC9904913 DOI: 10.7759/cureus.33518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Severe burns elicit a state of physiological stress and increased metabolism to help the body compensate for the changes associated with the traumatic injury. However, this hypermetabolic state is associated with increased insulin resistance, cardiovascular dysfunction, skeletal muscle catabolism, impaired wound healing, and delayed recovery. Several interventions were attempted to modulate burn hypermetabolism, including nutritional support, early excision and grafting, and growth hormone application. However, burn hypermetabolism still imposes significant morbidity and mortality in burn patients. Due to the limitations of in vitro models, animal models are indispensable in burn research. Animal models provide researchers with invaluable tools to test the safety and efficacy of novel treatments or advance our knowledge of previously utilized agents. Several animal studies evaluated novel therapies to modulate burn hypermetabolism in the last few years, including recombinant human growth hormone, erythropoietin, acipimox, apelin, anti-interleukin-6 monoclonal antibody, and ghrelin therapies. Results from these studies are promising and may be effectively translated into human studies. In addition, other studies revisited drugs previously used in clinical practice, such as insulin and metformin, to further investigate their underlying mechanisms as modulators of burn hypermetabolism. This review aims to update burn experts with the novel therapies under investigation in burn hypermetabolism with a focus on applicability and translation. Furthermore, we aim to guide researchers in selecting the correct animal model for their experiments by providing a summary of the methodology and the rationale of the latest studies.
Collapse
|
11
|
Logan A, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Mangione R, Lazzarino G, Morano I, Qureshi O, Bruce L, Barnes NM, Nagy Z. The mechanism of action of a novel neuroprotective low molecular weight dextran sulphate: New platform therapy for neurodegenerative diseases like Amyotrophic Lateral Sclerosis. Front Pharmacol 2022; 13:983853. [PMID: 36110516 PMCID: PMC9468270 DOI: 10.3389/fphar.2022.983853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.
Collapse
Affiliation(s)
- Ann Logan
- Department of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
- Axolotl Consulting Ltd., Droitwich, United Kingdom
- *Correspondence: Ann Logan,
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | | | | | | | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Logan A, Nagy Z, Barnes NM, Belli A, Di Pietro V, Tavazzi B, Lazzarino G, Lazzarino G, Bruce L, Persson LI. A phase II open label clinical study of the safety, tolerability and efficacy of ILB® for Amyotrophic Lateral Sclerosis. PLoS One 2022; 17:e0267183. [PMID: 35613082 PMCID: PMC9132272 DOI: 10.1371/journal.pone.0267183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is an invariably lethal progressive disease, causing degeneration of neurons and muscle. No current treatment halts or reverses disease advance. This single arm, open label, clinical trial in patients with ALS investigated the safety and tolerability of a novel modified low molecular weight dextran sulphate (LMW-DS, named ILB®) previously proven safe for use in healthy volunteers and shown to exert potent neurotrophic effects in pre-clinical studies. Secondary endpoints relate to efficacy and exploratory biomarkers. Methods Thirteen patients with ALS were treated with 5 weekly subcutaneous injections of ILB®. Safety and efficacy outcome measures were recorded weekly during treatment and at regular intervals for a further 70 days. Functional and laboratory biomarkers were assessed before, during and after treatment. Results No deaths, serious adverse events or participant withdrawals occurred during or after ILB® treatment and no significant drug-related changes in blood safety markers were evident, demonstrating safety and tolerability of the drug in this cohort of patients with ALS. The PK of ILB® in patients with ALS was similar to that seen in healthy controls. The ILB® injection elicited a transient elevation of plasma Hepatocyte Growth Factor, a neurotrophic and myogenic growth factor. Following the ILB® injections patients reported increased vitality, decreased spasticity and increased mobility. The ALSFRS-R rating improved from 36.31 ± 6.66 to 38.77 ± 6.44 and the Norris rating also improved from 70.61 ± 13.91 to 77.85 ± 14.24 by Day 36. The improvement of functions was associated with a decrease in muscle atrophy biomarkers. These therapeutic benefits decreased 3–4 weeks after the last dosage. Conclusions This pilot clinical study demonstrates safety and tolerability of ILB® in patients with ALS. The exploratory biomarker and functional measures must be cautiously interpreted but suggest clinical benefit and have a bearing on the mechanism of action of ILB®. The results support the drug’s potential as the first disease modifying treatment for patients with ALS. Trial registration EudraCT 2017-005065-47.
Collapse
Affiliation(s)
- Ann Logan
- Axolotl Consulting Ltd, Droitwich, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Tavazzi
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | | | - Lennart I. Persson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
14
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
A Novel HGF/SF Receptor (MET) Agonist Transiently Delays the Disease Progression in an Amyotrophic Lateral Sclerosis Mouse Model by Promoting Neuronal Survival and Dampening the Immune Dysregulation. Int J Mol Sci 2020; 21:ijms21228542. [PMID: 33198383 PMCID: PMC7696450 DOI: 10.3390/ijms21228542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.
Collapse
|
16
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Nagoshi N, Tsuji O, Kitamura K, Suda K, Maeda T, Yato Y, Abe T, Hayata D, Matsumoto M, Okano H, Nakamura M. Phase I/II Study of Intrathecal Administration of Recombinant Human Hepatocyte Growth Factor in Patients with Acute Spinal Cord Injury: A Double-Blind, Randomized Clinical Trial of Safety and Efficacy. J Neurotrauma 2020; 37:1752-1758. [PMID: 32323609 DOI: 10.1089/neu.2019.6854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) is an abrupt traumatic injury that leads to permanent functional loss, and no practical treatment is available. We have developed pharmaceutical recombinant human hepatocyte growth factor (KP-100), and its efficacy for SCI has been verified using animal models. The purpose of this study was to evaluate the safety and efficacy of intrathecal KP-100 administration for SCI patients in the acute phase. This investigation was a multi-center, randomized, double-blind study. Subjects with modified Frankel grade A/B1/B2 at 72 h after SCI were included. KP-100 was administered intrathecally. Subjects were followed up for 168 days after the first administration. Outcomes were evaluated using American Spinal Injury Association (ASIA) scores and subjected to analysis of covariance. Our results demonstrated that the subjects did not show any serious adverse events caused by KP-100. Forty-three subjects underwent neurological function testing (26 in KP-100 group; 17 in placebo group), which revealed that KP-100 contributed to motor improvement at Days 140 (p = 0.050) and 168 (p = 0.079). In the subset of subjects with Frankel grade A, the proportions of subjects who gained at least 1 point on their lower-extremity motor scores were 33.3% (5/15) and 6.3% (1/16) in the KP-100 and placebo groups, respectively (p = 0.083). Therefore, KP-100 has the potential to be useful and beneficial for SCI patients during the acute phase. However, this was a phase I/II trial and did not definitely address the question of efficacy; a larger phase III trial would be required to assess the efficacy.
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osahiko Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuya Kitamura
- Department of Orthopedic Surgery, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Kota Suda
- Department of Orthopedic Surgery, Hokkaido Spinal Cord Injury Center, Hokkaido, Japan
| | - Takeshi Maeda
- Department of Orthopedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Yoshiyuki Yato
- Department of Orthopedic Surgery, Murayama Medical Center, National Hospital Organization, Tokyo, Japan
| | - Takayuki Abe
- Faculty of Data Science, Yokohama City University School of Data Science, Kanagawaken, Japan.,Biostatistics, Clinical and Translational Research Center, and Keio University School of Medicine, Tokyo, Japan
| | | | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Multipotent Neurotrophic Effects of Hepatocyte Growth Factor in Spinal Cord Injury. Int J Mol Sci 2019; 20:ijms20236078. [PMID: 31810304 PMCID: PMC6928986 DOI: 10.3390/ijms20236078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in neural tissue loss and so far untreatable functional impairment. In addition, at the initial injury site, inflammation induces secondary damage, and glial scar formation occurs to limit inflammation-mediated tissue damage. Consequently, it obstructs neural regeneration. Many studies have been conducted in the field of SCI; however, no satisfactory treatment has been established to date. Hepatocyte growth factor (HGF) is one of the neurotrophic growth factors and has been listed as a candidate medicine for SCI treatment. The highlighted effects of HGF on neural regeneration are associated with its anti-inflammatory and anti-fibrotic activities. Moreover, HGF exerts positive effects on transplanted stem cell differentiation into neurons. This paper reviews the mechanisms underlying the therapeutic effects of HGF in SCI recovery, and introduces recent advances in the clinical applications of HGF therapy.
Collapse
|
19
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|