1
|
You C, Jiang M, Gao T, Zhu Z, He X, Xu Y, Gao Y, Jiang Y, Xu HE. Decoding the structural basis of ligand recognition and biased signaling in the motilin receptor. Cell Rep 2025; 44:115329. [PMID: 39987561 DOI: 10.1016/j.celrep.2025.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The motilin receptor (MTLR) is a key target for treating gastrointestinal (GI) disorders like gastroparesis, yet developing effective agonists remains challenging due to drug tolerance and signaling bias. We present cryoelectron microscopy (cryo-EM) structures of MTLR bound to azithromycin, a macrolide antibiotic, and DS-3801b, a non-macrolide agonist. Distinct ligand recognition mechanisms are revealed, with azithromycin binding deeply within the orthosteric pocket and DS-3801b adopting a special clamp-like conformation stabilized by a water molecule. We also highlight the critical role of extracellular loop 2 (ECL2) in ligand specificity and signaling pathway activation, affecting both G-protein and β-arrestin signaling. Additionally, the "D2.60R2.63S3.28" motif and interactions around transmembranes 6/7 (TM6/7) are identified as key drivers of signaling selectivity. These findings offer insights into the structural dynamics of MTLR, laying the groundwork for the rational design of next-generation GI prokinetic drugs with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Chongzhao You
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengting Jiang
- Lingang Laboratory, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Gao
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zining Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xinheng He
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - H Eric Xu
- The State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Mori H, Verbeure W, Schol J, Carbone F, Tack J. Gastrointestinal hormones and regulation of gastric emptying. Curr Opin Endocrinol Diabetes Obes 2022; 29:191-199. [PMID: 35081068 DOI: 10.1097/med.0000000000000707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent findings related to the association between gastrointestinal hormones and regulation of gastric emptying. RECENT FINDINGS Motilin and ghrelin, which act during fasting, promote gastric motility, whereas most of the hormones secreted after a meal inhibit gastric motility. Serotonin has different progastric or antigastric motility effects depending on the receptor subtype. Serotonin receptor agonists have been used clinically to treat dyspepsia symptoms but other hormone receptor agonists or antagonists are still under development. Glucagon-like peptide 1 agonists, which have gastric motility and appetite-suppressing effects are used as a treatment for obesity and diabetes. SUMMARY Gastrointestinal hormones play an important role in the regulation of gastric motility. Various drugs have been developed to treat delayed gastric emptying by targeting gastrointestinal hormones or their receptors but few have been commercialized.
Collapse
Affiliation(s)
- Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
3
|
Toda N, Shida T, Takano R, Katagiri T, Hirouchi M, Abe M, Soma K, Nakagami Y, Yamazaki M. Discovery of DS-3801b, a non-macrolide GPR38 agonist with N-methylanilide structure. Bioorg Med Chem Lett 2022; 59:128554. [DOI: 10.1016/j.bmcl.2022.128554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
4
|
Deloose E, Verbeure W, Depoortere I, Tack J. Motilin: from gastric motility stimulation to hunger signalling. Nat Rev Endocrinol 2019; 15:238-250. [PMID: 30675023 DOI: 10.1038/s41574-019-0155-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After the discovery of motilin in 1972, motilin and the motilin receptor were studied intensely for their role in the control of gastrointestinal motility and as targets for treating hypomotility disorders. The genetic revolution - with the use of knockout models - sparked novel insights into the role of multiple peptides but contributed to a decline in interest in motilin, as this peptide and its receptor exist only as pseudogenes in rodents. The past 5 years have seen a major surge in interest in motilin, as a series of studies have shown its relevance in the control of hunger and regulation of food intake in humans in both health and disease. Luminal stimuli, such as bitter tastants, have been identified as modulators of motilin release, with effects on hunger and food intake. The current state of knowledge and potential implications for therapy are summarized in this Review.
Collapse
Affiliation(s)
- Eveline Deloose
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Wout Verbeure
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.
| |
Collapse
|